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abstract

Totally p-adic Numbers of Degree 4

Melissa Janet Ault
Department of Mathematics, BYU

Master of Science

In this thesis, we extend results of Emerald Stacy to compute an upper bound on the
minimal height of a totally p-adic algebraic integer α of degree 4 independent of p. We also
compute actual values of the minimal height of a totally p-adic algebraic integer α of degree
4 for small primes p.
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Chapter 1. Introduction

For an algebraic number α with minimal polynomial fα over Q, we define the Mahler measure

of fα to be

M(fα) = |a|
n∏
i=1

max{1, |αi|}

where a is the leading coefficient of fα, n = deg(fα), and {α1, . . . , αn} are the roots of fα.

The logarithmic Weil height of α [1] is then

h(α) =
1

n
logM(fα)

where d is the degree of fα. The Mahler measure of the minimal polynomial of α and the

Weil height of α are measures of the complexity of α and allow us to sort algebraic numbers

by height, which is useful in many applications.

In 1975, Schinzel proved [4] that if α is a totally real algebraic integer not equal to 0 or

±1 then

h(α) ≥ 1

2
log

(
1 +
√

5

2

)
.

In a recent paper [5], Emerald Stacy studied a p-adic analogue of this theorem. She proved

that for any p, there exists a real number τ3,p such that every totally p-adic algebraic number

α of degree 3 has h(α) ≥ τ3,p. Stacy also calculated an upper bound for τ3,p independent of

p and computed actual values of τ3,p for small primes.

In this thesis, we extend Stacy’s results to prove that for every prime p, there exists a real

number τ4,p such that every totally p-adic algebraic number α of degree 4 has h(α) ≥ τ4,p.

(See theorem 5.1) We will also calculate a bound for τ4,p independent of p, and compute

actual values of τ4,p for primes less than or equal to 500.

Our ideas are based on the methods that Stacy used. We begin by studying two different

types of Galois extension, generated by degree 4 number fields, which we will use to find

the bound τ4,p. We use the fact that given a Galois number field, every prime number has

a Frobenius in the Galois group of that number field, and if the number field is abelian, p
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splits completely in the fixed field of the Frobenius. We also use the fact that if α generates

a number field in which p splits completely, then α is totally p-adic. Using these facts,

we are able to show that there is a finite set of number fields such that every prime, with

finitely many exceptions, splits completely in at least one of the number fields. We search

the number fields to find a generator α of each number field with small Mahler measure.

Since every prime p splits in one of the number fields, the largest Mahler measure of these

α’s will give an upper bound for τ4,p for all p except for the finitely many exceptional primes.

We deal with these exceptional primes separately. We thus find that for any prime p, there

is a totally p-adic α whose minimal polynomial has Mahler measure less than or equal to 9.

Hence we find that for any prime p, τ4,p ≤
log 9

4
=

log 3

2
.

In addition, we created a sorted list of all irreducible polynomials of degree 4 with Mahler

measure smaller than 9. We used bounds from [1] to bound the coefficients of any polynomial

of Mahler measure less than 9. This produced a finite list of polynomials containing all of

the polynomials of degree 4 with Mahler measure less than 9. We searched through them,

sifted out the ones with Mahler measure actually less than 9 and put them into a sorted

list. For a given prime p, we can search this list to find the polynomial with smallest Mahler

measure that defines a number field in which p splits completely. The height h(α) of a root

α of this smallest polynomial will be the actual value of τ4,p.
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Chapter 2. Algebraic Number Theory Back-

ground

2.1 Splitting of primes in number fields

We’ll begin by introducing and defining some terminology that comes from [2].

Definition 2.1. A number field is a subfield of C that has finite degree over Q. Every such

field can be written as Q(α) for some algebraic number α.

Definition 2.2. A Dedekind domain is an integral domain R that satisfies the following

conditions:

(i) Every ideal is finitely generated.

(ii) Every nonzero prime ideal is a maximal ideal

(iii) R is integrally closed in its field of fractions

K =

{
α

β
: α, β ∈ R, β 6= 0

}
.

This brings us to a theorem proved in [2]:

Theorem 2.3. Every ideal in a Dedekind domain is uniquely representable as a product of

prime ideals.

Now let A be the set of algebraic integers in C and let K be a number field.

Definition 2.4. A number ring is a subring OK = A ∩K of K.

Theorem 2.5. Every number ring is a Dedekind domain.

This tells us that the ring A is a Dedekind domain. Let L,K be number fields where

K ⊂ L and let OL and OK be their number rings, respectively. Let p ⊂ OK and P ⊂ OL

be prime ideals. We can easily see that pOL is an ideal of OL, so Theorem 2.3 tells us that

it has a unique factorization into prime ideals of OL.
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Definition 2.6. The ramification index e of P over p is the exact power of P that divides

pOL. The notation is e(P/p).

