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ABSTRACT

PERFORMANCE OF THE KENWARD-ROGER METHOD WHEN THE
COVARARIANCE STRUCTURE IS SELECTED

USING AIC AND BIC

Elisa Valderas Gomez
Department of Statistics

Masters of Science

Linear mixed models are frequently used to analyze data with random effects
and/or repeated measures. A common approach to such analyses requires choosing a
covariance structure. Information criteria, such as AIC and BIC, are often used by
statisticians to help with this task. However, these criteria do not always point to the
true covariance structure and therefore the wrong covariance structure is sometimes
chosen. Once this step is complete, Wald statistics are used to test fixed effects.
Degrees of freedom for these statistics are not known. However, there are
approximation methods, such as Kenward and Roger (KR) and Satterthwaite (SW)
that have been shown to work well in some situations. Schaalje et al. (2002) concluded

that the KR method would perform at least as well as or better than the SW method in






many cases assuming that the covariance structure was known. On the other hand,
Keselman et al. (1999) concluded that the performance of the SW method when the
covariance structure was selected using AIC was poor for negative pairings of
treatment sizes and covariance matrices and small sample sizes. Our study used
simulations to investigate Type I error rates in test of fixed effects using Wald
statistics with the KR adjustment method, incorporating the selection of the covariance
structure using AIC and BIC. Performance of the AIC and BIC criteria in selecting
the true covariance structure was also studied. The MIXED procedure (SAS v. 9) was
used to analyze each simulated data set. Type I error rates from the best AIC and BIC
models were always higher than target values. However, Type I error rates obtained
by using the BIC criterion were better than those obtained by using the AIC criterion.
Type I error rates for the correct models were often adequate depending on the sample
size and complexity of covariance structure. Performance of AIC and BIC was poor.
This could be a consequence of small sample sizes and the high number of covariance

structures these criteria had to choose from.
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1. INTRODUCTION

Linear mixed models are frequently used to analyze data with random effects
and/or repeated measures. However, different techniques are used to implement linear
mixed models. One of the steps in a common approach (e.g. SAS Proc Mixed) is to
choose a covariance structure. The task of choosing a covariance structure is not
simple, and the literature includes many examples of how important it is to choose the
right structure (Grady and Helms, 1995; Singer, 1998; Littell et al., 2000), and the
consequences of not doing so on the type I error rates for testing the fixed effects
(Keselman et al., 1999; Ferron et al., 2002).

Information criteria (AIC, BIC) are often used by statisticians to choose the
covariance structure (Singer, 1998; Keselman et al., 1999; Littell et al., 2000).
Unfortunately, these criteria do not always point to the true covariance structure
(Keselman et al., 1999; Ferron et al., 2002). Therefore, by only relying on these
criteria, the wrong choice of covariance structure will be sometimes made.

Once the covariance structure has been chosen, the next step often involves
tests and estimates of fixed effects using Wald statistics (Schaalje et al., 2001;
Schaalje et al., 2002). Valid inferences about fixed effects in linear mixed models
depend on the calculation of appropriate denominator degrees of freedom and the
adjustment of the estimated covariance matrix and the Wald statistic. Such methods
have been suggested, including the Satterthwaite (SW) and the Kenward-Roger (KR)
procedures (Fai and Cornelius, 1996; Kenward and Roger, 1997). It has been shown,

using simulation studies, that the SW and KR methods behave well in complicated



situations (Keselman et al., 1998; Schaalje et al, 2002). However, how well they
behave depends on the true underlying covariance structure.

An alternative method of testing fixed effects in linear mixed models
eliminates the necessity of choosing a covariance structure. This method is a non-
pooled adjusted degrees of freedom multivariate test called the Welch-James-type test
(W1J) (Johansen, 1980; Keselman et al., 1993). Simulations have shown the
robustness of this method in several complex situations (Keselman et al., 1998). Some
important restrictions apply to this method since it is appropriate only for repeated
measures designs without covariates or missing values.

Schaalje et al. (2002) studied and compared Type I error rates in tests of fixed
effects in linear mixed models. Wald statistics with the SW and KR methods were
used. In their study, the true covariance structure was assumed to be known. On the
other hand, Keselman et al. (1999) studied Type I error rates in tests of fixed effects of
repeated measures. They used Wald statistics with the SW denominator degrees of
freedom method and incorporated selection of the covariance structure into the error
rates. In addition, they compared these results to the Type I error rates obtained using
the W1J test.

This study investigates Type I error rates in tests of fixed effects in linear
mixed models using Wald statistics with the KR method, incorporating the selection of
covariance structure using AIC and BIC, as well as using the true covariance structure.
Performance of the AIC and BIC criteria in selecting the true covariance structure will

also be studied.



2. LITERATURE REVIEW

2.1. Mixed Model

The mixed model can be written as:

y =X + Zu +e,

where X and Z are the corresponding design matrices for the fixed and the random
effects, B and u are the vectors of coefficients of the fixed and random effects,
respectively, and € denotes a vector of errors. The vector of coefficients of the random
effects, u, is assumed to follow the normal distribution with mean 0 and covariance
matrix G. € is assumed to follow a normal distribution with mean 0 and covariance
matrix R. Neither G nor R needs to be a diagonal matrix. The vectors u and € are
assumed independent; consequently, cov (u, €) =0, and Var (y) =ZGZ’ + R=V.

If V is known, the generalized least squares estimator is the best linear

unbiased estimator and can be written as:

Bas = (X'V'X)'X'Vy
If V is unknown, the estimated generalized least squares estimate of p is:

Begs = (X'V'X) ' X'V
where V is an estimate of the covariance matrix. This estimate is often obtained using
maximum likelihood (ML) or restricted maximum likelihood (REML) methodology.
The approximate covariance matrix of feas is(X'V'X)™". A commonly used test

statistic for H , : Cp = 0 is known as the Wald statistic. It can be written as:

W = (Cheas) (CX'V1x) " 1C') ™1 (Ceas)



where C is a matrix of contrasts of rank q. Asymptotically, W follows a chi-square

distribution with q degrees of freedom if there is no variation in the term
(C(X'\Af'IX)"1 C'). Another option is to use the Wald F statistic, F,_,,; = W/q, where
ddf is the denominator degrees of freedom. This statistic takes into account that
(C(X'V'IX)’IC') is estimated and not known. A common method to calculate the ddf
is the Satterthwaite (SW) method which computes the ddf using spectral
decomposition of the hypothesis matrix together with repeated application of a method
for single-degree-of-freedom-tests (Fai and Cornelius, 1996; Schaalje et al., 2002).
Kenward and Roger (1997) have suggested a method which calculates the ddf,
modifies the estimate of V and further adjusts the Wald F statistic to account for

small sample bias and variability in \% (Schaalje et al., 2001).

2.2. Selecting Covariance Structure

The process of analyzing data using usually begins with the choice of G and R,
often referred as the covariance structure specification. Commenting on the
importance of this decision, Littell et al. (2000) noted that by using incorrect
covariance structures we risk obtaining invalid estimators and inferences. Since the
generalized least squares estimator is the best linear unbiased estimator, an incorrect
covariance structure will affect the quality of the estimator. Littell et al. (2000)
suggested that the first thing to do when choosing a covariance structure in repeated
measures studies is to compute the unstructured sample covariance matrix and

compare it to the covariance matrix estimates obtained using other structures including



compound symmetry (CS), autoregressive order 1 (AR(1)), autoregressive with
random effects, and toeplitz. They observed which covariance matrices preserved the
main patterns observed in the unstructured covariance matrix. They also used the
correlogram (Cressie, 1993), a graphical tool which plots the correlation function, as a
technique for visualizing patterns in the covariance structure.

Other tools in covariance structure selection were Akaike’s information
(Akaike, 1973) and Schwarz’s Bayesian criteria (Schwarz, 1978), AIC and BIC
respectively. These criteria are used as goodness-of-fit statistics to compare models
with the same fixed effects but different covariance structures. Both criteria penalize
for the number of parameters in the covariance structure in question, the penalty
imposed by BIC being greater.

Littell et al.(2000) chose to rely more on BIC since their objective was
parsimonious modeling. An advantage of parsimonious modeling is more powerful
tests and more efficient estimates of fixed effects (Keselman et al., 1998). After
considering all of the mentioned aids to covariance structure selection, Littell et. al.
(2000) decided the autoregressive plus random coefficient structure was the best one
for their study. This structure had the best BIC value, but more than that, it preserved
the properties they were expecting to see in their study, that is, correlated observations
in the same patient and correlation decreasing as the time lag increased. Later, they
fitted other covariance structures and found that the estimates for the fixed effects
were similar for some of these structures. However, the standard deviations changed,

which resulted in unusually large or small F-values for tests of fixed effects.



Grady and Helms (1995) argued that a better understanding of the data is
obtained as a consequence of the covariance-modeling process because the covariance
structure followed by the data may contain much information of interest to the
researcher. In their study, Grady and Helms dealt with missing data. One advantage
of the covariance structure modeling approach is that it can deal with missing data
without the necessity of case-wise deletion of data. They mentioned that a main
aspect of choosing a covariance structure other than the unstructured one is the
reduction in the number of parameters. This is an advantage when the chosen
covariance structure is adequate, yielding good estimators and test statistics.
However, if the structure is not adequate, ill-fitting estimators of the true variance will
be obtained (Littell et al., 2000). Grady and Helms also recommended the use of
correlograms to recognize correlation patterns to help in identifying an adequate
structure. After considering several structures, likelihood ratio tests were computed
and found to be helpful in recognizing a sensible structure. Grady and Helms pointed
out that the high number of subjects in each group and repeated measures for each

subject in their study could result in ‘too much’ power for the likelihood ratio tests.

2.3. Performance of AIC and BIC

Littell et al. (2000) recommended the use of the AIC and BIC criteria to help
statisticians choose an adequate covariance structure. Keselman et al. (1998) studied
the effectiveness of these two criteria in non-well-behaved, but common types of data
in social sciences. These situations included nonspherical covariance structures,

unequal sample sizes, unequal covariance structure by group, and normal/non-normal



data. They simulated data from three covariance structures, including Unstructured
(UN), AR(1), and Random Coefficients (RC). These structures were used with and
without heterogeneity within subjects and between groups.

Their results show that AIC chose the correct covariance structure 47% of the
time while BIC was right 35% of the time. They also showed that the number of times
AIC chose the right structure depended on the true covariance structure. For normal
AR(1) and RC data with heterogeneity within-subjects and between groups, or log-
normal UN data with heterogeneity between groups, AIC performed better. BIC
picked the wrong covariance structure more often than the correct one for most types
of data. The negative results obtained for BIC could be due to the severe penalty
imposed for the number of parameters (Keselman et al., 1998). A possible
explanation for the low success of both criteria could be that other simpler structures
were good approximations to the true covariance structure.

Ferron et al. (2002) also looked at the performance of the AIC, BIC and
likelihood ratio test (LRT) in helping the statistician choose an adequate covariance
structure. Data were generated following an AR(1) structure with different sample
sizes, numbers of repeated measures, and levels of autocorrelation. AIC, BIC and
LRT were computed for the true covariance structure, AR(1), and for a single
alternative, °I. The results show that AIC was more successful than the other two
criteria for every combination of sample size, length of repeated measures and level of
autocorrelation. AIC choose the right covariance structure 79% of the time versus
66% and 71% for BIC and LRT, respectively. AIC, BIC and LRT performed better

when the sample size, the length of the repeated measures and the level of



autocorrelation were higher, the length of the repeated measures being the most
influential characteristic. The effect of sample size was greater when the length of the
repeated measures was short. The rates of success of these criteria also depended on
the parameter values chosen to generate the data. It is important to notice that AIC,
BIC and LRT may perform worse when there are more than two covariance structures
to choose from, as in this case.

Since AIC and BIC may lead the researcher to fit an incorrect covariance
structure, Ferron et al. (2002) studied the effects of a special case of misspecification
of the R matrix on the estimates and tests of fixed effects. Data with linear and non-
linear growth curves from two covariance structures, AR(1) and moving average
(MA), were generated. Sample size, length of repeated measures and level of

autocorrelation were varied. Data included missing and unequally spaced

observations. An RC model was fitted with R = 6’1 and an unstructured G. The
Wald F statistic with the between/within method of SAS (Proc Mixed) for the ddf was

used for tests of fixed effects (Ferron et al., 2002). As a consequence of the false

assumption of R = 6’1, estimates of the variance parameters were biased, the bias of
the estimates being larger for shorter lengths of repeated measures. However,
estimates of the fixed effects were not biased unless observations were unequally
spaced and followed nonlinear growth curves. Similarly, inflated Type I error rates
for the fixed effects were obtained when unequally spaced observations were present
in nonlinear growth curves. Since misspecification of R occasioned problems on the

estimates of the covariance, Ferron et al. (2002) advised caution in making



conclusions about covariance parameters when there is uncertainty about the true

covariance structure.
2.4. Type I error rates

Schaalje et al. (2002) studied the Type I error rates for Wald F tests in mixed
linear models with varying sample size, covariance structure and degree of imbalance.
Their simulations included split-plot and repeated measures designs. The KR and SW
methods were used for the tests of fixed effects. The SW method was proposed by Fai
and Cornelius (1996), who tested it using simulations based on split-plot models
varying the degree of imbalance and the value of intra-class correlation. Kenward and
Roger (1997) proposed the KR method and studied its behavior under several
covariance structures. Schaalje et al. (2002) expanded the study of the SW and KR
methods to investigate their performance with small sample sizes and some
complicated covariance structures, which were assumed to be known. These
covariance structures included: compound symmetry (CS), Toeplitz (TOEP),
heterogeneous compound symmetry (CSH), first order heterogeneous autoregressive
(ARH(1)), and first-order-ante-dependence (ANTE(1)).

