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abstract

Zeros of a Two-Parameter Family of Harmonic Trinomials

David Work
Department of Mathematics, BYU

Master of Science

This thesis studies complex harmonic polynomials of the form f(z) = azn+bz̄k+z where
n, k ∈ Z with n > k and a, b > 0. We show that the sum of the orders of the zeros of such
functions is n and investigate the locations of the zeros, including whether the zeros are in
the sense-preserving or sense-reversing region and a set of conditions under which zeros have
the same modulus. We also show that the number of zeros ranges from n to n + 2k + 2 as
long as certain criteria are met.

Keywords: harmonic polynomials, zeros, Fundamental Theorem of Algebra
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Chapter 1. Introduction

Many problems in mathematics center around knowing about the zeros of functions.

These range from simple situations like finding how many of an item must be sold to break

even to much more complicated problems like the famous Riemann hypothesis, which con-

cerns the locations of the zeros of the Riemann zeta function.

Here, we will be investigating the zeros of continuous complex-valued harmonic polyno-

mials. These can be expressed as f = h+ ḡ, where h and g are analytic polynomials. There

are some familiar facts about analytic polynomials that do not quite carry over to complex-

valued harmonic polynomials. One comes from the Fundamental Theorem of Algebra, with

which one can show that an analytic polynomial of degree n has no more than n distinct

roots. To show how this does not hold for complex-valued harmonic polynomials, consider

the polynomial z4 + z̄2. One can verify that the seven numbers 0,±i,±
√
3
2
± i

2
all satisfy the

equation z4 + z̄2 = 0, showing that the number of roots of this polynomial is greater than

n = 4.

Another such fact is that analytic functions are sense-preserving at all points at which

the derivative is nonzero. We call a function “sense-preserving” in a given domain if the

function preserves the orientation of a curve in that domain, that is, a positively-oriented

curve is still positively oriented after applying the function to it, and a negatively-oriented

curve is still negatively oriented after applying the function to it. On the other hand, we call

a function “sense-reversing” in a given domain if the function changes the orientation of a

curve in that domain. In the case of complex-valued harmonic functions, we find that such

functions may be sense-preserving in some regions and sense-reversing in others. Lewy’s

Theorem [Lew36] implies that f = h+ ḡ is locally univalent and sense-preserving if and only

if h′(z) ̸= 0 and the dilatation function ω(z) := g′(z)/h′(z) satisfies |ω(z)| < 1. We note

that, if f is analytic, g(z) ≡ 0, so ω(z) ≡ 0 as well. The modulus of the dilatation function

can thus be viewed as a measure of how far f is from being analytic.
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Many similarities exist between analytic and harmonic functions. In particular, many

familiar results for analytic functions hold for complex-valued harmonic functions with only

slight modifications. We will be making use of the following harmonic analog of Rouché’s

theorem as shown by Duren, Hengartner, and Laugesen: [DHL96]

Theorem 1.1 (Rouché’s Theorem for Harmonic Functions). If p and p + q are harmonic

functions in a Jordan domain D with boundary C, are continuous in D̄, and |q(z)| < |p(z)|

on C, then p and p + q have the same number of zeros inside D counted according to their

multiplicity as long as none of the zeros are singular.

It should be noted that by “singular” we mean that the value of the dilatation function

has modulus 1 at that point. Throughout this paper we will assume that pa,b(z) has no

singular zeros so that we may use Rouché’s theorem.

To define the multiplicity of a zero z0 of a complex harmonic function, we look at its

power series expansion about the zero. Let

f(z) = h(z) + g(z) = a0 +
∞∑
j=r

aj(z − z0)
j + b0 +

∞∑
j=s

bj(z − z0)j, (1.1)

where ar ̸= 0 and bs ̸= 0. If z0 is in the sense-preserving region then r ≤ s and the order of

the zero is r. If z0 is in the sense-reversing region, then s ≤ r and the order of the zero is

−s. If a zero is on a boundary between the sense-preserving region and the sense-reversing

region, i.e., if the zero is singular, then the order of the zero is undefined. We call this

boundary the critical curve.

Deducing information about the number and locations of zeros of a complex-valued har-

monic polynomial is a task that is certainly nontrivial. Recently, Melman [Mel12] investi-

gated trinomials of the form q(z) = zn − azk − 1, where 1 ≤ k ≤ n − 1, n ≥ 3, a ∈ C,

and gcd(n, k) = 1 and gleaned information relating to the location of the zeros of q.

Similarly, Brilleslyper and Schaubroeck [BS14] [BS18] considered the family of trinomials

p(z) = zn + zk − 1, where 1 ≤ k ≤ n − 1, n ≥ 2, and derived a formula for the number of

2



Figure 1.1: Example plots of zeros and critical curves
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zeros of p located on the unit circle. Howell and Kyle [HK18] then were able to determine

the number of zeros of this same trinomial p in the interior and exterior of the unit circle.