Definition 2.7. We say that P lies over p if the following conditions hold (which also end

up being equivalent):

(i) P | pOL

(ii) P ⊃ pOL

(iii) P ⊃ p

(iv) P ∩ OK = p

(v) P ∩K = p.

We know that OK and OL are Dedekind domains from Theorem 2.5, which means that

every nonzero prime ideal in these rings is a maximal ideal. Let P and p be primes with P

lying over p. Then OK/p and OL/P are fields.

In the proof of Theorem 14 in [2], we get the following theorem:

Theorem 2.8. If I is a nonzero ideal in a number ring R, then R/I is finite.

This gives us the fact that every prime ideal in a number ring has finite index.

Definition 2.9. The residue fields associated with p and P are the fields OK/p and OL/P,

respectively.

We see that OK ⊂ OL since K ⊂ L, and if P lies over p, there is a natural inclusion

OK/p ⊂ OL/P. Hence, OL/P is an extension over OK/p of finite degree since both residue

fields are finite.

Definition 2.10. The inertial degree f of P over p is the degree of the finite extension

OL/P over OK/p. The notation is f(P/p).
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Definition 2.11. p is ramified in OL if and only if e(P/p) > 1 for some prime P of OL

lying over p.

Definition 2.12. A prime ideal p of K splits completely in L if and only if p splits into

[L : K] distinct primes, where each prime has ramification index and inertial degree of 1.

2.2 Completion of number fields at prime ideals

First we want to define p-adic valuations. Let K be a number field with ring of integers OK .

Let p be a nonzero prime ideal of OK .

Definition 2.13. The discrete p-adic valuation vp(x) on OK (where x ∈ OK) is the power

of p in the factorization of the ideal OKx if x 6= 0. If x = 0, we say that vp(x) =∞. We can

also say that (x) = pvp(x) · I for x ∈ OK , where I is an ideal that is prime to p.

Theorem 2.14. The function vp : OK → Z ∪ {∞} satisfies the following conditions:

(i) vp(xy) = vp(x) + vp(y).

Proof. Let (x) = pvp(x) · I and (y) = pvp(y) · J . Using properties of ideals, we see that

(xy) = (x)(y)

= pvp(x) · I · pvp(y) · J where I and J are relatively prime ideals

= pvp(x)+vp(y) · I · J.

Hence, we see that vp(xy) = vp(x) + vp(y).

(ii) vp(x+ y) ≥ min{vp(x), vp(y)}.

Proof. Again let (x) = pvp(x) · I and (y) = pvp(y) · J and let m = min{vp(x), vp(y)}.

Then x ∈ pvp(x) and y ∈ pvp(y). We can also see that both pvp(x) and pvp(y) are subsets

of pm. This means that x+ y ∈ pm, so then pm | (x+ y). Thus, vp(x+ y) ≥ m.
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We can also extend vp to K by the property

vp

(
x

y

)
= vp(x)− vp(y).

We now define ‖x‖p = N(p)−vp(x), where N(p) = ‖OK/p‖.

Theorem 2.15.

‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

Proof.

‖x+ y‖p = N(p)−vp(x+y)

≤ N(p)−min{vp(x),vp(y)}

= max{‖x‖p, ‖y‖p}

≤ ‖x‖p + ‖y‖p.

Now we recall some definitions:

Definition 2.16. An absolute value on a field K is a function ‖·‖ : K → R satisfying

(i) ‖αβ‖ = ‖α‖‖β‖

(ii) ‖α + β‖ ≤ ‖α‖+ ‖β‖

(iii) ‖α‖ = 0 ⇐⇒ α = 0.

Examples:

1. The restriction of the absolute value on C to K and to its conjugates are absolute

values on K.

2. The p-adic absolute value ‖·‖p on K is an absolute value on K.

Remarks:

1. The p-adic absolute value on K satisfies a stronger version of part (ii) in Theorem 2.14:

‖α + β‖p ≤ max{‖α‖p, ‖β‖p}. (2.1)
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An absolute value satisfying 2.1 is a non-archimedean absolute value. Otherwise, it is

archimedean.

2. Ostrowski has a theorem that states that the p-adic valuations are the only (not equiv-

alent) non-archimedean valuations on K, whereas by the Gelfand-Tornheim theorem,

the archimedean valuation of K given in example 1 are the only such valuations on K.

3. The archimedean absolute value on Q is usually denoted by ‖·‖∞ and is said to corre-

spond to the infinite prime p =∞.

Definition 2.17. A Cauchy sequence in a field K with absolute value ‖·‖ is a sequence {an}

(an ∈ K) such that for any ε > 0, there is an N such that

‖an − am‖ < ε for all m,n > N.