Type I error rates for the KR method were adequate for all CS simulations, for
most of the TOEP simulations, and for CSH and ARH(1) simulations with larger
sample sizes. CSH and ARH(1) simulations with small sample sizes and ANTE(1)
simulations with large sample sizes produced reasonable Type I error rates. The KR
method performed better with balanced designs for every covariance structure except

CS. The KR method did as well or better than the FC method in every situation.



However, its performance varied depending on the sample size, the complexity of the
covariance structure and the degree of imbalance of the data.

Robertson (1996) simulated data from three covariance structures including
compound symmetry (CS), first order autoregressive plus common covariance
(AR(1)+CC) and unstructured (UN). She studied the performance of the Wald F
statistic using the between/within method of SAS (Proc Mixed) for cases with known
covariance structure and for cases where the AIC, BIC and other covariance structure
selection criteria were used. Her results were optimistic for CS data. However, Type |
error rates obtained from AR(1)+CC and UN data were inflated, even when the true
covariance structure was used. This could be a consequence of the fact that the
between/within ddf method was used in all simulations.

Keselman et al. (1999) studied the performance of the SW method for tests of
fixed effects when the covariance structure is known and when the data are used to
choose the covariance structure. Their simulations included repeated measures
designs with complete measurements on each subject. Three types of covariance
structures were used to generate balanced and unbalanced designs containing one
between-subject and one within-subject factor. Six conditions were varied, including
type of population covariance structure, equal/unequal covariance structures among
groups, total sample size, equal/unequal group sizes, “positive”’/“negative” pairings of
covariance matrices and group sizes (see Keselman et al., 1999) and normal/non-
normal data.

Keselman et al. (1999) claimed that Type I error rates were adequate using the

SW method with the true covariance structure unless the true covariance was UN.

10



When AIC was used to select a covariance structure, the performance of the SW
method varied. Type I error rates tended to be adequate when the pairing was
“positive” or the total sample size was large. Surprisingly, fitting the AR(1) or RC
covariance structures with between-and within-group heterogeneity resulted in well
behaved Type I error rates in all cases, even when the true covariance structure was
UN. Results from non-normal data in general reflected those obtained from normal
data. When the total sample size was increased, Type I error rates got closer to target
values.

Keselman et al. (1999) also studied the Type I error rates produced by testing
fixed effects using the WJ method. This is a non-pooled multivariate test used for
testing the null hypothesis: H ; : Cp = 0, where B is a vector of means. The W] test
is:

Tw =(CY) (CSC ")'(CY)

where Y is the vector of sample means and S = diag (S—1 yeves S—J) , where S; is the
I ny

sample covariance matrix of the jth-group and J is the number of groups. Tw;/ ¢
follows an approximate F distribution with degrees of freedom equal to q and
q(qt2)/(3A), where ¢ =q+2A —6A/(q+2) and A is equation 3.1.3 of Keselman et al.
(1999).

The Type I error rates obtained from the WJ method were well behaved most
of the time for testing the main effect. However, when testing the interaction, the WJ

method produced inflated Type I error rates for negative pairings especially when the

11



total sample size was smaller. Overall, Type I error rates obtained with the SW

method were comparable to the ones obtained by the WJ method.

2.5. Summary

The analysis of a mixed model requires the choice of a covariance structure.
The quality of the estimator and inferences derived from the analysis depend upon this
choice. Some of the tools that can help to make an adequate choice are AIC, BIC, and
correlograms. For parsimonious modeling BIC is advised over AIC (Little et al.,
2000). For a nested model the likelihood ratio test is also an appropriate tool (Grady
and Helms, 1995). Unfortunately, neither AIC nor BIC always point to the true
covariance structure, AIC having the higher performance in simulation studies
(Keselman et al. 1998; Ferron et al. 2002). Misspecification influences estimates of
the covariance structure and standard deviations of fixed effects.

The Wald F statistic is often used to test fixed effects in mixed models. SW is a
common method to approximate the ddf, and KR further adjusts the estimates of the
covariance matrix and thus adjusts the test statistic. The KR method always works as
well or better than the SW method if the correct covariance structure is used. Type I
error rates are adequate if covariance structures are known and not too complex
(Schaalje et al. 2002). The performance of the SW method when the data are used to
choose the covariance structure depends on the sample size and the “pairings”. The
W1J method produced adequate type I error rates in general, especially for large sample

sizes.
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3. METHODOLOGY

3.1. Design and conditions

Simulations were used to investigate Type I error rates of Kenward-Roger tests
of fixed effects in repeated measures designs. The simulated data followed a repeated
measure design with one between-subject factor with three treatment levels and one
within-subject continuous covariate. The true parameter values for both factors were
zero. The simulation study was divided in two studies depending on equality or

inequality of treatment sample sizes.

3.2. Equal treatment sizes

The conditions considered in the equal treatment size study included: 3 or 5
subjects per treatment, 3 or 5 repeated measures per subject and fifteen covariance
structures. The covariance structures are denoted CS, HCS, CSH, HCSH, ARRE,
HARRE, ARHRE, HARHRE, RC, HRC, TOEP, HTOEP, TOEPH, HTOEPH, and
UN, where the letter “H” at the beginning of the denotations indicates heterogeneity in
covariance parameters values for the between-subject factor. Details on these
covariance structures when the number of repeated measures was 5 are in Table 1.
The upper left 3 x 3 submatrices were used in the simulations when the number of
repeated measures was 3. Since the complete covariance matrix (V) is a block-
diagonal matrix, only one block is presented for each covariance structure. Structures
with heterogeneity for the between-subject factor are not shown in Table 1; for these

cases the block covariance matrices for each treatment level were obtained by
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multiplying the covariance parameters of the corresponding non-heterogeneous
structures by 1/3, 1 and 5/3. Table 2 gives details on the heterogeneous between-
treatment structures. The combinations of number of subjects, number of repeated

measures, and covariance structures yielded 60 (2x2x5) situations.
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Table 1: Parameter Values for Covariance Structures Used in the Simulations

Covariance Structures

Covariance parameters values
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Heterogeneous Autoregressive Order 1 plus Random Effect (ARHRE)
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Unstructured (UN)
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Table 2: Values of covariance parameters used in the simulation of data with

heterogeneity between treatment levels

Covariance Parameter Values Parameter Values Parameter Values
Structures for treatment 1 for treatment 2 for treatment 3
HCS 6°=33, p=.5 o’=1, p=5 6°=1.67, p=.5
HCSH 61°=.33,0,°=.94, 01°=1,6,°=2.81, 61°=1.67, 6,°=4.68,
63°=1.6,064°=2.12,  0y°=4.80, 64°=6.35,  03°=8, 64°=10.58,
05°=2.26, p=.5 05°=6.79, p=.5 05°=11.32, p=.5
HARRE 6°=.25, p=.7, 6’=.75, p=.7, 0’=1.25, p=11,
GR2:.25 GR2:.25 GR2:.25
HARHRE 612=.25,6,°=.85, 612=.75,6,°=2.56,  ©,°=1.25,06,°=4.27,
0:°=1.52,64°=2.03,  05°=4.55,04°=6.1, 0©5°=7.58, 64°=10.17,
05°=2.18, p=7, 65°=6.54, p=.7, 05=10.9, p=7,
GR2:.25 GR2:.25 GR2:.25
HRC or=.1,065°=.067, 01’=.3,05°=.2, o1’=.5, 65°=.33,
o15=-.01, 6°=2 o15=-03, 6°=2 o15=-.05, 6°=2
HTOEP 022.33, p1=.5, p2=.3, 0221, p1=.5, p2=.3, 0221.67, p1=.5,
p3:.2, p4:.1 p3:.2, p4:.1 p2:.3, p3:.2, p4:.1
HTOEPH 61°=.33,0,°=.94, 01°=1,6,°=2.81, 61°=1.67, 6,°=4.68,
63°=1.6,064=2.12, 03°=4.80, 64°=6.35,  03°=8, 64>=10.58,
05°=2.26, pi=.5, 05°=6.79, p1=.5, 05°=11.32, p1=.5,

p2:-3> p3:-23 P4=. 1

p2:-33 p3:-2> P4=. 1

p2:-3> p3:-23 P4=. 1

3.3. Unequal treatment size

Numbers of subjects per treatment were 3, 5 and 7 for the three treatment

levels. As before, there were 3 or 5 repeated measures per subject and the same

covariance structures as in the equal treatment size study were used. For those seven

covariance structures with heterogeneity for the between-subject factor (Table 2),

positive and negative pairings were considered. Positive pairing occurred when the

treatment level with more subjects followed the covariance structure with larger

variance parameters. Negative pairing occurred in the opposite situation. The number
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of situations resulting from the varying the number of repeated measures, the
covariance structures and the pairing was 44 (2x8 from the homogenous case plus

2x7x2 from the heterogeneous case).

3.4. Simulation Study

Ten thousand simulated data sets were generated for every situation. Data for
the fifteen described covariance structures were generated following the two-step
method of Ripley (1987). In the first step a random multivariate normal vector was
generated with E(y)=0 and Var(y)=I, where I is the identity matrix. In the second step
this vector was multiplied by the Cholesky descomposition of the covariance matrix
corresponding to the covariance structure in question. The resulting random vector
had a mean vector of zero, and covariance matrix V whose blocks were the covariance
matrices in Tables 1 and 2.

Data were simulated using PROC IML of SAS, and every simulated data set
was analyzed with PROC MIXED. Some of the data sets were simulated using a
Penguin Computing Dual Opteron Altus 1000E Linux machine using SAS v. 9. Other
data sets were simulated using a Dell Power Edge 350 with a Pentium processor, using
SAS v. 8.2. All the analyses were done on a Penguin Computing Dual Opteron Altus
1000E Linux machine using SAS v. 9.

The model used in the analysis of each data set was additive; that is, there was
not an interaction term. The MODEL statement was y=treatment time, where the
treatment effect was a categorical variable and the time effect was continuous. Fifteen

covariance structures were fitted to each data set by appropriate specification in the
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RANDOM and REPEATED statements. Table 3 specifies the appropriate commands

for the covariance structures with homogeneity and heterogeneity between treatments.

Table 3: Commands used to model the data with the different covariance structures

Covariance Commands for Commands for between-treatment
Structures between-treatment heterogeneity
homogeneity
CS/HCS Repeated / type=CS Repeated / type=CS group=treatment
subject=subject subject=subject
CSH/ Repeated / type=CSH  Repeated / type=CSH group=treatment
HCSH subject=subject
ARRE/ Random subject Random subject
HARRE Repeated /type=AR(1) Repeated /type=AR(1)
subject=subject group=treatment subject=subject
ARHRE/ Random subject Random subject
HARHRE  Repeated / type=ARH(1) Repeated / type=ARH(1)
subject=subject group=treatment subject=subject
RC/HRC Random intercept time/ Random intercept time/ type=UN
type=UN group=treatment subject=subject
subject=subject
TOEP/ Repeated/ type=TOEP Repeated/ type=TOEP
HTOEP subject=subject group=treatment subject=subject
TOEPH/ Repeated/type=TOEPH Repeated/type=TOEPH
HTOEPH subject=subject group=treatment subject=subject
UN Repeated/type=UN

subject=subject

The DDFM option in the MODEL statement was specified as

KENWARDROGER. This option calculates the p-values for tests of fixed and

random effects using the Kenward-Roger adjustments to the denominator degrees of

freedom, the estimates of the covariance matrix, and F statistic.
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The AIC and BIC criteria were used to choose a covariance structure for the
data. The number of times these criteria selected the true covariance structure was
recorded in each situation. Rates of success of these criteria were compared. P-values
corresponding to the tests of the true null hypotheses regarding the effects of treatment
and time were recorded separately for the best AIC, best BIC, and correct models.

The proportion of times the p-values were less than or equal to & = 0.05 and

a = 0.01was recorded. The standard deviation for the estimated Type I error rates for

n observations is equal to/* (1”- 2 For 10,000 observations, the standard deviations

would be approximately 0.002 and 0.001 for 0.05 and 0.01 respectively (Schaalje et al.
2002). Therefore, if the performance of the Kenward-Roger method were perfect,
with 95% confidence, the expected proportions would be in the interval [0.046-0.054]
for ¢ =0.05 and [0.008-0.012] forer = 0.01. A chi-square goodness-of-fit test was

performed in each situation to verify if the p-values followed the Uniform (0,1).
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4. RESULTS

4.1. Distributions of p-values from AIC, BIC and correct models

4.1.1. Equal treatment sizes
4.1.1.a. AIC and BIC best models

Distributions of p-values from fitting the best AIC and BIC models did not
follow the uniform distribution for any covariance structure or sample size (Tables 4
to 7, Figures 1 to 8 in Appendix 1). The highest p-value for a goodness-of-fit test to
the uniform (0,1) was .0131. This came from the 5x5 CS case for the within-subject
effect (time) and the BIC selection criterion. Generally, distributions of p-values
followed right skewed distributions, which will result in anti-conservative test
statistics of the effects and thus increased Type I error rates.