Brilleslyper, Brooks, Dorff, Howell, and Schaubroeck [BBD+20] derived formulas for certain

cases of the trinomials pc(z) = zn + cz̄k − 1. Here, we work with the family of harmonic

trimonials

pa,b(z) = azn + bz̄k + z,

where 1 < k < n and a, b ∈ R+. Figure 1.1 contains some examples of the locations of the

zeros of certain specific trinomials, also showing the critical curve for each.

From looking at the first of these, it would appear that the nontrivial zeros of z5+ z̄3+ z

are arranged on two circles, each centered at the origin. We show that this is, indeed, the

case in our first theorem:

Theorem 3.2. If n−k = 2 then the nontrivial zeros of pa,b(z) either are all equal in modulus

or are split into two disjoint subsets where all the zeros in each subset are equal in modulus.

In the former case there are n− 1 nontrivial zeros, all of which are in the sense-preserving

region, giving a total of n zeros. In the latter case there are 2n − 2 zeros in one subset, all

of which are in the sense-preserving region, and n− 1 zeros in the other subset, all of which

are in the sense-reversing region, giving a total of 3n− 2 zeros.

Our other two theorems show that the number of zeros depends on the parameters a and
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b. These theorems assume that pa,b(z) has no singular zeros in order that Rouché’s theorem

may be used.

Theorem 4.1. There exists b0, dependent on a, n, and k, such that, if b < b0 then pa,b(z)

has precisely n distinct zeros, all of which are in the sense-preserving region.

Theorem 5.1. If pa,b(z) has no zeros in the annuli

(1 + bk(an)
1−k
n−1 )−

1
k−1 (an)−

1
n−1 < |z| < (bk(an)

1−k
n−1 − 1)−

1
k−1 (an)−

1
n−1 (1.2)

or

(bk(an)
1−k
n−1 − 1)

1
n−k (an)−

1
n−1 < |z| < (1 + bk(an)

1−k
n−1 )

1
n−k (an)−

1
n−1 (1.3)

then there exists bN , dependent on a, n, and k, such that, if b > bN then pa,b(z) has n+2k+2

zeros.

Chapter 2. Preliminaries

Before we work towards the main results, there are some preliminary facts that must be

established. The first is about the sum of the orders of the zeros of pa,b(z).

Proposition 2.1. If pa,b(z) has no singular zeros then the sum of the orders of the zeros of

pa,b(z) is n.

Proof. Since n > k there exists R > 0 such that |azn| > |bz̄k + z| if |z| > R. The function

q(z) = azn has a single zero of order n at the origin. Taking R → ∞, it follows by Rouché’s

Theorem that the sum of the orders of the zeros of pa,b(z) in the complex plane is n.

Next we show that the zeros of pa,b(z) are all simple; i.e., each zero has order 1 or −1.

Proposition 2.2. Each zero of pa,b(z) has order 1 or −1.

4



Proof. The first part of this argument is taken with some modification from Brilleslyper et

al. [BBD+20] The trinomial pa,b(z) can be written as pa,b(z) = h(z)+ g(z) = (azn+ z)+ bzk.

Let z0 be a nontrivial zero of pa,b(z). The series expansions of h and g about z0 are finite

series since h and g are polynomials, where in accordance with the notation of equation

(1.1), a1 = anzn−1
0 + 1 and b1 = bkzk−1

0 . The latter of these is nonzero when z0 ̸= 0, and the

former is only zero if z0 = (−an)
1

n−1 . In this case

lim
z→z0

|ω(z)| = lim
z→z0

∣∣∣∣g′(z)h′(z)

∣∣∣∣ = lim
z→z0

∣∣∣∣ bkzk−1

anzn−1 + 1

∣∣∣∣ = ∞

because the denominator goes to 0 while the numerator goes to some finite nonzero number.

This places z0 in the sense-reversing region, so the order of the zero is −s. However, we

already showed that b1 ̸= 0 in this case, so if there is a zero at (−an)
1

n−1 then its order is

−1. This shows that the nontrivial zeros all have order 1 or −1.

Now we look at the trivial zero. Note that ω(0) = 0, so the origin is in the sense-

preserving region, which means the order of the zero is r. In this case we have a1 = 1 ̸= 0,

so the order of this zero is 1. Thus, each zero of pa,b(z) has order 1 or −1.

Finally, we have this interesting result, which shows that the modulus of the dilatation

function ω(z) has rotational symmetry in the complex plane about the origin with an order

that is a multiple of n− 1.

Proposition 2.3. |ω(z)| = |ω(ze
2πi
n−1 )| for all z ∈ C.

Proof. We have

|ω(ze
2πi
n−1 )| =

∣∣∣∣∣g′(ze
2πi
n−1 )

h′(ze
2πi
n−1 )

∣∣∣∣∣ = bk|ze
2πi
n−1 |k−1

|an(ze
2πi
n−1 )n−1 + 1|

=
bk|z|k−1|e

2πi(k−1)
n−1 |

|anzn−1e2πi + 1|

=
bk|z|k−1

|anzn−1 + 1|
=

∣∣∣∣g′(z)h′(z)

∣∣∣∣ = |ω(z)|.
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Figure 2.1: Example plots of zeros and critical curves (reproduced)
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In practice, it appears that the order of the rotational symmetry of |ω(z)| is exactly n−1.