A sequence {an} converges to a number a if

lim
n→∞
‖a− an‖ = 0.

We define multiplication and addition of Cauchy sequences as

(i) {an}+ {bn} = {an + bn}

(ii) {an} · {bn} = {anbn}.

Now we want to prove some theorems:

Theorem 2.18. The set C of all Cauchy sequences in a field K with absolute value ‖·‖ is a

ring.

Proof. First we check that C is an abelian additive group. Let {an}, {bn} ∈ C. Then for

ε > 0, there exist N1, N2 such that

‖an − am‖ <
ε

2
for n,m > N1

‖bn − bm‖ <
ε

2
for n,m > N2.
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Let N = max{N1, N2}. Then we see that

‖(an + bn)− (am + bm)‖ = ‖an − am + bn − bm‖

≤ ‖an − am‖+ ‖bn − bm‖

<
ε

2
+
ε

2
= ε.

So {an}+ {bn} ∈ C.

We see that addition is commutative because addition in K is commutative, so

{an}+ {bn} = {an + bn}

= {bn + an}

= {bn}+ {an}.

Now let {cn} ∈ C. Consider

({an}+ {bn}) + {cn} = {an + bn}+ {cn}

= {an + bn + cn}

= {an}+ {bn + cn}

= {an}+ ({bn}+ {cn}).

So addition is associative. Clearly, {0} = {0, 0, . . . , 0} is a Cauchy sequence, and {an} +

{0} = {an} = {0} + {an}, so C has an additive identity. Then if we consider the element

{−an} ∈ C, we see

{an}+ {−an} = {an − an}

= {0}

= {−an + an}

= {−an}+ {an}.

So every element has an additive inverse. Thus, C is an abelian additive group. Now we

consider multiplication. We show C is closed under multiplication. It is known that Cauchy

sequences are bounded, so ‖an‖ ≤ B1 and ‖bn‖ ≤ B2. Since {an} and {bn} are Cauchy

8



sequences, we have that there exist N1, N2 such that for ε > 0,

‖an − am‖ <
ε

2B2

for n,m > N1

‖bn − bm‖ <
ε

2B1

for n,m > N2.

We see that

‖anbn − ambm‖ = ‖anbn − anbm + anbm − ambm‖

≤ ‖anbn − anbm‖+ ‖anbm − ambm‖

= ‖an‖‖bn − bm‖+ ‖bm‖‖an − am‖

< B1

(
ε

2B1

)
+B2

(
ε

2B2

)
= ε.

So {an}{bn} ∈ C. We see that since K is a field,

{an} · {bn} = {anbn}

= {bnan}

= {bn} · {an}.

So multiplication is commutative. We also see that

({an} · {bn}) · {cn} = {anbn} · {cn}

= {anbncn}

= {an} · {bncn}

= {an} · ({bn} · {cn}).

So multiplication is associative. Clearly, {1} = {1, 1, . . . , 1} is a Cauchy sequence, and

{an} · {1} = {an} = {1} · {an}, so C has a multiplicative identity. Finally, consider

({an}+ {bn}) · {cn} = {an + bn} · {cn}

= {(an + bn) · cn}

= {ancn + bncn}

= {an}{cn}+ {bn}{cn}.

9



Because the ring is commutative, the left distributive law also holds. Thus, C is a commu-

tative ring with identity.

Now let N be the set of all Cauchy sequences that converge to 0.

Theorem 2.19. The set N of all Cauchy sequences in a field K that go to 0 is a maximal

ideal. Hence Kp = C/N is a field, containing K as a subfield.

Proof. First we show that N is an ideal. Clearly {0} ∈ N, so N 6= ∅. Let {an}, {bn} ∈ N.

Then ‖an‖ <
ε

2
and ‖bn‖ <

ε

2
. Consider

‖an + bn‖ ≤ ‖an‖+ ‖bn‖ <
ε

2
+
ε

2
= ε

so {an}, {bn} ∈ N. and it is closed under addition. Now say ‖an‖ <
√
ε and ‖bn‖ <

√
ε.

Then

‖anbn‖ = ‖an‖ · ‖bn‖ <
√
ε ·
√
ε = ε.

So {an} · {bn} ∈ N and N is closed under multiplication. Now let {an} ∈ N and {bn} ∈ C.

Again, since Cauchy sequences are bounded, we have that ‖bn‖ ≤ B. Now let ‖an‖ <
ε

B
, so

‖anbn‖ = ‖an‖ · ‖bn‖ <
ε

B
·B = ε

and thus {an} · {bn} ∈ N. It is similar for {bn} · {an} since K is a field and multiplication is

commutative. Thus, N is an ideal.

Now we show N is maximal. Let {an} ∈ C\N, and say lim
n→∞
‖an‖ = c, where c 6= 0. This

means there exists an N1 such that
∣∣‖an‖ − c

∣∣ < c

2
for all n > N1, so

c

2
< ‖an‖ <

3c

2
.