Proportions of p-values less than or equal to 0=0.05 or a =0.01 were always
higher than the target values (Tables 4 to 7) and were never included in the expected
95% confidence intervals. However, there were some cases in which the empirical
error rates were robust according to Bradley’s criterion of robustness (Bradley, 1978);
that is between .5a and 1.5a. For a =0.05 and 0.01, these intervals were [.025-.075]
and [.005-.015], respectively. With one exception, all the situations in which observed
error rates were robust came from the best BIC procedure and the 5x3 or 5x5 sample
sizes (Tables 4 to 7). For the CSH 5x3 case and the time effect, the empirical Type I

error rate was .0749 with a=0.05.
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Table 4: Simulated Type I error rates (¢=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 3x3 sample
size studies

Covariance Effect Best AIC model Best BIC model Correct model Convergence
Structures rates for
Prop < Prop < e Prop < Prop < e Prop < Prop < e correct
0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value model
CS Treatment .1491 .0589 <.0001 .1409 .0574 <.0001 .0525% .0118* 2941 100
Time 1311 .0564 <.0001 1179 .0511 <.0001 .0493* .0104* 1572
CSH Treatment 1556 .0623 <.0001 1523 .0603 <.0001 0728 .0187 <.0001 100
Time 1437 .0681 <.0001 132 .0632 <.0001 .0477* .0088* S118
ARRE Treatment .156 .0592 <.0001 .1509 .0562 <.0001 1165 .0613 <.0001 100
Time .147 .0686 <.0001 1363 .064 <.0001 03697 .0069" <.0001
ARHRE Treatment .1634 .0599 <.0001 1618 .0598 <.0001 06327 .0168 .00013 92.74
Time .1653 .0785 <.0001 154 .0716 <.0001 .0961 .047 <.0001
RC Treatment 1385 .054 <.0001 1336 .0526 <.0001 .0538%* .0117* 1795 100
Time 1354 .0605 <.0001 1233 .055 <.0001 .0363» .0067" .00087
TOEP Treatment .1468 .058 <.0001 .1426 .0564 <.0001 .0537* .0119* 1305 100
Time 1368 .0586 <.0001 1272 .0541 <.0001 .0513* .0116* .8607
TOEPH Treatment 1508 .0567 <.0001 1472 .0555 <.0001 .0867 .0239 <.0001 100
Time .1437 .0643 <.0001 1319 .0583 <.0001 .0491* .0088* .8495
UN Treatment 1559 .0554 <.0001 1541 .0553 <.0001 .1143 .0374 <.0001 100
Time .1441 .0669 <.0001 1344 .061 <.0001 .0568" .0119* .0983
HCS Treatment .165 .0693 <.0001 1615 .0689 <.0001 .02497 .0028 <.0001 99.99
Time 1336 .0531 <.0001 1254 .0488 <.0001 1305 .0171 <.0001
HCSH Treatment .1842 .0738 <.0001 1811 .0731 <.0001 .0909 .0228 <.0001 77.63
Time 1537 .066 <.0001 .1434 .0621 <.0001 1305 .052 <.0001

Notel: * Proportions included in expected 95% intervals.
Note2: » Robust proportions ([.025-0.075] for a=.05 or [.005-.015] for 0=.01) not included in the expected 95% confidence intervals.
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Table 4 (Cont.): Simulated Type I error rates (0=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 3x3
sample size studies

Covariance Effect Best AIC model Best BIC model Correct model Convergence
Structures rates for
Prop < Prop < e Prop < Prop < e Prop < Prop < e correct
0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value model
HARRE Treatment 1651 .0623 <.0001 .1629 .0628 <.0001 .0388" .0101* <.0001 100
Time 1576 .0697 <.0001 .1499 .0657 <.0001 .0615" .0128» .0053
HARHRE Treatment 1773 .0722 <.0001 178 .0725 <.0001 1198 .0479 <.0001 65.41
Time 1637 .0791 <.0001 1561 .0766 <.0001 2218 .1084 <.0001
HRC Treatment 1394 .0523 <.0001 1372 0512 <.0001 03377 .0068" <.0001 90.68
Time 1268 .0546 <.0001 1177 .0503 <.0001 0393~ .0095* <.0001
HTOEP Treatment .1653 .0684 <.0001 .1655 .06 <.0001 .04017 .0993 <.0001 99.61
Time 1359 .0593 <.0001 131 .0564 <.0001 .101 .025 <.0001
HTOEPH Treatment 1726 .0718 <.0001 1738 .0725 <.0001 .0949 .02788 <.0001 22.95
Time .1479 .0654 <.0001 .14 .0618 <.0001 .1895 .0636 <.0001

Notel: * Proportions included in expected 95% intervals.
Note2: ~ Robust proportions ([.025-0.075] for 0=.05 or [.005-.015] for a=.01) not included in the expected 95% confidence intervals.
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Table 5: Simulated Type I error rates (¢=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 5x3 sample
size studies

Covariance Effect Best AIC model Best BIC model Correct model Convergence
Structures rates for
Prop < Prop < e Prop < Prop < e Prop < Prop < e correct
0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value model

CS Treatment .0961 .0275 <.0001 0772 0211 <.0001 .0479* .0088* 1854 100
Time .0763 .0227 <.0001 .0605" .0177 <.0001 .0497%* .0104* .8304

CSH Treatment .0982 .0306 <.0001 .0863 .0249 <.0001 05947 0128~ .0183 100
Time .0749" .0248 <.0001 .0626" .0174 <.0001 .0501* .0107* .6288

ARRE Treatment .1048 .038 <.0001 .0855 .0293 <.0001 .0989 .0437 <.0001 100
Time .085 .0301 <.0001 0772 .0242 <.0001 03547 .0056" <.0001

ARHRE Treatment .1035 .0305 <.0001 .0939 .0248 <.0001 05897 .0123* .0054 97.49

Time .0935 .0354 <.0001 .0796 .0251 <.0001 .083 .0379 <.0001

RC Treatment .0916 .0283 <.0001 .0745" .0205 <.0001 .0495% .0096* .6332 100
Time .0801 .0251 <.0001 .0675" .0183 <.0001 04317 .009* .0631

TOEP Treatment .0933 .0295 <.0001 0757 .0225 <.0001 .046* .009%* 5392 100
Time .0866 .0267 <.0001 .0764 .0202 <.0001 .0513* .0092* .27034

TOEPH Treatment .1031 .0312 <.0001 .0891 .026 <.0001 0629 .01477 .0009 100
Time .0823 .028 <.0001 06917 0211 <.0001 .0482* .0103* 3397

UN Treatment .0948 .0283 <.0001 .0826 .0229 <.0001 06417 .0162 <.0001 100
Time .0772 .0243 <.0001 .0655% .0184 <.0001 .0499* .0104* A552

HCS Treatment .1087 .0359 <.0001 .0933 .0305 <.0001 .0428" .0086* .2580 100
Time .0873 .0278 <.0001 .0766 .0227 <.0001 05727 .0128» .0525

HCSH Treatment 1207 .0416 <.0001 1151 .0364 <.0001 .0773 .0205 <.0001 100
Time .093 .0305 <.0001 .0806 .0236 <.0001 .0718» .0181 <.0001

Notel: * Proportions included in expected 95% intervals.
Note2: » Robust proportions ([.025-0.075] for a=.05 or [.005-.015] for 0=.01) not included in the expected 95% confidence intervals.
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Table 5 (Cont.): Simulated Type I error rates (¢=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 5x3
sample size studies

Covariance Effect Best AIC model Best BIC model Correct model Convergence
Structures rates for
Prop < Prop < e Prop < Prop < e Prop < Prop < r correct
0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value model
HARRE Treatment 1071 .0366 <.0001 .09 .0302 <.0001 06127 .0169 <.0001 100
Time .0945 .0294 <.0001 .0965 .0274 <.0001 .0466* .0098* <.0001
HARHRE Treatment 1261 .0418 <.0001 1204 .0396 <.0001 .0822 .0287 <.0001 76.25
Time .1031 .0375 <.0001 .0912 .0329 <.0001 1141 .0497 <.0001
HRC Treatment .0966 .0319 <.0001 .079 .0251 <.0001 .0376" .0068" <.0001 99.91
Time .0782 .0242 <.0001 .0664" .0189 <.0001 03717 00777 <.0001
HTOEP Treatment 1133 .0399 <.0001 .0982 .0321 <.0001 05627 .0112* 2505 99.99
Time .0919 .0299 <.0001 .0872 .0277 <.0001 0717 .0195 <.0001
HTOEPH Treatment 1229 .0394 <.0001 118 .0406 <.0001 .1014 .0265 <.0001 99.75
Time .0988 .0306 <.0001 .0894 .0278 <.0001 .0813 .0204 <.0001

Notel: * Proportions included in expected 95% intervals.

Note2: ~ Robust proportions ([.025-0.075] for 0=.05 or [.005-.015] for a=.01) not included in the expected 95% confidence intervals.
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Table 6: Simulated Type I error rates (¢=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 3x5 sample
size studies

Covariance Effect Best AIC model Best BIC model Correct model Convergence
Structures rates for
Prop < Prop < e Prop < Prop < e Prop < Prop < e correct
0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value model
CS Treatment 2024 1153 <.0001 176 .0991 <.0001 .0498* .0092%* 5415 100
Time 1164 .053 <.0001 .103 .0452 <.0001 .0516%* .011* 5129
CSH Treatment 2526 .1569 <.0001 2302 .1416 <.0001 07477 .0198 <.0001 99.99
Time 1313 .0602 <.0001 1163 .0501 <.0001 .0636" .016 .0072
ARRE Treatment 2213 1331 <.0001 .1964 1156 <.0001 06537 .0197 <.0001 100
Time 1342 .066 <.0001 1194 .0575 <.0001 .04477 .0103* .0012
ARHRE Treatment 2695 1577 <.0001 2458 .1428 <.0001 06447 .0146" .0084 91.19
Time 1521 .073 <.0001 1396 .0652 <.0001 .0928 .0342 <.0001
RC Treatment 2012 124 <.0001 175 .1051 <.0001 .0499%* .0116%* .0142 100
Time .1343 .0611 <.0001 1222 .055 <.0001 .0463* .012%* .041
TOEP Treatment 2032 1235 <.0001 1775 .1055 <.0001 .0522% .012%* 3575 100
Time 1246 .0549 <.0001 1131 .0488 <.0001 .0466* .0089* .0304
TOEPH Treatment .2485 .1435 <.0001 2261 1287 <.0001 1153 .0370 <.0001 99.93
Time .141 .0662 <.0001 1275 .0578 <.0001 06617 .0174 <.0001
UN Treatment .29 1736 <.0001 2722 1617 <.0001 3383 .1997 <.0001 99.71
Time .141 .0639 <.0001 .1289 .0579 <.0001 1136 .0422 <.0001
HCS Treatment 2261 .1415 <.0001 2004 125 <.0001 02517 .0024 <.0001 100
Time .1284 .0598 <.0001 1155 .0519 <.0001 05617 .0121%* 7905
HCSH Treatment 2952 .1798 <.0001 2748 .1669 <.0001 .1107 .0317 <.0001 74.44
Time 1528 .0652 <.0001 .1419 .0583 <.0001 1871 .0674 <.0001

Notel: * Proportions included in expected 95% intervals.
Note2: » Robust proportions ([.025-0.075] for a=.05 or [.005-.015] for 0=.01) not included in the expected 95% confidence intervals.
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Table 6 (Cont.): Simulated Type I error rates (¢=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 3x5
sample size studies

Covariance Effect Best AIC model Best BIC model Correct model Convergence
Structures rates for
Prop < Prop < e Prop < Prop < e Prop < Prop < e correct
0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value model
HARRE Treatment 2273 .1409 <.0001 .2038 1251 <.0001 .0397 .0056" .0027 100
Time 1567 .0754 <.0001 .1447 .0702 <.0001 .0656" .0197 <.0001
HARHRE Treatment 29 1723 <.0001 2735 .1607 <.0001 1356 .0481 <.0001 57.43
Time .1693 .081 <.0001 1586 .0753 <.0001 .200 .0898 <.0001
HRC Treatment 2012 1198 <.0001 .1796 .104 <.0001 .0305" .0088* <.0001 91.22
Time 1232 .0602 <.0001 1132 .0515 <.0001 .0499* .0145% <.0001
HTOEP Treatment 2184 1337 <.0001 1974 1177 <.0001 .0061 .00047 <.0001 42.78
Time .1483 .068 <.0001 138 .0632 <.0001 2199 .1026 <.0001
HTOEPH Treatment 2911 1751 <.0001 268 .1593 <.0001 0 0 . .01
Time .1559 .0712 <.0001 .1448 .0646 <.0001 0 0