For convenience, we reproduce Figure 1.1 here, on which this rotational symmetry can be

readily seen by examining the critical curve.

Chapter 3. Special Case

In this chapter we investigate the case where n− k = 2. The motivation for looking into

this case comes from the following proposition:

Proposition 3.1. Let z0 be a zero of pa,b(z). If ζ is both an (n − 1)th root of unity and a

(k + 1)th root of unity or, equivalently, if ζ is a dth root of unity where d is the g.c.d. of

n− 1 and k + 1, then ζz0 is also a zero of pa,b(z).

Proof. Consider the polynomial a(ζz0)
n+ bζz0

k
+ ζz0. By hypothesis there exist m1,m2 ∈ Z

such that

ζ = e
2πim1
n−1 = e

2πim2
k+1 .

Substituting these expressions into the first and second instances of ζ in our polynomial,

respectively, and distributing the powers n and k gives

ae
2πim1n

n−1 zn0 + be−
2πim2k

k+1 z̄0
k + ζz0.

6



Now we can split each of the expressions involving e to obtain

ae
2πim1
n−1 e

2πim1(n−1)
n−1 + be

2πim2
k+1 e−

2πim2(k+1)
k+1 + ζz0.

Notice that the expressions we split off are both equal to ζ, so we can factor out ζ from the

entire expression, simplifying the remaining fractional exponents, to obtain

ζ(ae2πim1zn0 + be−2πim2 z̄0
k + z0).

Now the exponents on e are both integer multiples of 2πi, so taking e to those powers gives

1. We now have

ζ(azn0 + bz̄0
k + z0) = ζpa,b(z0).

Since z0 is a zero of pa,b(z0), this is equal to ζ · 0 = 0. Thus, ζz0 is also a zero of pa,b(z).

The most interesting result of this proposition comes when n− 1 = k + 1, or n− k = 2.

In this case, every (n− 1)th root of unity is also a (k + 1)th root of unity, so any nontrivial

zero gives rise to n−1 zeros all with the same modulus by multiplying by each root of unity.

This fact becomes evident in the proof of our theorem:

Theorem 3.2. If n−k = 2 then the nontrivial zeros of pa,b(z) either are all equal in modulus

or are split into two disjoint subsets where all the zeros in each subset are equal in modulus.

In the former case there are n− 1 nontrivial zeros, all of which are in the sense-preserving

region, giving a total of n zeros. In the latter case there are 2n − 2 zeros in one subset, all

of which are in the sense-preserving region, and n− 1 zeros in the other subset, all of which

are in the sense-reversing region, giving a total of 3n− 2 zeros.

The bulk of this proof rests in using algebra and basic calculus to determine, as far as

possible, the possible values of the modulus of any zero of pa,b(z) in this case. We show that

there are exactly one or two distinct values for the modulus of a nontrivial zero depending

7



on the parameters of pa,b(z). We then determine the number of zeros corresponding to each

of these values.

Proof. Let z = reiθ be a nontrivial zero of pa,b(z). Since n− k = 2 we can then write

a(reiθ)k+2 + breiθ
k
+ reiθ = 0

⇒ ark+2ei(k+2)θ + brke−ikθ + reiθ = 0.

Since z is a nontrivial zero, we know r ̸= 0, so we can multiply this equation by eikθ/r to get

ark+1ei(2k+2)θ + brk−1 + ei(k+1)θ = 0.

We note that the left-hand side is a quadratic expression in ei(k+1)θ, so the quadratic formula

gives

ei(k+1)θ =
−1±

√
1− 4abr2k

2ark+1
. (3.1)

Taking the modulus of both sides, we then have

1 =

∣∣∣∣∣−1±
√
1− 4abr2k

2ark+1

∣∣∣∣∣ . (3.2)

Let D be the discriminant, that is, D = 1 − 4abr2k. We now investigate the number of

possible values for r based on the sign of D.

First, if D < 0, then the two possible expressions inside the modulus on the right-hand

side of (3.2) are complex conjugates. In this case, multiplying them together gives the square

of the modulus, which the left-hand side tells us is 1. We then have

1 =
−1 +

√
1− 4abr2k

2ark+1
· −1−

√
1− 4abr2k

2ark+1
=

b

ar2

after some simplification. Rearranging then gives r =
√

b
a
. By substituting this value for

r into the discriminant, we get a necessary condition for the discriminant to be negative,

8



which is bk+1 > ak−1

4
. We have also established that there is exactly one possible value of r

that can make the discriminant negative, namely r =
√

b
a
.