Since {an} is a Cauchy sequence, we have that there is an N2 such that ‖an − am‖ <
εc2

4

for n,m > N2. By assumption, an 6= 0 for n > N ′, so all an except for a finite many are

nonzero. Let bn =
1

an
for all an except the finitely many terms. We see that

10



‖bn − bm‖ =

∥∥∥∥ 1

an
− 1

am

∥∥∥∥
=
‖an − am‖
‖anam‖

<
εc2/4

c2/4

= ε.

So {bn} is a Cauchy sequence.

Then {an}{bn} = {1} + {cn}, {cn} ∈ N. This means N is a maximal ideal and thus

Kp = C/N is a field.

Definition 2.20. A field K is complete if every Cauchy sequence in K converges to an

element in K.

Theorem 2.21. Kp is a complete field, with ‖·‖ : Kp → R defined by ‖{αi}‖ = lim
n→∞
‖αn‖.

Moreover, K is dense in Kp.

Remarks:

1. The same construction gives R = Qp for p =∞.

2. The algebraic closure Qp of Qp for p =∞ is R.

2.3 Totally p-adic algebraic numbers and algebraic number

fields

Definition 2.22. An algebraic number α is totally p-adic if every root in Qp of its minimal

polynomial over Q lies in Qp.

Remark: If p =∞, totally p-adic is the same as totally real.

Definition 2.23. A number field K is totally p-adic if the image of every embedding of K

into Qp lies inside Qp.

11



Theorem 2.24. A number field K is totally p-adic if and only if K = Q(α), where α is

totally p-adic.

Proof. Suppose K is totally p-adic. Then since K is a number field, we can write K = Q(α)

[2]. Then we can get embeddings of K into Qp by sending α to a root of its minimal

polynomial. Since K was totally p-adic, then α is totally p-adic.

Conversely, assume that K = Q(α) where α is totally p-adic. Then we can again get

embeddings of K into Qp by sending α to any root of its minimal polynomial. Since α was

assumed to be totally p-adic, all of these roots are contained in Qp. Then the image of K is

contained in Qp and K is totally p-adic.

Now that we’ve talked about totally p-adic algebraic numbers and number fields, we need

another lemma to prove our main theorem.

Lemma 2.25. Let K be a number field. For each embedding φ : K → Qp, there is a prime

p of K lying over p, so that the closure of the image of φ is ismorphic to the completion Kp.

Proof. Let K = Q(α), where α has minimal polynomial f . The minimal polynomial of α

over Q factors over Qp as
d∏
i=1

mi

where there is a bijection between the factors mi and the primes pi of K lying over p such

that deg(mi) = eifi, where ei is the ramification index of pi over p and fi is the inertial

degree of pi over p.

Let αj be a root of mj in Qp. By Proposition 4.31 in [3], the primes of K that lie over p

are in bijective correspondence with the embeddings of K into Qp that take α to some αj;

under this correspondence, and with the definitions above, pi corresponds to the embedding

that send α to αj.

Then by Proposition 4.31 [3], we have that Kpi is isomorphic to Qp(αi) so that the

completion of the image of K(α) inside Qp is isomorphic to Kpi .

12



Finally, we can prove the main theorem of this section:

Theorem 2.26. Let K = Q(α) be a number field. Then K (and hence α) is totally p-adic

if and only if p splits completely in K/Q.

Proof. Assume that K is totally p-adic, and let p be a prime of K lying over p with rami-

fication index e and inertial degree f . Then Kp is a degree ef extension of Qp. Since K is

dense in Kp, and K is totally p-adic, we see that ef = 1. Since this is true for every prime

of K lying over p, we see that p splits completely in K.

Conversely, assume that p splits completely in K. Then by Lemma 2.25, every embedding

of K into Qp has image with closure isomorphic to Kp. Since p splits completely in K, we

know that Kp = Qp. Hence, K is totally p-adic.

2.4 Frobenius elements and splitting in abelian extensions

Let K,L be number fields where L is a Galois extension of K. Let OK and OL be their rings

of algebraic integers, respectively. Let p be a prime ideal of OK and P be a prime ideal of

OL lying over p. Let G be the Galois group of L/K.

Definition 2.27. The decomposition group D is defined as

D = D(P/p) = {σ ∈ G | σP = P}.

Definition 2.28. The inertia group E is defined as

E = E(P/p) = {σ ∈ G | σ(α) ≡ α mod P ∀α ∈ OL}.

This brings us to a theorem from [2]:

Theorem 2.29. Assume p is unramified in L, which means e(P/p) = 1 and E(P/p) is

trivial. Then there is an isomorphism from D(P/p) to H = Gal((OL/P)/(OK/p)).