Notel: * Proportions included in expected 95% intervals.
Note2: ~ Robust proportions ([.025-0.075] for 0=.05 or [.005-.015] for a=.01) not included in the expected 95% confidence intervals.
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Table 7: Simulated Type I error rates (¢=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 5x5 sample
size studies

Covariance Effect AIC model BIC model Correct model Convergence
Structures rates for
Prop < Prop < e Prop < Prop < e Prop < Prop < e correct
0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value model
CS Treatment 1027 .0346 <.0001 .0726" .0199 <.0001 .0504* .0089* 1707 100
Time .0828 .028 <.0001 .0598" .0168 .0131 .0526%* .0116%* .6907
CSH Treatment 1202 .0437 <.0001 .0877 .0269 <.0001 .0564" .0121%* <.0001 100
Time .0916 .0351 <.0001 06147 .0185 <.0001 .0507* .0166 .6075
ARRE Treatment .0961 .0353 <.0001 07277 .0226 <.0001 .0564" 01337 .0276 100
Time .0785 .0275 <.0001 .0548” .0175 .0001 .0408" .0084* .0045
ARHRE Treatment .1098 .0381 <.0001 .0861 .027 <.0001 .0513* .0118* 3743 95.58
Time .1028 .0385 <.0001 .081 .0277 <.0001 07227 .0228 <.0001
RC Treatment .0942 .0309 <.0001 .0698" .0188 <.0001 .0499%* .0103* 708 100
Time .089 .0308 <.0001 07517 .0238 <.0001 .0461%* .0092%* .3493
TOEP Treatment .0953 .0313 <.0001 .0678" .0167 <.0001 .0475* .0088* .6891 100
Time .0939 .0358 <.0001 .0808 0271 <.0001 .0519* .0118* 3504
TOEPH Treatment 119 .0388 <.0001 .0859 .0258 <.0001 .0646" 01397 <.0001 100
Time .1016 .0389 <.0001 .0841 .0261 <.0001 .0565" .0115* 2255
UN Treatment 1365 .0516 <.0001 .1109 .0383 <.0001 1178 .0412 <.0001 100
Time .0968 .0318 <.0001 .0773 .0223 <.0001 .0665" 01537 <.0001
HCS Treatment .0928 .0284 <.0001 .0733» .0202 <.0001 .04377 .0074" 1815 100
Time .0779 .0241 <.0001 06277 .0168 <.0001 .0486* .0096* .004
HCSH Treatment .1433 .052 <.0001 1265 .0438 <.0001 .0979 .0263 <.0001 99.16
Time .1083 .0372 <.0001 .0828 .0268 <.0001 .1059 .0357 <.0001

Notel: * Proportions included in expected 95% intervals.
Note2: » Robust proportions ([.025-0.075] for a=.05 or [.005-.015] for 0=.01) not included in the expected 95% confidence intervals.
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Table 7 (Cont.): Simulated Type I error rates (¢=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 5x5
sample size studies

Covariance Effect AIC model BIC model Correct model Convergence
Structures rates for
Prop < Prop < e Prop < Prop < e Prop < Prop < e correct
0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value model
HARRE Treatment .0934 .0319 <.0001 .0738» .0218 <.0001 .0545% .0105* 37679 100
Time .0825 .0298 <.0001 .0701~ .0252 <.0001 .0494* .0143» .0002
HARHRE Treatment 1314 .0465 <.0001 1116 .0354 <.0001 .0916 .0337 <.0001 71.60
Time 1164 .0463 <.0001 .0896 .0312 <.0001 1316 .0513 <.0001
HRC Treatment .0908 .0291 <.0001 07437 .021 <.0001 .0420" .0083* <.0001 99.94
Time .0864 .0301 <.0001 .076 .0241 <.0001 .0523* .0136" <.0001
HTOEP Treatment .0884 .0311 <.0001 07137 .0231 <.0001 .0576" 01547 .003 99.98
Time .0959 .0322 <.0001 .0914 .0276 <.0001 .0910 .0294 <.0001
HTOEPH Treatment .1399 .0545 <.0001 .1149 .0423 <.0001 0 0 . 0
Time .1199 .0422 <.0001 .0978 .031 <.0001 0 0

Notel: * Proportions included in expected 95% intervals.
Note2: ~ Robust proportions ([.025-0.075] for 0=.05 or [.005-.015] for a=.01) not included in the expected 95% confidence intervals.
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In general, sample sizes had an influence on the proportions obtained, the 3x5
(with proportions of up to .2952 for 0=0.05) being the farthest proportions from
expected values, followed by 3x3 (with proportions of up to.1842 for 0=0.05), 5x5
(with proportions of up to .1433 for 0=0.05) and 5x3 (with proportions of up to.1261
for =0.05). When the within-subject effect was tested, proportions were usually
closer to expected values than when the between-subject effect (treatment) was tested.

In addition, proportions from the best BIC models were usually closer to target
values that the ones from the best AIC models. The covariance structure followed by
the data also played an important role. Typically, the simpler the covariance structure,

the closer the proportions were to expected values.

4.1.1.b. Correct Model

Convergence was achieved in most cases; however, the more complicated the
covariance structure was, the lower the convergence rate (Tables 4 to 7). The most
extreme cases of this fact happened for HTOEPH data and sizes 3x5 and 5x5 where
the convergence rates were 0.01% and 0% respectively.

Distributions of p-values from fitting the correct model often followed the
uniform distribution, depending on the sample size and covariance structure (Tables 4
to 7). P-values from data following the CS, TOEP and RC covariance structures had a
uniform distribution for all the situations considered, except for the within-subject
effect when the covariance structure was RC and the sample size was 3x3. However,
this was a conservative case since the proportions less than a=0.05 and o =0.01 were

.0363 and .0067 respectively. We would say that empirical Type I error rates are
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conservative when they are less than the lower bound of the expected 95% confidence
interval for a=0.05 or a.=0.01. For 10,000 observations the lower bounds would be
.046 and .008 for a=0.05 and 0.01 respectively.

Other instances of lack-of-fit to the uniform distribution were also of
conservative nature (Table 8, Figures 1 to 8 in Appendix 1). This is important to
mention because these distributions did not follow the uniform distribution, but they
would cause less concern than the anti-conservative case because the Type I error
obtained would be less than the expected. Many of the conservative p-values came
from covariance structures with heterogeneity between treatment levels.

P-values obtained by fitting CSH, ARRE, ARHRE, TOEPH, UN, HCS,
HARRE and HTOEP covariance structures followed the uniform distribution in some
cases, depending on the sample size. The 5x3 and 5x5 cases were the most favorable.
For the HCSH, HARHRE, HRC and HTOEPH covariance structures, the p-values did
not follow the uniform distribution for any situation. These are complicated
covariance structures with heterogeneity within- and between-subjects and did not
produce conservative test statistics, except for the HRC covariance structure (Table 8).

There were some cases where the p-values did not follow the uniform
distribution but the proportions less than or equal to 0=0.05 or o =0.01 were included
in the 95% confidence expected intervals or were considered robust according to
Bradley’s criterion (Bradley, 1978). Some of these cases include 5x3 ARHRE for
treatment, 5x5 CSH for treatment, 5x5 HRC for time and 5x5 HTOEP for treatment

(Table 4 to 7).
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Proportions of p-values less than or equal to a=0.05 or a2 =0.01 for correct
models were usually closer to target than those obtained by fitting the best AIC and
BIC models. The exceptions to this pattern include the HARHRE and HTOEPH

covariance structures for the within-subject effect (Tables 4 to 7).

Table 8: Situations producing conservative error rates (less than the lower bound of the expected 95% confidence
interval for a=0.05 or 0=0.01 for the correct model in the equal treatment size simulation studies

Size Covariance Effect Prop <0.05 Prop <0.01
structure

3x3 ARRE Time .0369 .0069
3x3 RC Time .0363 .0067
3x3 HCS Treatment .0249 .0028
3x3 HARRE Treatment .0388 .0101
3x3 HRC Treatment .0337 .0068
3x3 HRC Time .0393 .0095
3x3 HTOEP Treatment .0401 .0993
5x3 ARRE Time .0354 .0056
5x3 RC Time .0431 .009
5x3 HRC Treatment .0376 .0068
5x3 HRC Time .0371 .0077
3x5 ARRE Time .0447 .0103
3x5 HCS Treatment .0251 .0024
3x5 HARRE Treatment .039 .0056
3x5 HRC Treatment .0305 .0088
3x5 HTOEP Treatment .0061 .00047
5x5 ARRE Time .0408 .0084
5x5 HCS Treatment .0437 .0074
5x5 HRC Treatment .0420 .0083
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4.1.2. Unequal treatment size
4.1.2.a. AIC and BIC best models

P-values from fitting the best AIC and BIC models in the unequal treatment
size case were similar to those from the equal treatment size case. Distributions of
these p-values did not follow the uniform distribution in any case (Tables 9 and 10,
Figures 9 to 12 in Appendix 1). However, there were several cases in which the
proportions of p-values less than or equal to 0=0.05 or a. =0.01 were considered robust
according to Bradley’s criterion (Bradley, 1978).

Most of the observed proportions less than or equal to 0=0.05 or o =0.01 that
were robust came from the (3, 5, 7)x5 sample size and best BIC models. Best BIC
models usually presented closer proportions to expected values than those obtained
from best AIC models.

Similarly, robust proportions occurred more often with 5 rather than 3 repeated
measures. When the within-subject effect was tested, empirical Type I error rates
were usually closer to expected values. However, for positive pairings, empirical Type
I error rates for the between-subject effect were closer to expected values. Proportions
obtained by fitting data with negative pairings were considerably more anti-
conservative than those obtained from positive pairings for the between-subject effect.
However, for the within-subject effect, the opposite situation obtained. Proportions
for the positive pairings were slightly more anti-conservative than for the negative

pairings.
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Table 9: Simulated Type I error rates (¢=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the
(3, 5, 7)x3 sample size studies

Covariance Effect Best AIC model Best BIC model Correct model Convergence
Structures rates for
Prop < Prop < e Prop < Prop < e Prop < Prop < a correct
0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value model
CS Treatment 1193 .0477 <.0001 .0879 .0306 <.0001 .0514%* .0098* 2446 100
Time .0861 .0298 <.0001 0677 .0215 <.0001 .0497* .0104* .8304
CSH Treatment 1216 .0444 <.0001 .0978 .0328 <.0001 0591~ .0144» .0257 99.99
Time .0858 .0308 <.0001 .069" .0212 <.0001 .0498* .0105* .3506
ARRE Treatment 1281 .0532 <.0001 .0937 .0354 <.0001 .0972 .0418 <.0001 100
Time .0946 .0345 <.0001 .0825 0271 <.0001 .03527 .0061" <.0001
ARHRE Treatment 1241 .0451 <.0001 .1062 .0348 <.0001 .0570" 01277 4211 97.36
Time 1023 .0394 <.0001 .0836 .0284 <.0001 .0855 .0358 <.0001
RC Treatment 1123 .0443 <.0001 .0848 .0299 <.0001 .0509* .0098* .5352 100
Time .0868 .0299 <.0001 07217 .021 <.0001 04317 .0083* 17604
TOEP Treatment .1168 .0455 <.0001 .0854 .0291 <.0001 .0502%* .0088* 40832 100
Time .0974 .0355 <.0001 .0837 .0261 <.0001 .0511%* .0094* 4788
TOEPH Treatment 1184 .0472 <.0001 .098 .0354 <.0001 .062% .016 .0017 100
Time .0932 .038 <.0001 .0755 .0281 <.0001 .0486* .0099* 4715
UN Treatment 1171 .0422 <.0001 .0946 .0306 <.0001 .0657" 01517 <.0001 100
Time .0959 .0333 <.0001 07227 .0229 <.0001 .0499* .0104* 4418
HCS Treatment .1004 .0356 <.0001 .0766 .0269 <.0001 .0366" .0045" .0003 99.99
positive Time 111 .042 <.0001 .0935 .0325 <.0001 0627 .0148" .0004
HCSH Treatment .0976 .0355 <.0001 .0781 .0273 <.0001 .0733» .0181 <.0001 92.45
positive Time 1201 .047 <.0001 .099 .0379 <.0001 .0876 .0288 <.0001

Notel: * Proportions included in expected 95% intervals.
Note2: » Robust proportions ([.025-0.075] for a=.05 or [.005-.015] for 0=.01) not included in the expected 95% confidence intervals.
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Table 9 (Cont.): Simulated Type I error rates (¢=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the
(3, 5, 7)x3 sample size studies

Covariance Effect Best AIC model Best BIC model Correct model Convergence
Structures rates for
Prop < Prop < e Prop < Prop < e Prop < Prop < a correct
0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value model
HARRE Treatment .1062 .0417 <.0001 .0861 .0329 <.0001 05997 .0166 <.0001 100
positive Time 1261 .0474 <.0001 .1098 .0387 <.0001 .0535% .009* 1156
HARHRE Treatment 1118 .0425 <.0001 .0968 .0362 <.0001 .1020 .0491 <.0001 72.17
positive Time 1327 .0562 <.0001 .1087 .0448 <.0001 1538 .074 <.0001
HRC Treatment .1039 .0386 <.0001 0767 .0243 <.0001 .0542* 01317 .0004 96.96
positive Time .0913 .0326 <.0001 07527 .0242 <.0001 .0369" .0085* <.0001
HTOEP Treatment .096 .0367 <.0001 0735 .0263 <.0001 .0485%* .0126" 3191 99.74
positive Time .1208 .047 <.0001 .1085 .0397 <.0001 .0839 .0227 <.0001
HTOEPH Treatment 1012 .0381 <.0001 .081 .0285 <.0001 .0864 .0229 <.0001 60.33
positive Time 1276 .0473 <.0001 .1043 .0362 <.0001 .1094 .0328 <.0001
HCS Treatment .1969 .0989 <.0001 .1649 .0785 <.0001 .0534* 01527 .00079 100
negative Time .0791 .0263 <.0001 07517 .0222 <.0001 057~ 01377 2739
HCSH Treatment 2217 .103 <.0001 2049 .0911 <.0001 1310 .0528 <.0001 92.64
negative Time .0831 .0277 <.0001 .0785 .0254 <.0001 .066" .0175 <.0001
HARRE Treatment 1742 .0817 <.0001 .1488 .0651 <.0001 06477 .0202 <.0001 100
negative Time .0846 .0313 <.0001 .0876 .0308 <.0001 .0429" .0087* <.0001
HARHRE Treatment .2006 .0913 <.0001 1879 .0828 <.0001 1181 .0499 <.0001 74.75
negative Time .0965 .0357 <.0001 .0868 .0294 <.0001 .1019 .0429 <.0001

Notel: * Proportions included in expected 95% intervals.