If, on the other hand, D ≥ 0, then the right-hand side of (3.2) is real. Since the only real

numbers with modulus 1 are ±1, we have

1 =
−1±

√
1− 4abr2k

2ark+1
or − 1 =

−1±
√
1− 4abr2k

2ark+1
, (3.3)

which, after some simplifying, leads to

ark+1 + brk−1 + 1 = 0 or ark+1 + brk−1 − 1 = 0.

Taking the derivative with respect to r yields the same result in either case, which is (k +

1)ark +(k− 1)brk−2. Since we are only considering positive values of a, b, and k, and k must

be an integer, this derivative is positive for all r > 0. Substituting 0 for r in these equations

gives values of 1 in the former case and −1 in the latter case for the left-hand side. We thus

conclude using elementary calculus that the former case gives no positive values of r that

satisfy the equation, and the latter case gives exactly one positive value of r that satisfies

the equation.

We now address the question of whether this positive value of r actually results in the

discriminant being nonnegative. This will happen if and only if r ≤ (4ab)−
1
2k . We will show

that this is always the case for r a positive solution of ark+1 + brk−1 − 1 = 0.

We replace r with the value (4ab)−
1
2k . The resulting polynomial is

a(4ab)
−k−1
2k + b(4ab)

1−k
2k − 1.

Consider this as a function f in b. If we let b = (a
k−1

4
)

1
k+1 then we obtain (after a lot of messy

algebra)

f

((
ak−1

4

) 1
k+1

)
=

1

2
+

1

2
− 1 = 0.

9



Taking the derivative of f with respect to b and doing more messy algebra yields

f ′(b) =
(k + 1)(4

k+1
2k a

1−k
2k b

k+1
2k − 4

k−1
2k a

k−1
2k b

−k−1
2k )

8kb
.

Letting b = (a
k−1

4
)

1
k+1 again gives, after another round of messy algebra,

f ′

((
ak−1

4

) 1
k+1

)
= 0,

so (a
k−1

4
)

1
k+1 is a critical value of f . It is clear that the sign of this derivative depends only

on the sign of

4
k+1
2k a

1−k
2k b

k+1
2k − 4

k−1
2k a

k−1
2k b

−k−1
2k

and that this expression is strictly increasing in b. Hence, we see that f ′(b) < 0 when

b < (a
k−1

4
)

1
k+1 and f ′(b) > 0 when b > (a

k−1

4
)

1
k+1 . This shows that 0 is the absolute minimum

of f(b), which means ark+1 + brk−1 − 1 ≥ 0 when r = (4ab)−
1
2k . By the Intermediate Value

Theorem, we thus know that the positive root satisfies 0 < r ≤ (4ab)−
1
2k . Hence, this

root makes the discriminant positive, so for any a, b, k, there is exactly one circle of radius

r centered at the origin containing roots of pa,b(z) where the discriminant found earlier is

positive.

If bk+1 > ak−1

4
, then there may also exist a circle of radius

√
b
a
centered at the origin

containing roots of pa,b(z), where the discriminant from earlier is negative. These two circles

are the only possibilities for the locations of nontrivial zeros. We now turn our attention to

the individual zeros in each circle.

In the case where the discriminant is nonnegative, we found that the left equation in

(3.3) cannot happen, so putting the right equation of (3.3) together with (3.1) tells us that

ei(k+1)θ = −1. Thus, the zeros on the circle from the nonnegative discriminant case are all

the points with argument equal to (2m+1)π
k+1

for m ∈ {0, 1, . . . , k}. There are k + 1 = n − 1

of these zeros, and by Proposition 2.2 they must all have order 1 or −1. If this is the only

10



circle containing zeros, then there are n total zeros, which means that, in this case, the zeros

all have order 1, placing them in the sense-preserving region.

Now we look at the case where the discriminant can be negative. Recall that the zeros

from this case have modulus
√

b
a
. We now show that the circle |z| =

√
b
a
is entirely within

the sense-preserving region. We have

|ω(z)| = bk|z|k−1

|anzn−1 + 1|
≤ bk|z|k−1

|an|z|n−1 − 1| =
bk( b

a
)
k−1
2

|an( b
a
)
n−1
2 − 1|

=
kb

k+1
2

|(k + 2)b
k+1
2 − a

k−1
2 |

after doing some simplifying and using the fact that n− k = 2. Now recall that a necessary

condition for this case is that bk+1 > ak−1

4
⇔ b

k+1
2 > a

k−1
2

2
. This condition certainly makes

(k + 2)b
k+1
2 > a

k−1
2 , so we can drop the absolute value signs in the denominator. Note also

that

b
k+1
2 >

a
k−1
2

2
⇔ 2b

k+1
2 > a

k−1
2 ⇔ (k + 2)b

k+1
2 − a

k−1
2 > kb

k+1
2 ⇔ kb

k+1
2

(k + 2)b
k+1
2 − a

k−1
2

< 1.