H has a special generator: x 7→ x|OK/p|, where x ∈ OL/P. Then the corresponding

automorphism φ ∈ D is such that for every α ∈ OL,

φ(α) ≡ α|OK/p| mod P.

13



Definition 2.30. φ is called the Frobenius automorphism of P over p. The notation is

φ(P/p).

This next theorem is proved in [2]:

Theorem 2.31. Let L/K be a Galois extension of number fields with Gal(L/K) abelian,

let p be a prime in K, and let P be a prime in L lying over p. Let D = D(P/p) be the

decomposition group of P over p. Then the fixed field LD is Galois over K, and p splits

completely in LD/K and in any subfield K ′/K with K ′ ⊂ LD.

14



Chapter 3. Prior Work

3.1 Emerald Stacy’s work for degree 3

In this section, we will look at Emerald Stacy’s work on totally p-adic numbers of degree 3

[5]. First we’ll need some definitions.

Definition 3.1. An algebraic number α is totally p-adic if its minimal polynomial fα over

Q splits completely over Qp.

Definition 3.2. The Mahler measure, denoted M(f), of a polynomial f(x) with leading

coefficient a and zeros α1, α2, . . . , αn is defined as

M(f) = |a|
n∏
i=1

max{1, |αi|}.

Definition 3.3. The logarithmic Weil height of an algebraic number α of degree 3, denoted

by h(α) is defined by

h(α) =
1

3
logM(fα).

Definition 3.4. Let f(x) =
n∑
i=1

aix
i. The length of f is defined by

L(f) =
n∑
i=0

|ai|.

Note: There are only finitely many f of bounded length.

She denotes the smallest height attained by a totally p-adic, nonzero, non-root of unity,

algebraic number of degree n as τn,p. In her paper, she finds the following bound:

Theorem 3.5. τ3,p ≤ 0.70376.

She begins by doing a computer search using SageMath to find a list of all cubic polyno-

mials with length less than 68, and she establishes that this list will contain all irreducible

and cubic polynomials with roots of height less than 0.70376. Then she removes polyno-

mials that do not have an abelian Galois group. For each of the remaining polynomials,
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she determines the congruence classes of p for which a root α is totally p-adic. Then she

finds 4 polynomials f1, . . . , f4 such that all but finitely many primes are in the union of

these 4 sets of congruence classes. The primes not included in the union of these congruence

classes are 3 and 7, and she finds τ3,3 and τ3,7 separately. Letting αi be a root of fi, we

then know that for every p 6= 3, 7, one of the αi is totally p-adic. Hence, she finds that

τ3,p ≤ max{τ3,3, τ3,7, h(α1), . . . , h(α4)}, independent of p. So she has an upper bound for τ3,p

for all primes p.

After this, she uses her original list of polynomials to compute the exact value of τ3,p for

primes up to 500.

3.2 Stacy’s results in light of Frobenius elements

In her paper, Stacy found 4 cubic extensions K1 = Q(α1), K2 = Q(α2), K3 = Q(α3), and

K4 = Q(α4), with the property that for every prime p (with finitely many exceptions, in this

case 3 and 7) at least one of the αi is totally p-adic. She found these αi by examining cubic

polynomials with abelian Galois groups, and computing the congruence classes of primes for

which a root of the polynomials is totally p-adic. By combining different sets of congruence

classes, she put together this set of four fields.

It turns out that the αi that she found generate four Z/3Z extensions of Q which are

contained in a single Z/3Z× Z/3Z-extension of Q. Call this extension L.

The subfield diagram is as follows:

K1 K2 K3 K4

L

Q

Figure 3.1: Subfield Diagram of a Z/3Z × Z/3Z-extension L/Q (all lines denote degree 3
extensions).
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We note that in Gal(L/Q), every unramified prime has a Frobenius element. Since

Gal(L/Q) has only elements of order 1 and 3, each Frobenius element has order 1 or 3.

If the Frobenius element of a prime p is of order 1, then its fixed field is L. Hence by

Theorem 2.31, p splits completely in L, and hence in each of the Ki. Then Theorem 2.23

tells us that each αi is totally p-adic.

On the other hand, if the Frobenius element of a prime p is of order 3, then its fixed

field is one of the Ki. Hence by Theorem 2.31 p splits completely in one of the Ki. Then

Theorem 2.23 tells us that the corresponding αi is totally p-adic.

Note that this will work for any Z/3Z × Z/3Z-extension L; we can obtain a set of four

cubic fields with abelian Galois group such that for every prime (except the finitely many

primes that ramify in L) one of the four fields is totally p-adic.