Note2: » Robust proportions ([.025-0.075] for a=.05 or [.005-.015] for 0=.01) not included in the expected 95% confidence intervals.
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Table 9 (Cont.): Simulated Type I error rates (¢=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the

(3, 5, 7)x3 sample size studies

Covariance Effect Best AIC model Best BIC model Correct model Convergence
Structures rates for
Prop < Prop < e Prop < Prop < e Prop < Prop < a correct
0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value model
HRC Treatment 1415 .0545 <.0001 1132 .0379 <.0001 07217 .0219 <.0001 97.53
negative Time .088 .0302 <.0001 0745 .0236 <.0001 .0375% .0084* <.0001
HTOEP Treatment 1925 .0929 <.0001 1653 .0784 <.0001 .0927 .0402 <.0001 99.87
negative Time .0875 .0294 <.0001 .0837 .0276 <.0001 .0634 .0172 <.0001
HTOEPH Treatment 219 .1068 <.0001 204 .0974 <.0001 .1634 .0677 <.0001 62.66
negative Time .0855 .0278 <.0001 .0806 .0251 <.0001 0723~ .0233 <.0001

Notel: * Proportions included in expected 95% intervals.

Note2: » Robust proportions ([.025-0.075] for a=.05 or [.005-.015] for 0=.01) not included in the expected 95% confidence intervals.
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Table 10: Simulated Type I error rates (0=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the

(3, 5, 7)x5 sample size studies

Covariance Effect Best AIC model Best BIC model Correct model Convergence
Structures rates for
Prop < Prop < e Prop < Prop < e Prop < Prop < e correct
0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value model
CS Treatment .1055 .0355 <.0001 0797 .0225 <.0001 .0502* .0096* .8938 100
Time .0788 .0274 <.0001 .0601" .0177 .0007 .0526%* .0116%* .6955
CSH Treatment 1121 .037 <.0001 .0894 .026 <.0001 .0588” 01297 .0265 100
Time 0771 .0255 <.0001 .0605" 01527 .0002 .0514* .0108* 7298
ARRE Treatment .1009 .033 <.0001 0774 .0206 <.0001 05617 .0099* .0159 100
Time 0797 .0309 <.0001 05757 .0178 .0003 .0406* .0079* .0113
ARHRE Treatment .0993 .0357 <.0001 .0846 .0271 <.0001 .0494* .0108* 733 95.48
Time .0969 .0365 <.0001 .0810 .0291 <.0001 .0718» .0230 <.0001
RC Treatment .0984 .0316 <.0001 0754 .0182 <.0001 .04427 .0073» .2439 100
Time .0851 .0303 <.0001 075" .0232 <.0001 04547 .0096* 7388
TOEP Treatment .0962 .0361 <.0001 .0685" .0213 <.0001 .048* .0107* 1771 100
Time .095 .0378 <.0001 .0792 0277 <.0001 .0522% .012%* .0046
TOEPH Treatment .1098 .0382 <.0001 .0929 .0278 <.0001 .0718» .0158 <.0001 100
Time .0922 .034 <.0001 .0802 .026 <.0001 0577 .0112* 1781
UN Treatment 1316 .0452 <.0001 1091 .0331 <.0001 1188 .0398 <.0001 100
Time .0892 .0295 <.0001 .0766 .0215 <.0001 .0665" .0153 <.0001
HCS Treatment .0802 .0268 <.0001 .0601" .0165 .0093 .0389" 0054 .0012 100
positive Time .0999 .0376 <.0001 07447 .0237 <.0001 .0536%* O111%* .1107
HCSH Treatment .1078 .0371 <.0001 .078 .0247 <.0001 .0915 .0286 <.0001 90.42
positive Time 125 .047 <.0001 .0855 0277 <.0001 1376 .0476 <.0001

Notel: * Proportions included in expected 95% intervals.

Note2: ~ Robust proportions ([.025-0.075] for a=.05 or [.005-.015] for 0=.01) not included in the expected 95% confidence intervals.
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Table 10 (Cont.): Simulated Type I error rates (¢=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the
(3, 5, 7)x5 sample size studies

Covariance Effect Best AIC model Best BIC model Correct model Convergence
Structures rates for
Prop < Prop < e Prop < Prop < e Prop < Prop < e correct
0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value model
HARRE Treatment .0839 .0275 <.0001 .0666" .0183 <.0001 .0542% .0097* .0499 100
positive Time .1062 .0448 <.0001 .0821 .0302 <.0001 .0542% .0158 .0001
HARHRE Treatment 1164 .0395 <.0001 .0864 .0261 <.0001 .1091 .0425 <.0001 64.18
positive Time 1353 .0549 <.0001 .1033 .0393 <.0001 .16 .0668 <.0001
HRC Treatment 07427 .0252 <.0001 05927 .0158 <.0001 .04547 .0117* <.0001 96.38
positive Time .0912 .0347 <.0001 .078 .0265 <.0001 .0556" 01327 <.0001
HTOEP Treatment 07537 .0235 <.0001 05917 0147 .0033 0337 00637 <.0001 74.71
positive Time 1211 .0512 <.0001 102 .0382 <.0001 1362 .0553 <.0001
HTOEPH Treatment .1061 .0386 <.0001 .0798 .0261 <.0001 0 0 0
positive Time 1361 .05 <.0001 .1041 .0352 <.0001 0 0
HCS Treatment 1242 .056 <.0001 1012 .0404 <.0001 .053%* .0158 .0021 100
negative Time .0726" .0248 <.0001 06117 .0178 .0023 .047%* .0104* 7801
HCSH Treatment 202 .0968 <.0001 182 .0837 <.0001 1336 .0539 <.0001 90.96
negative Time .0923 .0299 <.0001 0754 .0215 <.0001 .09 .0261 <.0001
HARRE Treatment .1081 .0416 <.0001 .0892 .031 <.0001 .0542% .012% .0014 100
negative Time .0804 .0298 <.0001 0677 .0235 <.0001 0427~ .0108* <.0001
HARHRE Treatment .1698 .0742 <.0001 1532 .0653 <.0001 1204 .0466 <.0001 69.34
negative Time .1143 .0444 <.0001 .0883 .0323 <.0001 119 .0483 <.0001

Notel: * Proportions included in expected 95% intervals.

Note2: » Robust proportions ([.025-0.075] for a=.05 or [.005-.015] for 0=.01) not included in the expected 95% confidence intervals.
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Table 10 (Cont.): Simulated Type I error rates (¢=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the
(3, 5, 7)x5 sample size studies

Covariance Effect Best AIC model Best BIC model Correct model Convergence
Structures rates for
Prop < Prop < e Prop < Prop < e Prop < Prop < e correct
0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value 0=0.05 0=0.01 p-value model
HRC Treatment 131 .0499 <.0001 .107 .0377 <.0001 .077 .0284 <.0001 97.29
negative Time .0896 .035 <.0001 .0794 .0273 <.0001 .05%* .0121* <.0001
HTOEP Treatment 1191 .0503 <.0001 .0985 .0358 <.0001 .0491* .0113* <.0001 75.19
negative Time .0916 .0312 <.0001 .0851 .0283 <.0001 .0928 .0305 <.0001
HTOEPH Treatment 1921 .0888 <.0001 .1586 0717 <.0001 0 0 . 0
negative Time 1052 .0382 <.0001 .0899 .0294 <.0001 0 0

Notel: * Proportions included in expected 95% intervals.
Note2: ~ Robust proportions ([.025-0.075] for 0=.05 or [.005-.015] for a=.01) not included in the expected 95% confidence intervals.

41



4.1.2.b. Correct Model

Distributions of p-values from fitting the correct model in the unequal
treatment size case followed the uniform distribution for both effects and both
numbers of repeated measures when the covariance structures were CS, CSH, or RC.
Depending on the number of repeated measures and the effect tested, uniformly
distributed p-values were also produced for the ARRE, ARHRE, TOEP, TOEPH, UN,
HCS positive, HARRE positive, HTOEP positive, and HCS negative covariance
structures. The rest of covariance structures never produced uniformly distributed p-
values.

For the unequal treatment size simulations, there were also situations
producing conservative error rates (Table 11, Figures 9 to 12 in Appendix 1). Once

more almost all of these situations involve heterogeneity between treatments.

Table 11: Situations producing conservative error rates (less than the lower bound of the expected 95% confidence
interval for a=0.05 or 0=0.01) for the correct model in the unequal sample size simulation studies

Size Covariance structure Effect Prop < 0.05 Prop <0.01
(3,5, 7)x3 ARRE Time .0352 .0061
(3,5, 7)x3 RC Time .0431 .0083
(3,5, 7)x3 HCS positive Treatment .0366 .0045
(3,5, 7)x3 HRC positive Time .0369 .0085
(3,5, 7)x3 HARRE negative Time .0429 .0087
(3,5, 7)x3 HRC negative Time .0375 .0084
(3,5, 7)x5 RC Treatment .0442 .0073
(3,5, 7)x5 RC Time .0454 .0096
(3,5, 7)x5 HCS positive Treatment .0389 .0054
(3,5, 7)x5 HRC positive Treatment .0454 0117
(3,5, 7)x5 HTOEP positive Treatment .033 .0063
(3, 5, 7)x5 HARRE negative Time .0427 .0108
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There were some situations in which the proportions of p-values less than or
equal to 0=0.05 or a =0.01 were robust according to Bradley’s criterion (Bradley,

1978) or were included in the expected 95% confidence intervals (Table 9 to 10).

4.2. Performance of AIC and BIC criteria

4.2.1. Equal treatment sizes

The success rate, the percent of times that AIC or BIC chose the correct covariance
structure, depended greatly on the sample size and covariance structure (Tables 12 to
15). The success rates were generally low. For instance, for the 3x3 sample case, the
success rate ranged from 2.51 to 29.98%. The highest success rate was 73.91%, for
the largest sample size and a simple covariance structure (ARRE). Success rates were
higher for larger sample sizes and simpler covariance structures.

AIC had a higher success rate than BIC for complicated structures, especially for
those with heterogeneity between-treatments. However, BIC had higher success rate
than AIC for simpler structures.