Thus, the circle |z| =
√

b
a
and, hence, all the zeros on that circle are in the sense-preserving

region. Going back to (3.1), the fact that we can use both the plus and the minus in front

of the square root in this case, and that the right-hand side is nonreal means that we get

2(k+ 1) = 2n− 2 zeros on the circle |z| =
√

b
a
. These zeros all have order 1, so to make the

sum of the orders of all the zeros equal n, it must be that the n− 1 zeros on the other circle

each have order −1. Thus, we get a circle with 2n − 2 zeros in the sense-preserving region

and a circle with n− 1 zeros in the sense-reversing region, giving a total of 3n− 2 zeros after

including the trivial zero.

In this latter case, we can also say that the circle with n− 1 zeros in the sense-reversing

region has a smaller radius than the circle with the 2n − 2 zeros in the sense-preserving

region, which has radius
√

b
a
. This comes from the following proposition:

11



Proposition 3.3. If z0 is a zero of pa,b(z) that is in the sense-reversing region, then

|z0| <
(
b(k + 1)

a(n− 1)

) 1
n−k

.

Proof. For such a z0 we have

∣∣∣∣ bkzk−1
0

anzn−1
0 + 1

∣∣∣∣ > 1 ⇒ bk|z0|k

|anzn0 + z0|
> 1 ⇒ bk|z0|k

|a(n− 1)zn0 − bz̄0k|
> 1

where we have used the fact that z0 is a zero of pa,b(z) to substitute in the denominator.

The multiplication by |z0|/|z0| is justified by the fact that z0 is a sense-reversing zero, so

it cannot be the trivial zero as we already found that the origin is in the sense-preserving

region. From this we obtain

bk|z0|k > |a(n− 1)zn0 − bz̄0
k| ⇒ bk|z0|k > a(n− 1)|z0|n − b|z0|k

⇒ b(k + 1)|z0|k > a(n− 1)|z0|n ⇒ |z0|n−k <
b(k + 1)

a(n− 1)
] ⇒ |z0| <

(
b(k + 1)

a(n− 1)

) 1
n−k

.

The case being considered in this chapter is n − k = 2, and with this condition the

expression on the right is equal to
√

b
a
, which we found to be the radius of the circle with

zeros in the sense-preserving region. Thus, the zeros in the sense-reversing region have

smaller modulus than the nontrivial zeros in the sense-preserving region.

The results of this chapter can be seen in Figure 3.1.
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Figure 3.1: Examples of the case n− k = 2
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(c) f3(z) = 0.5z9 + z̄7 + z

Chapter 4. Small b

Now we will begin to investigate what happens in general when we fix a, n, and k and

allow b to vary. The examples in Figure 4.1 show that the number of zeros changes as we

change b, with there appearing to be a positive correlation between the value of b and the

number of zeros.

In this chapter we will prove the following theorem:

Theorem 4.1. There exists b0, dependent on a, n, and k, such that, if b < b0 then pa,b(z)

has precisely n distinct zeros, all of which are in the sense-preserving region.

We do this by first establishing the existence of a disk centered at the origin that is entirely

within the sense-preserving region. We use this fact to show that there are no nontrivial

zeros inside this disk. Finally, we use this lower bound on the modulus of a nontrivial zero to

establish that all the zeros of pa,b(z) are in the sense-preserving region for sufficiently small

b. We begin with the following lemma:

Lemma 4.2. The disk

|z| ≤ (1 + bk(an)
1−k
n−1 )−

1
k−1 (an)−

1
n−1 (4.1)

is entirely contained within the sense-preserving region.
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Figure 4.1: Number of zeros increases as b increases
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14 zeros

Proof. We will show that

|ω(z)| = |bkzk−1|
|anzn−1 + 1|

< 1

whenever (4.1) is satisfied. Let d ∈ R with

d ≤ (1 + bk(an)
1−k
n−1 )−

1
k−1 (4.2)

so that |z| = d(an)−
1

n−1 . Since a, b, k, and n are all positive, it is evident from (4.2) that

0 < d < 1. Taking both sides of (4.2) to the 1−k power and writing the inequality the other

way gives

1 + bk(an)
1−k
n−1 ≤ d1−k.

We now replace the 1 on the left-hand side with the smaller quantity dn−k to obtain

dn−k + bk(an)
1−k
n−1 < d1−k.

Now, we can multiply both sides by dk−1 and move the resulting dn−1 to the other side to

get

bkdk−1(an)
1−k
n−1 < 1− dn−1.
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Figure 4.2: Graphs showing disk in sense-preserving region
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Using the fact that |z| = d(an)−
1

n−1 , this is equivalent to

bk|z|k−1 < 1− an|z|n−1.

Using the triangle inequality, we can then say

bk|z|k−1 < |1 + anzn−1| ⇒ |bkzk−1|
|anzn−1 + 1|

< 1.

We have thus established the existence of a disk entirely within the sense-preserving

region. In Figure 4.2 we see the graphs from Figure 4.1 again, this time with the circle

|z| = (1 + bk(an)
1−k
n−1 )−

1
k−1 (an)−

1
n−1 added for reference. It can be seen from these figures

that the trivial zero is the only zero inside the circle in each of these cases. We now prove

that this is always the case using Rouché’s Theorem.

