2004-07-01

Quality of dehydrated potato flakes in long-term storage

A. P. Neilson
HPLCmaster@gmail.com

H. Farnsworth

See next page for additional authors

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the Food Science Commons, and the Nutrition Commons

Original Publication Citation

BYU ScholarsArchive Citation
Neilson, A. P.; Farnsworth, H.; Ogden, Lynn V.; and Pike, Oscar A., "Quality of dehydrated potato flakes in long-term storage" (2004). All Faculty Publications. 34.
https://scholarsarchive.byu.edu/facpub/34

This Poster is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Authors
A. P. Neilson, H. Farnsworth, Lynn V. Ogden, and Oscar A. Pike

This poster is available at BYU ScholarsArchive: https://scholarsarchive.byu.edu/facpub/34
Quality of dehydrated potato flakes in long-term storage

A.P. Neilson, H. Farnsworth, L.V. Ogden and O.A. Pike
Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602

ABSTRACT

There is increased interest in dehydrated potato flakes for food processing and packaging. The objective of this study was to examine the effects of long-term storage of dehydrated potato flakes on color, texture, flavor, aroma, and colorimetric acceptability. Samples were stored at room temperature and moisture content was maintained between 6 and 7%. Headspace oxygen was monitored to determine if oxygen can control the oxidation of potato flakes stored in hermetically sealed cans. Headspace hexanal oxygen was monitored to determine if hexanal levels increased during storage. Headspace hexanal levels were monitored to determine if hexanal levels increased during storage. Headspace hexanal levels were monitored to determine if hexanal levels increased during storage.

RESULTS AND DISCUSSION

Hexanal levels were not significantly higher than those found in pre-storage samples. Headspace hexanal levels were not significantly higher than those found in pre-storage samples. Headspace hexanal levels were not significantly higher than those found in pre-storage samples.

INTRODUCTION

Potatoes are commonly grown as a food and are an excellent source of vitamin C. They are also a good source of vitamin A. Potato flakes are an excellent source of vitamin C. Potato flakes are an excellent source of vitamin C. Potato flakes are an excellent source of vitamin C. Potato flakes are an excellent source of vitamin C. Potato flakes are an excellent source of vitamin C. Potato flakes are an excellent source of vitamin C.

METHODOLGY

Analyzing potato flakes for vitamin C, color, and aroma

Vitamin C was determined by a modified form of the method of Hilditch and Tappin (1946). The colorimetric determination was performed according to the method of Hunter (1957). Aroma was determined using the method of Zebrowska and others (1972). Aroma was determined using the method of Zebrowska and others (1972). Aroma was determined using the method of Zebrowska and others (1972).

CONCLUSIONS

Hexanal levels did not increase during storage and were not significantly different from pre-storage samples. Headspace hexanal levels were not significantly different from pre-storage samples. Headspace hexanal levels were not significantly different from pre-storage samples.

REFERENCES


ACKNOWLEDGEMENTS

The authors wish to thank the following individuals for their contributions to this study: Dr. R. R. Rosenthal, Dr. J. A. Gale, Dr. J. A. Gale, Dr. J. A. Gale.