A covariance structure was considered to be consistent if the correct covariance
structure was chosen more often than any other specific structure. Consistency was
more common for larger sample size cases. CS and CSH were always consistent
independently of the situation. Other structures as ARRE, ARHRE, RC, UN, HCS,
HCSH, HARRE, HARHRE, HRC and HTOEPH were sometimes consistent
depending on the sample size and the type of criteria used. The TOEP, TOEPH and

HTOEP covariance structures were never consistent.
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Usually, when the number of repeated measures was larger, the “wrong” choices
made by AIC and BIC made more sense. For instance, for the 5 repeated measures
cases, AIC and BIC most often chose the ARRE and ARHRE covariance structures
when data followed the TOEP and TOEPH covariance structures, respectively. This
made sense since ARRE and ARHRE were specified with patterns similar to those of
TOEP and TOEPH. However, for the 5x3 sample size, AIC and BIC most often chose
the CS and CSH covariance structures when data followed the TOEP and TOEPH
covariance structures respectively. TOEP and CS did not follow the same pattern, nor
did TOEPH and CSH. Still, it is important to notice that TOEP was specified in such

way that it decreased rapidly, while ARRE decreased much slower (Table 1).
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Table 12: Success rates and details on covariance structures selected by AIC and BIC criteria for the 3x3 sample
size simulation studies

Covariance Criterion Success rate Most often chosen Rate for most often
Structures model chosen model

CS AlIC 23.46 CS 23.46

BIC 29.98 CS 29.98

CSH AIC 15.96 CSH 15.96

BIC 17.79 CSH 17.79

ARRE AIC 16.00 HRC 19.68
BIC 19.99 CS 20.5

ARHRE AIC 11.43 HRC 18.7
BIC 12.01 HRC 17.1

RC AIC 8.29 CS 17.84
BIC 9.36 CS 22.5

TOEP AIC 343 HRC 19.78

BIC 3.61 CS 20.92

TOEPH AIC 5.67 HRC 17.11

BIC 5.69 HRC 15.57

UN AIC 6.65 CSH 16.67
BIC 5.89 CSH 18.19

HCS AIC 9.32 HRC 15.62
BIC 9.30 CS 15.62

HCSH AIC 9.76 HRC 14.71
BIC 7.56 HRC 13.68

HARRE AIC 6.85 HRC 17.32
BIC 6.59 HRC 15.74

HARHRE AIC 12.59 HRC 17.42
BIC 10.26 HRC 16.21

HRC AIC 17.90 CS 18.12
BIC 15.49 CS 22.51

HTOEP AIC 16.45 HRC 17.87
BIC 14.30 HRC 16.03

HTOEPH AIC 3.42 HRC 16.64
BIC 2.51 HRC 15.56
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Table 13: Success rates and details on covariance structures selected by AIC and BIC criteria for the 5x3 sample
size simulation studies

Covariance Criterion Success rate Most often chosen Rate for most often
Structures model chosen model

CS AlIC 41.22 CS 41.22
BIC 62.11 CS 62.11
CSH AlIC 35.42 CSH 35.42
BIC 41.75 CSH 41.75
ARRE AIC 27.15 ARRE 27.15
BIC 37.08 ARRE 37.08
ARHRE AIC 27.80 ARHRE 27.80
BIC 29.83 ARHRE 29.83
RC AIC 12.47 CS 26.67
BIC 13.79 CS 40.03
TOEP AIC 4.52 CS 27.84
BIC 3.89 CS 41.30
TOEPH AIC 6.81 CSH 24.96
BIC 5.51 CSH 29.34
UN AIC 5.76 CSH 33.41
BIC 3.45 CSH 40.08
HCS AIC 28.40 HCS 28.40
BIC 26.49 CS 27.06
HCSH AlIC 16.53 HCSH 16.53
BIC 6.57 CSH 27.51
HARRE AIC 23.88 HARRE 23.88
BIC 18.89 CS 21.22
HARHRE AIC 12.60 HTOEPH 16.89
BIC 4.47 ARHRE 22.73
HRC AIC 8.18 CS 26.53
BIC 3.28 CS 40.19
HTOEP AIC 9.49 HARRE 21.49
BIC 5.05 CS 19.28
HTOEPH AIC 16.39 HTOEPH 16.39
BIC 5.03 CSH 19.05
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Table 14: Success rates and details on covariance structures selected by AIC and BIC criteria for the 3x5 sample
size simulation studies

Covariance Criterion Success rate Most often chosen Rate for most often
Structures model chosen model

CS AlIC 26.47 CS 26.47
BIC 34.73 CS 34.73
CSH AlIC 23.02 CSH 23.02
BIC 25.42 CSH 25.42
ARRE AIC 30.45 ARRE 30.45
BIC 38.14 ARRE 38.14
ARHRE AIC 24.71 ARHRE 24.71
BIC 2691 ARHRE 2691
RC AIC 20.20 HRC 23.71
BIC 23.29 RC 23.29
TOEP AIC 6.23 ARRE 22.15
BIC 6.32 ARRE 27.72
TOEPH AIC 10.21 ARHRE 19.80
BIC 9.46 ARHRE 21.24
UN AIC 32.58 UN 32.58
BIC 26.57 UN 26.57
HCS AIC 25.98 HCS 25.98
BIC 28.23 HCS 28.23
HCSH AlIC 10.57 UN 25.20
BIC 7.59 UN 20.71
HARRE AIC 28.64 HARRE 28.64
BIC 30.07 HARRE 30.07
HARHRE AIC 12.45 UN 23.94
BIC 8.15 UN 19.67
HRC AIC 25.17 HRC 25.17
BIC 23.04 HRC 23.04
HTOEP AIC 5.44 HARRE 23.76
BIC 4.00 HARRE 24.37
HTOEPH AIC 0 UN 24.46
BIC 0 UN 19.91
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Table 15: Success rates and details on covariance structures selected by AIC and BIC criteria for the 5x5 sample
size simulation studies

Covariance Criterion Success Rate Most often chosen Rate for most often
Structures model chosen model

CS AlIC 41.69 CS 41.69
BIC 69.03 CS 69.03
CSH AlIC 50.38 CSH 50.30
BIC 60.39 CSH 60.39
ARRE AIC 51.26 ARRE 51.26
BIC 73.91 ARRE 73.91
ARHRE AIC 56.41 ARHRE 56.41
BIC 68.46 ARHRE 68.46
RC AIC 40.52 RC 40.52
BIC 49.32 RC 49.32
TOEP AIC 6.62 ARRE 38.28
BIC 4.30 ARRE 54.08
TOEPH AIC 10.49 ARHRE 45.87
BIC 5.86 ARHRE 50.85
UN AIC 25.62 UN 25.62
BIC 9.01 CSH 38.08
HCS AIC 51.39 HCS 51.39
BIC 60.00 HCS 60.00
HCSH AlIC 34.07 HCSH 34.07
BIC 8.60 CSH 36.10
HARRE AIC 61.56 HARRE 61.56
BIC 64.20 HARRE 64.20
HARHRE AIC 25.96 HARHRE 25.96
BIC 6.54 ARHRE 40.37
HRC AIC 21.38 RC 35.29
BIC 11.05 RC 45.68
HTOEP AIC 15.33 HARRE 52.59
BIC 4.15 HARRE 54.97
HTOEPH AIC 0 HARHRE 20.43
BIC 0 HARRE 27.83
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4.2.2. Unequal treatment sizes

The success rates of AIC and BIC in the unequal treatment size situations were
comparable to those of the equal treatment size cases with 5 repeated measures per
subject. This is reasonable because the total number of subjects was the same.
Success rates depended on the number of repeated measures and covariance structure
(Tables 16 to 17). The success increased by increasing the number of repeated
measures and using simple covariance structures.

Once again, AIC frequently had higher success rates than BIC for complicated
structures, especially for those with heterogeneity between-treatments. However, BIC
had higher success rates than AIC for simpler structures. Often AIC and BIC were
able to recognize the correct structure other than the between-treatment heterogeneity.

CS, CSH, ARRE, and ARHRE covariance structures were consistent
independently of the number of repeated measures and the type of criteria used. Other
structures as RC, UN, HCS positive, HARRE positive, HCS negative, HCSH
negative, HARRE negative and HARHRE negative were consistent depending on the
number of repeated measures and the criteria used. The rest of the covariance
structures were never consistent.

As in the equal treatment size case, AIC and BIC most often chose ARRE,
ARHRE, HARRE, and HARHRE instead of TOEP, TOEPH, HTOEP, and HTOEPH
respectively in the 5 repeated measure cases.

Pairing did not seem to have a great influence on the performance (success rate
and consistency) of AIC and BIC. However, there was a slight improvement in the

success rates of these criteria when the pairing was negative.
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Table 16: Success rates and details on covariance structures selected by AIC and BIC criteria for the (3, 5, 7)x3
sample size simulation studies

Covariance Criterion Success rate Most often chosen Rate for most often

Structures model chosen model
CS AIC 38.35 CS 38.35
BIC 60.13 CS 60.13
CSH AIC 33.61 CSH 33.61
BIC 40.57 CSH 40.57
ARRE AIC 25.01 ARRE 25.01
BIC 36.14 ARRE 36.14
ARHRE AIC 25.95 ARHRE 25.95
BIC 28.87 ARHRE 28.87
RC AIC 12.20 CS 25.49
BIC 13.03 CS 39.75
TOEP AIC 4.02 CS 25.14
BIC 3.53 CS 39.21
TOEPH AIC 6.92 ARHRE 19.67
BIC 5.47 CSH 28.28
UN AIC 5.53 CSH 31.06
BIC 3.31 CSH 39.17
HCS AIC 20.33 HCS 20.33
positive BIC 17.93 CS 35.23
HCSH AIC 14.40 CSH 19.54
positive BIC 5.49 CSH 31.45
HARRE AIC 17.87 HARRE 17.89
positive BIC 12.96 CS 25.12
HARHRE AIC 15.78 ARHRE 18.06
positive BIC 6.13 ARHRE 24.35
HRC positive AIC 11.32 CS 24.03
BIC 5.02 CS 37.77
HTOEP AIC 11.80 HARRE 11.80
positive BIC 6.01 CS 25.04
HTOEPH AIC 8.50 ARHRE 12.60
positive BIC 2.74 CSH 22.18
HCS AlIC 25.15 CS 25.15
negative BIC 26.53 CS /26.53
HCSH AlIC 17.39 CSH 17.39
negative BIC 7.52 CSH 24.07
HARRE AIC 21.49 HARRE 21.49
negative BIC 18.27 CS 19.92
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Table 16 (Cont.): Success rates and details on covariance structures selected by AIC and BIC criteria for the
(3, 5, 7)x3 sample size simulation studies

Covariance Size Success rate Most often chosen Rate for most often
Structures 3,5, 7)x3 model chosen model
HARHRE AIC 15.20 HARHRE 15.20

negative BIC 5.96 ARHRE 19.41
HRC negative AIC 12.09 CS 24.95
BIC 5.60 CS 39.38

HTOEP AlIC 13.36 HARRE 18.76
negative BIC 7.54 HCS 19.15
HTOEPH AIC 9.79 HARHRE 12.99
negative BIC 3.09 CSH 17.71

Table 17: Success rates and details on covariance structures selected by AIC and BIC criteria for the (3, 5, 7)x5
sample size simulation studies

Covariance Size Success rate Most often chosen Rate for most often
Structures 3,5, 7)x5 model chosen model
CS AIC 41.44 CS 41.44

BIC 68.17 CS 68.17
CSH AIC 52.79 CSH 52.79
BIC 59.68 CSH 59.68
ARRE AIC 50.42 ARRE 50.42
BIC 73.22 ARRE 73.22
ARHRE AIC 59.22 ARHRE 59.22
BIC 67.87 ARHRE 67.87
RC AIC 40.00 RC 40.00
BIC 48.62 RC 48.26
TOEP AIC 6.86 ARRE 38.55
BIC 4.42 ARR 53.62
TOEPH AIC 11.52 ARHRE 48.20
BIC 6.23 ARHRE 50.73
UN AIC 26.62 UN 26.62
BIC 9.12 CSH 37.81
HCS AIC 45.90 HCS HCS/45.90
positive BIC 47.85 HCS HCS/47.85
HCSH AlIC 25.29 CSH CSH/27.38
positive BIC 6.03 CSH CSH/44.71
HARRE AIC 55.08 HARRE HARRE/55.08
positive BIC 51.46 HARRE 51.46
HARHRE AIC 22.38 ARHRE 33.61
positive BIC 5.82 ARHRE 50.88

51



Table 17 (Cont.): Success rates and details on covariance structures selected by AIC and BIC criteria for the
(3, 5, 7)x5 sample size simulation studies

Covariance Size Success rate Most often chosen Rate for most often
Structures 3,5, 7)x5 model chosen model

HRC positive AIC 23.77 RC 39.33
BIC 12.68 RC 4991
HTOEP AlIC 9.74 HARRE 48.22
positive BIC 2.43 HARRE 44.89
HTOEPH AIC 0 ARHRE 24.62
positive BIC 0 ARHRE 34.89
HCS AIC 51.37 HCS 51.37
negative BIC 60.33 HCS 60.33
HCSH AIC 33.60 HCSH 33.60
negative BIC 10.04 CSH 31.83
HARRE AIC 63.40 HARRE 63.40
negative BIC 64.92 HARRE 64.92
HARHRE AlIC 26.66 HARHRE 26.66
negative BIC 7.97 ARHRE 35.18
HRC negative AIC 23.97 RC 29.33
BIC 13.50 RC 38.06
HTOEP AIC 9.84 HARRE 53.57
negative BIC 2.46 HARRE 54.61
HTOEPH AIC 0 HARHRE 23.29
negative BIC 0 HARRE 27.28
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5. CONCLUSION

5.1. Distributions of p-values from AIC, BIC and correct models.

Distributions of Kenward-Roger method p-values from fitting the best AIC and
BIC models did not follow the uniform distribution for any sample size or covariance
structure. These distributions were always right skewed which implies that Type I
error rates were always higher than the target values. Type of selection criterion,
number of subjects per treatment, number of repeated measures, effect tested,
covariance structure and pairing affected the Type I error rates. Equality or inequality
of number of subjects per treatment did not seem to affect the Type I error rates.