Lemma 4.3. The trivial zero is the only zero of pa,b(z) in the disk given by (4.1).

Proof. We will show this by establishing that |azn + bz̄k| < |z| on the circle |z| = (1 +

bk(an)
1−k
n−1 )−

1
k−1 (an)−

1
n−1 . The result will then follow from the previous lemma and Rouché’s

Theorem. For z on the given circle we have

|anzn+bz̄k| ≤ a|z|n+b|z|k = a(1+bk(an)
1−k
n−1 )−

n
k−1 (an)−

n
n−1 +b(1+bk(an)

1−k
n−1 )−

k
k−1 (an)−

k
n−1 .
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If we can show that the right-hand side is smaller than (1 + bk(an)
1−k
n−1 )−

1
k−1 (an)−

1
n−1 then

we will have our result. Through some algebraic manipulation we have

a(1+bk(an)
1−k
n−1 )−

n
k−1 (an)−

n
n−1+b(1+bk(an)

1−k
n−1 )−

k
k−1 (an)−

k
n−1 < (1+bk(an)

1−k
n−1 )−

1
k−1 (an)−

1
n−1

⇔ a(1 + bk(an)
1−k
n−1 )

k−n
k−1 (an)−1 + b(an)

1−k
n−1 < 1 + bk(an)

1−k
n−1

⇔ (1 + bk(an)
1−k
n−1 )

1−n
k−1 +

bn(an)
1−k
n−1

1 + bk(an)
1−k
n−1

< n.

Clearly, (1+ bk(an)
1−k
n−1 )

1−n
k−1 < 1, so we need only establish that bn(an)

1−k
n−1

1+bk(an)
1−k
n−1

< n− 1. By some

algebraic manipulation, this is equivalent to b(an)
1−k
n−1 (n + k − nk) ≤ n − 1. Since we are

assuming that n > k > 1 and that n, k ∈ N, it follows that n+ k−nk < 0, which makes our

inequality true no matter the (positive) values of a and b.

Having established that |azn+bz̄k| < |z| on the circle |z| = (1+bk(an)
1−k
n−1 )−

1
k−1 (an)−

1
n−1 ,

we can now use Rouché’s Theorem to say that z and pa,b(z) have the same number of zeros

inside the circle |z| = (1 + bk(an)
1−k
n−1 )−

1
k−1 (an)−

1
n−1 . Since z has only the trivial zero with

multiplicity 1, and pa,b(z) cannot have a zero of negative order in this region by Lemma 4.2,

it must be that pa,b(z) has only one zero in this region, which is readily shown to be the

trivial zero.

With this lemma in hand, we are now ready to prove our second major theorem.

Theorem 4.1. There exists b0, dependent on a, n, and k, such that, if b < b0 then pa,b(z)

has precisely n distinct zeros, all of which are in the sense-preserving region.

Proof. We will set

b0 =
a(n− 1)

(k + 1)2
n−k
k−1 (an)

n−k
n−1

. (4.3)

We claim that the right-hand side of (4.3) is smaller than (an)
k−1
n−1/k. To see that this is

16



true, note that

a(n− 1)

(k + 1)2
n−k
k−1 (an)

n−k
n−1

<
an

k2
n−k
k−1 (an)

n−k
n−1

=
(an)

k−1
n−1

k2
n−k
k−1

<
(an)

k−1
n−1

k
.

Thus, for b < b0 < (an)
k−1
n−1/k we have

b <
a(n− 1)

(k + 1)2
n−k
k−1 (an)

n−k
n−1

<
a(n− 1)

(k + 1)(1 + bk(an)
1−k
n−1 )

n−k
k−1 (an)

n−k
n−1

.

If z0 is any nontrivial zero of pa,b(z) then we know from Lemma 4.3 that

|z0| > (1 + bk(an)
1−k
n−1 )−

1
k−1 (an)−

1
n−1 .

From the previous inequality we can then build the following chain of inequalities:

b <
a(n− 1)|z0|n−k

k + 1
⇒ b(k + 1)|z0|k < a(n− 1)|z0|n ⇒ bk|z0|k < a(n− 1)|z0|n − b|z0|k

bk|z0|k < |a(n− 1)zn0 − bz̄0
k| ⇒ bk|z0|k

|a(n− 1)zn0 − bz̄0k|
< 1.

We now use the fact that z0 is a zero of pa,b(z) to substitute in the denominator, giving

bk|z0|k

|anzn0 + z0|
< 1 ⇒ |bkzk−1

0 |
|anzn−1

0 + 1|
< 1

after dividing the numerator and denominator by |z0| at the end. We have thus established

that the modulus of the dilatation function is smaller than 1 for any nontrivial zero when

b < b0. This, combined with Propositions 2.1 and 2.2, gives us that pa,b(z) has n zeros in

this case, all of which are in the sense-preserving region.