We will adapt this new description of the fields found by Stacy to determine a similar

set of fields for the degree four problem.
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Chapter 4. Degree four extensions

4.1 Z/4Z× Z/4Z-extensions

L

Q

F2 F3F1

M2 M3M1

K1 K2 K3 K4 K5 K6V

Figure 4.1: Subfield diagram of a Z/4Z × Z/4Z-extension L/Q (all lines denote degree 2
extensions).

In order to generalize Stacy’s work to degree four polynomials, we wish to find a finite

set of number fields in which every prime (with finitely many exceptions) splits completely.

We found two ways to do this.

The first way that we found was to look at a Galois extension with Galois group Z/4Z×

Z/4Z. In such an extension, the possible orders of Frobenius elements are 1, 2 or 4. By

examining the subfield diagram of a Z/4Z×Z/4Z extension (see Figure 4.1), we find that such

an extension has three degree 8 extensions (theMi in the diagram), six degree 4 subextensions

with cyclic Galois group (the Ki in the diagram) and one Klein four subextension (the V in

the diagram). If the Frobenius of a prime p has order 4, the Frobenius would fix a degree

four field that is Galois with Galois group Z/4Z×Z/4Z; i.e., one of the Ki. Hence, p would

18



split completely in this field. If the Frobenius of a prime p has order 2, it will fix a degree

8 field that will contain two of the Ki, in both of which p will split completely. Finally, if

the Frobenius of p has order 1, then it fixes the entire field, which contains all six of the

Ki in which p would then split completely. Hence, we find that any unramified prime in

a Z/4Z × Z/4Z extension will split completely in at least one of the six degree four cyclic

subextensions.

4.2 Z/2Z× Z/2Z× Z/2Z-extensions

L

Q

F4 F5F3 F6F2 F7F1

K4 K5K3 K6K2 K7K1

Figure 4.2: Subfield diagram of a Z/2Z × Z/2Z × Z/2Z-extension L/Q (all lines denote
degree 2 extensions).

A second way to accomplish this task is to start with an extension of Q with Galois group

Z/2Z × Z/2Z × Z/2Z (see Figure 4.2). Such a field has seven degree four subextensions,

each of which has Galois group Z/2Z × Z/2Z × Z/2Z, labeled Ki in the diagram. For any

unramified prime p, the Frobenius of p will have order 1 or 2 in this Galois group. If it has

order 2, then it fixes one of the Ki, and p will split completely in that Ki. If the Frobenius

of p has order 1, then it fixes the entire field, and p splits completely in all seven of the Ki.

Hence each prime that is unramified in the larger field will split completely in one or more

of the seven Ki.
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Because a Z/2Z× Z/2Z× Z/2Z extension is easily described as Q(
√
a,
√
b,
√
c) for cer-

tain a, b, c, we chose to use this type of extension. In the computations in the next sec-

tion, we will use three different Z/2Z × Z/2Z × Z/2Z extensions, namely, Q(
√

2,
√

3,
√

5),

Q(
√
−1,
√

2,
√

3), and Q(
√
−1,
√

3,
√

5) to get an upper bound on τ4,p.
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Chapter 5. Bounding τ4,p for all p

5.1 Use a Z/2Z × Z/2Z × Z/2Z-extension to get a bound that

works for all p

Throughout this chapter we use code from PARI/GP [6].

First we need to choose an L that will satisfy the diagram in Figure 4.2. We will

choose L = Q(
√

2,
√

3,
√

5). Then we have that K1 = Q(
√

5,
√

6), K2 = Q(
√

2,
√

3),

K3 = Q(
√

3,
√

5), K4 = Q(
√

2,
√

5), K5 = Q(
√

2,
√

15), K6 = Q(
√

3,
√

10), and K7 =

Q(
√

10,
√

15). Now we define a program mahler(f) that will use 3.2 to calculate the Mahler

measure of a polynomial f :

mahler(f,{M=0})=

roots=polroots(f);

M=polcoeff(f,poldegree(f));

for(i=1,matsize(roots)[1],

M=M*max(1,abs(roots[i]))

);

M

Then we define a program minimum(f):

minimum(f)=

M=10000;

r=polroots(f)[1];

basis=subst(nfbasis(f),x,r);

for(a=0,10,

for(b=-10,10,

for(c=-10,10,
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for(d=-10,10,

alpha=basis*[a,b,c,d]~;

g=algdep(alpha,4);

if(polisirreducible(g),

if(poldegree(g)==4,

if(mahler(g)<M,

if(mahler(g)>1,

M=mahler(g);

G=g;

print([M,g]);

)

)

)

)

)

)

)

)