The best BIC models usually produced closer Type I error rates to target values
than the best AIC models. Type I error rates were usually the farthest from target
values for the 3x5 sample size situation and were closest for the 5x5 sample size
situation. Tests for the within-subject effect generally produced closer Type I error
rates to target values. Covariance structures with heterogeneity between- and within-
treatment levels produced higher Type I error rates than those with only one type of
heterogeneity or complete homogeneity. For tests of the between-subject effect,
negative pairing produced dramatically higher Type I error rates than positive pairing.
However, for tests of the within-subject effect, negative pairing produced slightly
better Type I error rates than positive pairing. This disagrees with the results obtained
by Keselman et al. (1999). They found that negative pairings had an adverse effect on
Type I error rates for the within-subject effect. The disagreement could be due to the

Kenward-Roger adjustment or the difference in sample sizes.
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Convergence rates when the correct model was fitted depended on the
complexity of the covariance structure. When the covariance structure was HTOEPH
and the number of repeated measures was 5, the model converged only once in 20000
simulations. Therefore, it would be wise to not consider this covariance structure as a
possibility when the available sample size is of the same order of magnitude as in this
study.

Distributions of p-values from fitting the correct model often followed the
uniform distribution. However, this depended on the sample size, equality of numbers
of subjects per treatment, effect tested, pairing and covariance structure. P-values
from data following the CS and RC covariance structures always followed the uniform
distribution. P-values for TOEP data in the equal treatment size situation and CSH
data in the unequal treatment size situation also were uniformly distributed. P-values
for data with heterogeneity between- and within-treatment levels were seldom
uniformly distributed, especially for negative pairings.

Distributions of p-values based on the correct model were sometimes left
skewed, producing conservative type I error rates. This result did not occur with best
AIC and best BIC models.

Unless sample sizes are large, if AIC and BIC are used, users should be aware
that Type I error rates are higher than target values. Therefore, it is important to be
cautious about declaring significance when AIC and BIC are the only tools used to
select models. It would be wise to not rely just on AIC and BIC to choose a model,
but to use the design and other practical knowledge to guide the choice of the

covariance structure.
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In general, results obtained by Keselman et al. (1999) were more optimistic than
the ones obtained in this study for AIC models. Keselman et al. (1999) obtained
conservative Type I error rates by using the best AIC models. This was probably due
to the use of lager sample sizes.

Keselman et al. (1999) concluded that Type I error rates from fitting the HRC
and HARH (similar to our HARHRE but without the random effect) covariance
structures to every data set were adequate. They did not compare the distributions of
p-values to the uniform, and their Type I error rates were only reasonably close to
target values. Our study could not confirm the conclusions of Keselman et al. because
only best AIC, best BIC and correct models were examined. However, even when the
correct HARHRE structure was used, Type I error rates were far greater than target
values. The smaller sample sizes used in our study could account for this difference.

Even if the correct covariance structure is known, Type I error rates are higher
for complex structures and small sample size. This agrees with the results obtained by

Schaalje et al. (2002).

5.2. Performance of AIC and BIC criteria

Percentages of times that the correct model was chosen by the AIC and BIC
criteria were lower than those obtained by Keselman et al. (1998) and Ferron et al.
(2002). However, Ferron et al. (2002) allowed choice between only two structures,
and had much larger sample sizes. Keselman et al. (1998) allowed choice between 11

structures, but had much larger sample sizes than the ones used in our study.
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AIC generally produced better success rates for data following covariance
structures with heterogeneity between- and within-treatment levels. This result agrees
with Keselman et al. (1998). However, for simpler covariance structures BIC had
better success rates than AIC. Overall, both AIC and BIC had better success rates for
simpler covariance structures and larger sample sizes.

For larger number of repeated measures and data following covariance structures
with high number of parameters, AIC and BIC tended to most often choose covariance
structures with the same patterns and lower numbers of parameters.

AIC and BIC are useful tools to help the research to choose a covariance structure.
However, since they unfortunately do not always point to the correct covariance
structure, it would be wise to not depend on them exclusively when choosing a
covariance structure. It is important to be especially careful for small sample sizes
because success rates were very low. Other resources such as correlograms (Little et

al. (2002)), knowledge about the design and science should also be brought into play.
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APPENDIX 1: Histograms
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FIGURE 1: HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -3X3
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FIGURE 1 (Cont): HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -3X3
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FIGURE 2: HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -3X3
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FIGURE 3: HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT
5X3

AIC CS BIC CS correct CS

]Illlllllll INnEEEEEEs REEREEREER

correct CSH

probal bility

AlC CSH BIC CsH
ﬁ]llllllllll T
AIC ARHRE BIC ARHRE cortect ARHRE
g]llllllllll lIllllllll HlEEnEEERE
AIC RC BIC RC correct RC
ﬁjllllllllll lEsNEEEEEE EEEEEEREEE
AIC TOEP BIC TOEP correct TOEP

proba bility

]Illlllllll liEEEEEEER NEEEEEEEEE

AIC TOEPH BIC TOEPH correct TOEPH

Jllllllllll INssnssnsn NENEREEEEE

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0

probal inty

0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p-values p-values

p-values

62



probability probability probability probability probability probability probability

probability

FIGURE 3 (Cont): HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -5X3
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FIGURE 4 (Cont): HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -5X3

AIC UN

N

1

0
AIC HCS

]llllllllll

AIC HCSH

[N

1

0

AIC HARRE

2]
1
0

AIC HARHRE

2
1
0

AIC HRC

]llllllllll

AIC HTOEP

]Illlllllll

AIC HTOEPH

2
1
0

0.0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1.0

p-values

BIC UN

BIC HCS

BIC HCSH

BIC HARRE

BIC HARHRE

BIC HRC

BIC HTOEP

BIC HTOEPH

0.0 0.1 02 0.3 0.4 0.5 06 0.7 0.8 0.9 1.0

p-values

65

correct UN

correct HCS

correct HCSH

correct HARRE

correct HARHRE

correct HRC

correct HTOEP

correct HTOEPH

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p-values



FIGURE 5: HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -
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FIGURE 5 (Cont): HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -3X5
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FIGURE 6: HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -3X5
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FIGURE 6 (Cont): HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -3X5
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FIGURE 7: HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -5X§
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FIGURE 7 (Cont): HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -5X5

probability

probability

probability

probability probability

probability

AIC UN BIC UN correct UN

2)

I i 0

J IEEEEEnnn [T HiEEEEEEn
AIC HCS BIC HCS correct HCS

] Izssenssss OEEEEEEEEE SEEEEEEEER
AIC HCSH BIC HCSH correct HCSH

2

1

, IIIIII---- IIIIIIIIII Illlllll.l
AIC HARRE BIC HARRE correct HARRE

2)

1

J Iissnsssss IEEEEEEEEs EEEEEEEEER
AIC HARHRE BIC HARHRE correct HARHRE

] Illl------ IIIIIIIIII Isssnnnnsn
AIC HRC BIC HRC correct HRC

2]

1

/iumeuensns HEEEEEEEEE seEEEEEEEE
AIC HTOEP BIC HTOEP correct HTOEP

2)

1

J IzsEssssss HEEEEEEEEEs BEEEEEEEEE
AIC HTOEPH BIC HTOEPH

] I..IIII--I | T ——

0.0 0.1 0.2 0.3 04 0506 0.7 0.8 09 1.0 0.0 0.1 0.2 0.3 04 0.5 06 0.7 0.8 0.9 1.0

p-values p-values

71



probability

probability

probability

probability

probability

probability

probability

2]
1
o]
2
1
0
2
1
0
2
1
0
2)
1
0
2)
1
0

2
1
0

FIGURE 8: HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -5X5
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FIGURE 8 (Cont): HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -5X5
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FIGURE 9: HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -(3, 5, 7)x3
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FIGURE 9 (Cont): HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -(3, S, 7)x3
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FIGURE 9 (Cont): HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -(3, 5, 7)x3
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FIGURE 10: HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -(3, S, 7)x3
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FIGURE 10 (Cont): HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -(3, 5, 7)x3
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FIGURE 10 (Cont): HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -(3, 5, 7)x3
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FIGURE 11: HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -(3, 5, 7)x5
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FIGURE 11 (Cont): HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -(3, 5, 7)x5
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FIGURE 11 (Cont): HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -(3, 5, 7)x5
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FIGURE 12: HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -(3, §, 7)x5
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FIGURE 12 (Cont): HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -(3, 5, 7)xS
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APPENDIX 2: Example code
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/**********k*k***~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k*k*k*k*k*k*k*k~k*k**k**k**k************************

Generating data following the 8 covariance structures with

homogeneity between-treatments.
********************************************************************/

proc iml;
seed=7;
nit=10000;
dat=7(1,12);
cs={1 .5 .5,
.51 .5,
.5 .5 1};
r cs=I(9)@cs;

csh={1 .84 1.10,
.84 2.81 1.84,
1.10 1.84 4.80};
r csh=I(9)@csh;

arre={1 .78 .62,
.78 1 .78,
.62 .78 1};

r arre=I(9)Qarre;

arhre={1 1.22 1.16,
1.22 2.81 2.64,
1.16 2.64 4.80};

r arhre=I(9)@arhre;

re={1 0, 11, 1 2}*{.3 -.03, -.03 23*{1 11, 01 2}+ 2*1(3);
r rc=I(9)QRrc;

toe={1 .5 .3,
.51 .5,
.3 .5 1};

r toe=I(9)Qtoe;

toeh={1 .84 .66,
.84 2.81 1.84,
.66 1.84 4.80};

r toeh=I(9)@toeh;

un={1 .92 .95,
.92 2.81 1.85,
.95 1.85 4.80};
r un=I(9)@un;

*generating data;

do iter=1 to nit;
iter2=j(27,1,iter);
s={1, 2, 3, 4, 5, 6, 7, 8, 9};
subject=s@j(3,1,1);
trt=3(9,1,1)//3(9,1,2)//3(9,1,3);
t={0,1,2};
time=7j(9,1,1)Qt;

88



’

yl=normal (repeat (seed,27,1)
y2=normal (repeat (seed, 27,1)
y3=normal (repeat (seed, 27,1)
y4=normal (repeat (seed, 27,1)
( ( )
( ( )
( ( )

’

)
)
)
)7
).
)
)
)

’

y5=normal (repeat (seed, 27,1
y6=normal (repeat (seed, 27,1
y7=normal (repeat (seed, 27,1
y8=normal (repeat (seed, 27,1)
response cs=t(root(r cs)) *yl;
response_csh=t (root (r_csh)) *y2;
response_arre=t (root (r_arre)) *y3;
response arhre=t (root (r_arhre)) *y4;
response rc=t(root(r rc)) *y5;
response toe=t (root (r_ toe)) *y6;
response toeh=t (root (r_toeh))*y7;
response_un=t (root (r_un)) *y8;

’

’

’

dat=dat// (iter2||subject| |trt]||time| |response cs| |response cshl|respo
nse arre||response arhre| |response rc| |response toe
| | response toeh| |response un);
end;
tot=nit*3*3*3+1;
dat=dat[2:tot,];
create one from dat;
append from dat;
quit iml;
run;

data one (rename=(coll=iter col2=subject col3=trt cold=time

colb5=response 1 colé6=response 2 col7=response 3
col8=response 4 col9=response 5 collO=response 6

colll=response 7 coll2=response 8));

set one;

run;

/********************************************************************

Macro to fit every data set with all the considered models
********************************************************************/

$macro names;

/*initializing the data set from where the results will be obtained*/

data csl;aic=.; bic=.; model type=' '; covstruct=' '; iter=.;
output; run;

data cs; iter=.; descr=' '; value=.; output; run;

data cshl;aic=.; bic=.; model type=' '; covstruct=' '; iter=.;
output; run;

data csh; iter=.; descr=' '; value=.; output; run;

data arrelj;aic=.; bic=.; model type=' '; covstruct=' ';
iter=.; output; run;

data arre; iter=.; descr=' '; value=.; output; run;
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data arhrel;aic=.; bic=.; model type=' '; covstruct=' ';
iter=.; output; run;

data arhre; iter=.; descr=' '; value=.; output; run;

data rcl;aic=.; bic=.; model type=' '; covstruct=' '; iter=.;
output; run;

data rc; iter=.; descr=' '; value=.; output; run;

data toel;aic=.; bic=.; model type=' '; covstruct=' '; iter=.;
output; run;

data toep; iter=.; descr=' '; value=.; output; run;

data toehl;aic=.; bic=.; model type=' '; covstruct=' ';
iter=.; output; run;

data toeph; iter=.; descr=' '; value=.; output; run;

data unl;aic=.; bic=.; model type=' '; covstruct=' '; iter=.;
output; run;

data un; iter=.; descr=' '; value=.; output; run;

data hcsl;aic=.; bic=.; model type=' '; covstruct=' '; iter=.;
output; run;

data hcs; iter=.; descr=' '; value=.; output; run;

data hcshl;aic=.; bic=.; model type=' '; covstruct=' ';
iter=.; output; run;

data hcsh; iter=.; descr=' '; value=.; output; run;

data harrel;aic=.; bic=.; model type=' '; covstruct=' ';
iter=.; output; run;

data harre; iter=.; descr=' '; value=.; output; run;

data harhrel;aic=.; bic=.; model type=' '; covstruct=' ';
iter=.; output; run;

data harhre; iter=.; descr=' '; value=.; output; run;