It should be noted that we are not saying that this chosen value of b0 is a sharp bound.

It may be possible to improve this bound.
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Chapter 5. Large b

In this last chapter, we establish the following theorem:

Theorem 5.1. If pa,b(z) has no zeros in the annuli

(1 + bk(an)
1−k
n−1 )−

1
k−1 (an)−

1
n−1 < |z| < (bk(an)

1−k
n−1 − 1)−

1
k−1 (an)−

1
n−1

or

equation(bk(an)
1−k
n−1 − 1)

1
n−k (an)−

1
n−1 < |z| < (1 + bk(an)

1−k
n−1 )

1
n−k (an)−

1
n−1

then there exists bN , dependent on a, n, and k, such that, if b > bN then pa,b(z) has n+2k+2

zeros.

We begin this chapter with some lemmas that give restrictions on the sense-preserving and

sense-reversing regions. We begin by establishing bounds on the sense-preserving and sense-

reversing regions. We then use these bounds together with Rouché’s theorem to establish

the number of zeros.

Lemma 5.2. If

|z| ≥ (1 + bk(an)
1−k
n−1 )

1
n−k (an)−

1
n−1

then z is in the sense-preserving region.

Proof. Similarly to Lemma 4.2, we will show that

|ω(z)| = |bkzk−1|
|anzn−1 + 1|

< 1

for such z. Let q ∈ R with

q ≥ (1 + bk(an)
1−k
n−1 )

1
n−k (5.1)
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so that |z| = q(an)−
1

n−1 . Since a, b, k, and n are all positive, it is evident from (5.1) that

q > 1. Through some manipulation of (5.1) we get

qn−k ≥ 1 + bk(an)
1−k
n−1 .

We now replace the 1 on the right-hand side with the smaller quantity q1−k to obtain

qn−k < q1−k + bk(an)
1−k
n−1 .

Now, we can multiply both sides by qk−1 and subtract 1 from both sides to get

qn−1 − 1 > bkqk−1(an)
1−k
n−1 .

Using the fact that |z| = q(an)−
1

n−1 , this is equivalent to

an|z|n−1 − 1 > bk|z|k−1.

Using the triangle inequality, we can then say

|1 + anzn−1| > bk|z|k−1 ⇒ |bkzk−1|
|anzn−1 + 1|

< 1.

Figure 5.1 gives some graphs with the same polynomials as in Figure 4.2, but this time

with this new bound.

Lemma 5.3. If b > 2
k
(an)

k−1
n−1 and

(bk(an)
1−k
n−1 − 1)−

1
k−1 (an)−

1
n−1 < |z| < (bk(an)

1−k
n−1 − 1)

1
n−k (an)−

1
n−1 (5.2)

then z is in the sense-reversing region.
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Figure 5.1: Graphs showing circle for which the outside is sense-preserving
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Proof. Again, similarly to previous results, we will show that

|ω(z)| = |bkzk−1|
|anzn−1 + 1|

> 1

whenever (5.2) is satisfied. If b > 2
k
(an)

k−1
n−1 then

(bk(an)
1−k
n−1 − 1)−

1
k−1 < 1 < (bk(an)

1−k
n−1 − 1)

1
n−k ,

so we can let c ∈ R with

(bk(an)
1−k
n−1 − 1)−

1
k−1 < c < (bk(an)

1−k
n−1 − 1)

1
n−k

so that |z| = c(an)−
1

n−1 . We will split this compound inequality into two, taking c ≤ 1 for

the inequality on the left and c ≥ 1 for the inequality on the right.

From

(bk(an)
1−k
n−1 − 1)−

1
k−1 < c ≤ 1

we obtain

c1−k < bk(an)
1−k
n−1 − 1 ⇒ c1−k < bk(an)

1−k
n−1 − cn−k ⇒ cn−1 + 1 < bkck−1(an)

1−k
n−1 .
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Using the fact that |z| = c(an)−
1

n−1 , this is equivalent to

an|z|n−1 + 1 < bk|z|k−1.

Using the triangle inequality, we can then say

|anzn−1 + 1| < bk|z|k−1 ⇒ |bkzk−1|
|anzn−1 + 1|

> 1.

On the other hand, from

1 ≤ c < (bk(an)
1−k
n−1 − 1)

1
n−k

we obtain

cn−k < bk(an)
1−k
n−1 − 1 ⇒ 1 < bk(an)

1−k
n−1 − cn−k ⇒ c1−k < bk(an)

1−k
n−1 − cn−k.

We now have an inequality identical to one from the previous case, so we follow the same

argument as before to say |bkzk−1|
|anzn−1+1| > 1. Thus, the interior of the annulus described by (5.1)

is within the sense-reversing region.

In Figure 5.2 we see some figures showing cases where this result holds. We now move

to the main theorem of this chapter.