This program takes a polynomial f and uses the command nfbasis to find an integral

basis for the number field defined by that polynomial. Then it uses the subst command to

substitute one of the roots of f into the integral basis for the field defined by f . It then runs

through linear combinations of the basis (the ~ command transposes [a, b, c, d] to a column

vector so matrix multiplication is valid) and finds the minimal polynomial for each linear

combination. It then checks the Mahler measure of the minimal polynomial, and if it is

smaller than the previous M it has stored (and greater than 1, to account for the roots of

unity), it sets that as the new M . Otherwise, it moves on. Then it prints the polynomial and

its Mahler measure. Thus we get a list of irreducible degree 4 polynomials with decreasing
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Field Defining polynomial Mahler measure Height

Q(
√

2,
√

3) x4 − 4x2 + 1 3.732 0.329236

Q(
√

2,
√

5) x4 − 6x2 + 4 5.236 0.413889

Q(
√

3,
√

5) x4 + 6x3 + 2x2 − 6x+ 1 7.873 0.515860

Q(
√

10,
√

15) x4 − 8x2 + 1 7.873 0.515860

Q(
√

3,
√

10) x4 + 8x3 − 2x2 − 12x+ 6 11.477 0.610086

Q(
√

5,
√

6) x4 − 14x3 + 9x2 + 10x− 5 14.348 0.665903

Q(
√

2,
√

15) x4 + 12x3 − 16x2 − 12x+ 1 21.954 0.772237

Table 5.1: Computational results for Q(
√

2,
√

3,
√

5).

Mahler measure.

We can use the polcompositum command to find a defining polynomial for each Ki, and

then the minimum(f) program will give us the smallest Mahler measure for that field if we

input the defining polynomial.

This proves that τ4,p ≤ 0.772237 for p 6= 2, 3, 5.

Now we can use the same methods to check another L, namely Q(
√
−1,
√

3,
√

5). Note

that Q(
√
−1,
√

3) is generated by a root of unity, so we look at the defining polynomial with

the next smallest Mahler measure.

Field Defining polynomial Mahler measure Height

Q(
√
−1,
√

5) x4 + 3x2 + 1 2.618 0.240603

Q(
√

5,
√
−3) x4 + x3 + 2x2 − x+ 1 2.618 0.240603

Q(
√
−1,
√

3) x4 + 2x3 + 2x2 − 2x+ 1 3.732 0.329236

Q(
√

3,
√
−5) x4 + x2 + 4 4.000 0.346574

Q(
√

3,
√

5) x4 + 6x3 + 2x2 − 6x+ 1 7.873 0.515860

Q(
√
−1,
√

15) x4 − 4x3 − x2 + 10x+ 10 10.000 0.575646

Q(
√
−3,
√
−5) x4 + 16x2 + 4 15.746 0.689147

Table 5.2: Computational results for Q(
√
−1,
√

3,
√

5).

This would give a bound as follows: for p 6= 3, 5, τ4,p ≤ 0.689147.

We again use the same methods to check L = Q(
√
−1,
√

2,
√

3). Note that as before,

Q(
√
−1,
√

3) is generated by a root of unity, along with Q(
√
−1,
√

2), so we check the defining

polynomial with the next smallest Mahler measure.

This field then gives that for p 6= 2, 3, τ4,p ≤ 0.549306.
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Field Defining polynomial Mahler measure Height

Q(
√
−1,
√

2) x4 + 2x2 + 4x+ 2 3.414 0.306971

Q(
√
−1,
√

3) x4 + 2x3 + 2x2 − 2x+ 1 3.732 0.329236

Q(
√

2,
√

3) x4 − 4x2 + 1 3.732 0.329236

Q(
√

3,
√
−2) x4 + 4x2 + 1 3.732 0.329236

Q(
√

2,
√
−3) x4 + 2x2 + 4 4.000 0.346574

Q(
√
−2,
√
−3) x4 − 2x2 + 4 4.000 0.346574

Q(
√
−1,
√

6) x4 + 9 9.000 0.549306

Table 5.3: Computational results for Q(
√
−1,
√

2,
√

3).

Now we note that 2 and 3 both ramify in Q(
√
−1,
√

2,
√

3). From the next section, we

see that τ4,2 = 0.346574 and τ4,3 = 0.274653. Thus, we get the following theorem:

Theorem 5.1. For every prime p, τ4,p ≤ 0.549306.

5.2 Actual values of τ4,p

Now we want to calculate some actual values for τ4,p. To do this, we create a list of poly-

nomials with Mahler measure smaller than some bound. In our case we’ll use 9, since that

was the smallest Mahler measure we found in the previous section. On page 25 in [1], we

get that if f = anx
n + · · · + a1x + a0, then |an−r| ≤

(
n

r

)
M(f), where M(f) is the Mahler

measure of f . We use the following code:

list=[];

for(a=1,L,

for(b=-4L,4L,

for(c=-6L,6L,

for(d=-4L,4L,

for(e=-L,L,

f=ax^4+bx^3+cx^2+dx+e;

M=mahler(f);

if(M<L,
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if(polisirreducible(f),

list=concat(list,[[M,f]])

)

)

)

)

)

)

This code will search through degree four polynomials using the bounds from [1] and put

the polynomials that are irreducible and have Mahler measure 9 or less into a vector called

list. We sort this list of polynomials by Mahler measure.

