Variation of DNA Methylation in Pediatric Cancer Patients
Alyssa C. Parker, Badi Quinteros, and Stephen R. Piccolo
Department of Biology, Brigham Young University

Introduction
The development of pediatric cancer is a complex process. Because fewer genetic abnormalities have been identified in pediatric cancer patients than other cancer patients, it is thought that dysregulation of the epigenome plays a role in pediatric cancer development. DNA methylation is a mechanism of epigenetic modification in which methyl groups are attached to DNA molecules, making it more difficult for DNA to be transcribed and translated into protein. Methylation can have an impact on gene expression when methylation levels significantly increase or decrease. We hypothesized that methylation levels of genes are consistent in normal patients and variant in pediatric cancer patients. We chose to focus on patients with Wilms tumor, rhabdoid tumor, clear cell sarcoma of the kidney, osteosarcoma, and neuroblastoma.

Goal
Our goal was to understand differences in DNA methylation levels between pediatric cancer patients and normal patients. We wanted to understand the consistency of DNA methylation in normal patients and identify patterns of change in cancer patients. Our hope is that understanding variation in DNA methylation will lead to potential therapies for pediatric cancer patients.

Data Preparation and Analysis
We determined baseline DNA methylation levels by combining normal patient data from four datasets. We found DNA methylation levels to be highly consistent. We then quantified changes in methylation for pediatric cancer patients and identified many genes with highly variant DNA methylation levels.

Conclusions
We found that DNA methylation levels are highly consistent in normal patients and highly variant in pediatric cancer patients. We identified highly variant genes in each cancer type and determined that the degree of variance depends on the cancer type. We also found that hypermethylation is more common than hypomethylation in pediatric cancer patients.

Future directions
We will continue to analyze changes in DNA methylation by studying the mutual exclusivity of DNA methylation and mutation. We will specifically focus on genes that are most consistent in normal patients. We hypothesize that if pediatric cancer patients do not have mutations in these genes, DNA methylation levels will be more highly variant.

1. Yiu and Li, “Pediatric Cancer Epigenome and the Influence of Folate.”
2. Shi et al., “Pan-Cancer Analysis of Differential DNA Methylation Patterns.”
Contact: alyssaclaire31@byu.edu, bique2@byu.edu, stephen_piccolo@byu.edu