Theorem 5.1. If pa,b(z) has no zeros in the annuli

(1 + bk(an)
1−k
n−1 )−

1
k−1 (an)−

1
n−1 < |z| < (bk(an)

1−k
n−1 − 1)−

1
k−1 (an)−

1
n−1 (5.3)

or

(bk(an)
1−k
n−1 − 1)

1
n−k (an)−

1
n−1 < |z| < (1 + bk(an)

1−k
n−1 )

1
n−k (an)−

1
n−1 (5.4)

then there exists bN , dependent on a, n, and k, such that, if b > bN then pa,b(z) has n+2k+2

zeros.
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Figure 5.2: Graphs showing annulus contained in sense-reversing region
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Proof. Our first step will be to show that pa,b(z) has the same total order of zeros inside

the circle |z| = (bk(an)
1−k
n−1 − 1)

1
n−k (an)−

1
n−1 as does the polynomial bz̄k + z using Rouché’s

Theorem. To do this we must show that |azn| < |bz̄k + z| on this circle. We will set

bN = n−1
n−k

(an)
k−1
n−1 . We then have

b >
n− 1

n− k
(an)

k−1
n−1 ⇒ b(n− k)(an)

1−k
n−1 > n− 1 ⇒ bn(an)

1−k
n−1 − bk(an)

1−k
n−1 > n− 1

⇒ bk(an)
1−k
n−1 − 1 < bn(an)

1−k
n−1 − n.

Since n−1
n−k

> 2
k
for all k ≥ 2, it follows that b > 2

k
(an)

k−1
n−1 or, equivalently, bk(an)

1−k
n−1 − 1 > 1,

which means (bk(an)
1−k
n−1 − 1)

1−k
n−k < 1, so we can multiply the −n on the right-hand side by

(bk(an)
1−k
n−1 − 1)

1−k
n−k and still preserve the inequality. This leads to

bk(an)
1−k
n−1 − 1 < bn(an)

1−k
n−1 − n(bk(an)

1−k
n−1 − 1)

1−k
n−k

⇒ 1

an
(abk(an)

1−k
n−1 − a) < b(an)

1−k
n−1 − (bk(an)

1−k
n−1 − 1)

1−k
n−k

after dividing both sides by n and factoring out 1/a on the left-hand side. We now multiply

both sides by (bk(an)
1−k
n−1 − 1)

k
n−k (an)−

1
n−1 , which is guaranteed to be positive by our choice
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of b, to obtain

a(bk(an)
1−k
n−1 − 1)

n
n−k (an)−

n
n−1 < b(bk(an)

1−k
n−1 − 1)

k
n−k (an)−

k
n−1 − (bk(an)

1−k
n−1 − 1)

1
n−k (an)−

1
n−1

⇒ a|z|n < b|z|k − |z| ⇒ |azn| < |bz̄k + z|.

We can now use Rouché’s Theorem to say that pa,b(z) and bz̄k + z have the same total order

of zeros inside the circle |z| = (bk(an)
1−k
n−1 − 1)

1
n−k (an)−

1
n−1 .

Using an argument similar to that of Proposition 2.1, we can show that the sum of the

orders of the zeros of bz̄k+z is−k. Doing some simple manipulations on the equation bz̄k+z =

0 we find that the nontrivial zeros of bz̄k + z have modulus b−
1

k−1 . For our chosen range of b

this becomes
(
n−1
n−k

)− 1
k−1 (an)−

1
n−1 , which is smaller than (bk(an)

1−k
n−1 −1)

1
n−k (an)−

1
n−1 because(

n−1
n−k

)− 1
k−1 < 1 < (bk(an)

1−k
n−1 −1)

1
n−k . Thus, all the zeros of bz̄k+z are inside our circle. From

(5.3), Lemmas 4.2 and 5.2, and Proposition 2.2 we conclude that pa,b(z) must have only the

trivial zero (which is sense-preserving) and k+1 zeros in the sense-reversing region inside the

circle |z| = (bk(an)
1−k
n−1 −1)

1
n−k (an)

1
n−1 . From (5.4) and Lemma 5.1 all the rest of the zeros of

pa,b(z) must be in the sense-preserving region outside of |z| = (1 + bk(an)
1−k
n−1 )

1
n−k (an)−

1
n−1 .

Using Propositions 2.1 and 2.2, we conclude that there must be n+ k of them. This gives a

total of n+ 2k + 2 zeros for pa,b(z).

Again, we point out that this chosen value of bN may not necessarily be a sharp bound.

In this last theorem, we had to assume that pa,b(z) has no zeros in the annuli given in

(5.3) and (5.4). From looking at examples like the ones given Figures 5.2 and 5.3, we see

that there are sometimes zeros in (5.4), but it appears that there are not zeros there if b is

made sufficiently large. There appear to never be any zeros in (5.3). It may be possible to

prove that there are no zeros in either of these annuli for sufficiently large b, and until this

is done, we do not have a complete determination of the total number of zeros.
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Figure 5.3: Graphs showing no zeros in restricted annuli
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