After we obtain this list, we need to define a program that determines whether p splits

completely in a field:

{splitscompletely(p,f)=

K=nfinit(polredabs(f));

pr=idealprimedec(K,p);

if(length(pr)==poldegree(f),1,0)

}

This program takes in a prime p and a defining polynomial f of a number field. The

polredabs command takes in a polynomial f and will find a monic generating polynomial of

the number field defined by f , and the nfinit command takes in a polynomial and creates

a vector that contains information about the number field generated by that polynomial.

Then the idealprimedec command takes in a number field K and a prime p and returns

the prime ideal decomposition of p in the number field K as a vector of prime ideals. Then we

check that the number of prime ideals in that vector is equal to the degree of f (in our case

we look at polynomials with degree 4), and if the length is equal, then p splits completely

in the number field defined by f .
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Now that we have this, we run the code

{smallest(p)=

flag=0;

i=4;

while(!flag,

i=i+1;

if(splitscompletely(p,list[i][2]),

flag=mahler(list[i][2])

)

);

[flag,list[i][2]]

}

This code takes as input a prime number p. It loops through the polynomials in list (our

list of all irreducible quartic polynomials sorted by Mahler measure) until it finds the first

(smallest Mahler measure) polynomial defining a field in which p splits completely. As we

have shown, a root α of this polynomial will be totally p-adic, and, since our list is sorted

by Mahler measure, h(α) = M(f) will be the minimal height of a totally p-adic algebraic

number of degree 4. Hence, h(α) = τ4,p.

Using this code for each prime p ≤ 569, we obtain the following table of actual values

of τ4,p. Note that, since we have previously proven that there is a totally p-adic α whose

minimal polynomial has Mahler measure less than or equal to 9 for any prime p, we could

extend this table indefinitely without having to expand our list of polynomials.
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Prime τ4,p Minimal polynomial
2 0.346574 2x4 − x3 + 2x2 + x+ 4
3 0.274653 3x4 − 4x3 + 4x2 − 4x+ 3
5 0.274653 2x4 + 3
7 0.274653 3x4 − 4x2 + 3
11 0.173287 2x4 − 3x2 + 2
13 0.235153 2x4 − x2 + 2
17 0.232996 2x4 + x3 − x2 + 2x+ 1
19 0.173287 2x4 + x2 + 2
23 0.158244 x4 − 2x3 + x2 − 2x+ 1
29 0.120303 x4 − x2 − 1
31 0.173287 2x4 − x2 + 2
37 0.173287 x4 − x3 + x− 2
41 0.173287 x4 − 2x2 + 2
43 0.135884 x4 − x3 + 2x2 − 2x+ 1
47 0.173287 2x4 − 4x3 + 5x2 − 4x+ 2
53 0.173287 2x4 − 2x3 + x2 − 2x+ 2
59 0.156051 x4 − 2x3 + x− 1
61 0.207861 x4 + 2x3 + 2x+ 1
67 0.173287 x4 + x2 − x+ 2
71 0.156051 x4 − 2x3 + x− 1
73 0.173287 x4 − 2
79 0.173287 x4 − x3 − x2 + 2
83 0.0805712 x4 − x3 − 1
89 0.120303 x4 − x2 − 1
97 0.173287 2x4 − 2x3 + 3x2 − 2x+ 2
101 0.120303 x4 − x2 − 1
103 0.135884 x4 − x3 + 2x2 − 2x+ 1
107 0.173287 2x4 − 3x2 + 2
109 0.173287 2x4 − 2x3 + x2 − 2x+ 2
113 0.144611 x4 − x3 − x2 + x− 1
127 0.158244 x4 − 2x3 + x2 − 2x+ 1
131 0.173287 2x4 + 2x3 + 3x2 + 2x+ 2
137 0.158244 x4 − 2x3 + x2 − 2x+ 1
139 0.135884 x4 − x3 + 2x2 − 2x+ 1
149 0.173287 2x4 − 2x3 + x2 − 2x+ 2
151 0.158244 x4 − 2x3 + x2 − 2x+ 1
157 0.110534 x4 − x3 + x2 + 1
163 0.173287 x4 − x+ 2
167 0.173287 x4 − x3 − x+ 2
173 0.173287 x4 − 2x3 + 2x− 2
179 0.164064 x4 − x3 − x2 − x− 1
181 0.120303 x4 − x2 − 1
191 0.173287 x4 − x3 + x2 − x+ 2
193 0.0843445 x4 − x3 + 1
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