data hrcl;aic=.; bic=.; model type=' '; covstruct=' '; iter=.;
output; run;

data hrc; iter=.; descr=' '; value=.; output; run;

data htoel;aic=.; bic=.; model type=' '; covstruct=' ';
iter=.; output; run;

data htoep; iter=.; descr=' '; value=.; output; run;

data htoehl; aic=.; bic=.; model type=' '; covstruct=' ';
iter=.; output; run;

data htoeph; iter=.; descr=' '; value=.; output; run;

data pval csl;effect=' '; NumDF=.; DenDF=.; Fvalue=.; probf=.;
model type=' '; covstruct=' '; iter=.; output; run;

data pval cs; iter=.; effect=' '; NumDF=.; DenDF=.; Fvalue=.;
probf=.; output;run;

data pval cshl;effect="' '; NumDF=.; DenDF=.; Fvalue=.; probf=.;
model type=' '; covstruct=' '; iter=.; output; run;

data pval csh; iter=.; effect=' '; NumDF=.; DenDF=.; Fvalue=.;
probf=.; output;run;

data pval arrel;effect=' '; NumDF=.; DenDF=.; Fvalue=.; probf=.;
model type=' '; covstruct=' '; iter=.; output; run;

data pval arre; iter=.; effect=' '; NumDF=.; DenDF=.; Fvalue=.;
probf=.; output;run;

data pval arhrel;effect=' '; NumDF=.; DenDF=.; Fvalue=.; probf=.;
model type=' '; covstruct=' '; iter=.; output; run;

data pval arhre; iter=.; effect=' '; NumDF=.; DenDF=.; Fvalue=.;
probf=.; output;run;

data pval rcl;effect=' '; NumDF=.; DenDF=.; Fvalue=.; probf=.;
model type=' '; covstruct=' '; iter=.; output; run;
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data pval rc; iter=.; effect=' '; NumDF=.; DenDF=.; Fvalue=.;
probf=.; output;run;

data pval toel;effect="' '; NumDF=.; DenDF=.; Fvalue=.; probf=.;
model type=' '; covstruct=' '; iter=.; output; run;

data pval toep; iter=.; effect=' '; NumDF=.; DenDF=.; Fvalue=.;
probf=.; output;run;

data pval toehl;effect=' '; NumDF=.; DenDF=.; Fvalue=.; probf=.;
model type=' '; covstruct=' '; iter=.; output; run;

data pval toeph; iter=.; effect=' '; NumDF=.; DenDF=.; Fvalue=.;
probf=.; output;run;

data pval unl;effect=' '; NumDF=.; DenDF=.; Fvalue=.; probf=.;
model type=' '; covstruct=' '; iter=.; output; run;

data pval un; iter=.; effect=' '; NumDF=.; DenDF=.; Fvalue=.;
probf=.; output;run;

data pval hcsl;effect="' '; NumDF=.; DenDF=.; Fvalue=.; probf=.;
model type=' '; covstruct=' '; iter=.; output; run;

data pval hcs; iter=.; effect=' '; NumDF=.; DenDF=.; Fvalue=.;
probf=.; output;run;

data pval hcshl;effect=' '; NumDF=.; DenDF=.; Fvalue=.; probf=.;
model type=' '; covstruct=' '; iter=.; output; run;

data pval hcsh; iter=.; effect=' '; NumDF=.; DenDF=.; Fvalue=.;
probf=.; output;run;

data pval harrel;effect=' '; NumDF=.; DenDF=.; Fvalue=.; probf=.;
model type=' '; covstruct=' '; iter=.; output; run;

data pval harre; iter=.; effect=' '; NumDF=.; DenDF=.; Fvalue=.;
probf=.; output;run;

data pval harhrel;effect="' ; NumDF=.; DenDF=.; Fvalue=.; probf=.;
model type=' '; covstruct=' '; iter=.; output; run;

data pval harhre; iter=.; effect=' '; NumDF=.; DenDF=.;
Fvalue=.; probf=.; output;run;

data pval hrcl;effect=' '; NumDF=.; DenDF=.; Fvalue=.; probf=.;
model type=' '; covstruct=' '; iter=.; output; run;

data pval hrc; iter=.; effect=' '; NumDF=.; DenDF=.; Fvalue=.;
probf=.; output;run;

data pval htoel;effect=' '; NumDF=.; DenDF=.; Fvalue=.; probf=.;
model type=' '; covstruct=' '; iter=.; output; run;

data pval htoep; iter=.; effect=' '; NumDF=.; DenDF=.; Fvalue=.;
probf=.; output;run;

data pval htoehl; effect=' ; NumDF=.; DenDF=.; Fvalue=.; probf=.;
model type=' '; covstruct=' '; iter=.; output; run;

data pval htoeph; iter=.; effect=' '; NumDF=.; DenDF=.;

Fvalue=.; probf=.; output;run;

/*analyzing every data sets with all the considered models
ods to obtain the p-values and AIC and BIC values for each

%do j=1 %to 8;
ods listing close;

proc mixed data=one;

by iter;
class trt subject;
parms (.5) (.5);

model response &j= trt time /ddfm=kenwardroger;
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repeated /type=cs subject=subject;
ods output fitstatistics=cs;

ods output tests3=pval cs;

run;

ods listing;

data cs2;set cs; retain aic bic; keep aic bic model type covstruct

iter; model type='CS ';covstruct="&3";

if descr="'AIC (smaller is better)' then do; aic=value;
bic=.;end;

if descr='BIC (smaller is better)' then do; bic=value; output;

end; run;

data csl;
set csl cs2;run;

data pval cs2; set pval cs; model type='CS ';covstruct="&73"; keep
effect probf model type
covstruct iter;

data pval csl;
set pval csl pval cs2;run;

ods listing close;

proc mixed data=one;

by iter;

class trt subject;

parms (1) (2.81) (4.80) (.5);

model response &j =trt time /ddfm=kenwardroger;
repeated /type=csh subject=subject;

ods output fitstatistics=csh;

ods output tests3=pval csh;

run;

ods listing;

data csh2;set csh;retain aic bic;keep aic bic model type covstruct
iter;model type='CSH ';covstruct="6&3";

if descr='AIC (smaller is better)' then do; aic=value;
bic=.;end;

if descr='BIC (smaller is better)' then
do;bic=value;output;end; run;
data cshl;
set cshl csh2; run;

data pval csh2; set pval csh; model type='CSH ';covstruct="&j"; keep
effect probf model type

covstruct iter;

data pval cshl;

set pval cshl pval csh2; run;

ods listing close;
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proc mixed data=one;

by iter;

class trt subject;

parms (.25) (.7) (.75);

model response &j= trt time /ddfm=kenwardroger;
repeated /type=ar(l) subject=subject;

random subject;

ods output fitstatistics=arre;

ods output tests3=pval arre;

run;

ods listing;

data arre2;set arre;retain aic bic;keep aic bic model type covstruct

iter;model type='ARRE ';covstruct="&j";
if descr='AIC (smaller is better)' then do; aic=value;
bic=.;end;

if descr='BIC (smaller is better)' then
do;bic=value;output;end; run;
data arrel;
set arrel arre2; run;

data pval arre2; set pval arre; model type='ARRE
';covstruct="&j";keep effect probf model type
covstruct iter;

data pval arrel;

set pval arrel pval arre2; run;

ods listing close;

proc mixed data=one;

by iter;

class trt subject;

parms (.25) (.75) (2.56) (4.55) (.7);

model response &Jj= trt time /ddfm=kenwardroger;
repeated /type=arh(l) subject=subject;

random subject;

ods output fitstatistics=arhre;

ods output tests3=pval arhre;

run;

ods listing;

data arhre2;set arhre;retain aic bic;keep aic bic model type
covstruct iter;model type='ARHRE ';covstruct="&j";

if descr='AIC (smaller is better)' then do; aic=value;
bic=.;end;

if descr='BIC (smaller is better)' then
do;bic=value;output;end; run;
data arhrel;
set arhrel arhre2; run;

data pval arhre2; set pval arhre; model type='ARHRE
';covstruct="&j";keep effect probf model type
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covstruct iter;
data pval arhrel;
set pval arhrel pval arhre2; run;

ods listing close;

proc mixed data=one;

by iter;
class trt subject;
parms (.3) (-.03) (.2) (2);

model response &j= trt time /ddfm=kenwardroger;
random intercept time /type=un subject=subject;
ods output fitstatistics=rc;

ods output tests3=pval rc;

run;

ods listing;

data rc2;set rc;retain aic bic;keep aic bic model type covstruct

iter;model type='RC ';covstruct="&3";
if descr='AIC (smaller is better)' then do; aic=value;
bic=.;end;

if descr='BIC (smaller is better)' then
do;bic=value;output;end; run;
data rcl;
set rcl rc2; run;

data pval rc2; set pval rc; model type='RC ';covstruct="&j"; keep
effect probf model type

covstruct iter;

data pval rcl;

set pval rcl pval rc2; run;

ods listing close;

proc mixed data=one;

by iter;
class trt subject;
parms (.5) (.3) (1);

model response &j= trt time /ddfm=kenwardroger;
repeated /type=toep subject=subject;

ods output fitstatistics=toep;

ods output tests3=pval toep;

run;

ods listing;

data toe2;set toep;retain aic bic;keep aic bic model type covstruct

iter;model type='TOEP ';covstruct="&j";

if descr='AIC (smaller is better)' then do; aic=value;
bic=.;end;

if descr='BIC (smaller is better)' then
do;bic=value;output;end; run;
data toel;

set toel toe2; run;
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data pval toe2; set pval toep; model type='TOEP
';covstruct="&j";keep effect probf model type
covstruct iter;

data pval toel;

set pval toel pval toe2; run;

ods listing close;

proc mixed data=one;

by iter;

class trt subject;

parms (1) (2.81) (4.80) (.5) (.3);

model response &j= trt time /ddfm=kenwardroger;
repeated /type=toeph subject=subject;

ods output fitstatistics=toeph;

ods output tests3=pval toeph;

run;

ods listing;

data toeh2;set toeph;retain aic bic;keep aic bic model type covstruct
iter;model type='TOEPH ';covstruct="&j";

if descr="'AIC (smaller is better)' then do; aic=value;
bic=.;end;

if descr='BIC (smaller is better)' then
do;bic=value;output;end; run;
data toehl;

set toehl toeh2; run;

data pval toeh2; set pval toeph; model type='TOEPH
';covstruct="&j";keep effect probf model type
covstruct iter;

data pval toehl;

set pval toehl pval toeh2; run;

ods listing close;

proc mixed data=one;

by iter;
class trt subject;
parms (1) (.92) (2.81) (.95) (1.85) (4.80);

model response &j= trt time /ddfm=kenwardroger;
repeated /type=un subject=subject;

ods output fitstatistics=un;

ods output tests3=pval un;

run;

ods listing;
data un2;set un;retain aic bic;keep aic bic model type covstruct
iter;model type='UN ';covstruct="&3";

if descr='AIC (smaller is better)' then do; aic=value;
bic=.;end;
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if descr='BIC (smaller is better)' then
do;bic=value;output;end; run;
data unl;
set unl un2; run;

data pval un2; set pval un; model type='UN ';covstruct="6&7"; keep
effect probf model type

covstruct iter;

data pval unl;

set pval unl pval un2; run;

ods listing close;

proc mixed data=one;

by iter;
class trt subject;
parms (.5) (.5) (.5) (.5) (.5) (.5);

model response &j= trt time /ddfm=kenwardroger;
repeated /type=cs subject=subject group=trt;
ods output fitstatistics=hcs;

ods output tests3=pval hcs;

run;

ods listing;

data hcs2;set hcs; retain aic bic;keep aic bic model type covstruct
iter;model type='HCS ';covstruct="&3";

if descr='AIC (smaller is better)' then do; aic=value;
bic=.;end;

if descr='BIC (smaller is better)' then do; bic=value; output;
end; run;
data hcsl;
set hcsl hecs2; run;

data pval hcs2; set pval hcs; model type='HCS ';covstruct="&3";
keep effect probf model type

covstruct iter;

data pval hcsl;

set pval hcsl pval hcs2; run;

ods listing close;

proc mixed data=one;
by iter;

class trt subject;
parms (1) (2.81) (4.80) (.5) (1) (2.81) (4.80) (.5) (1) (2.81) (4.80)
(.5);

model response &j =trt time /ddfm=kenwardroger;
repeated /type=csh subject=subject group=trt;
ods output fitstatistics=hcsh;

ods output tests3=pval hcsh;

run;

ods listing;
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data hcsh2;set hcsh;retain aic bic;keep aic bic model type covstruct
iter;model type='HCSH ';covstruct="&j";

if descr='AIC (smaller is better)' then do; aic=value;
bic=.;end;

if descr='BIC (smaller is better)' then
do;bic=value;output;end; run;
data hcshl;

set hcshl hcsh2; run;

data pval hcsh2; set pval hcsh; model type='HCSH
';covstruct="&]j";keep effect probf model type
covstruct iter;

data pval hcshl;

set pval hcshl pval hcsh2; run;

ods listing close;

proc mixed data=one;

by iter;

class trt subject;

parms (.25) (.75) (.7) (.75) (.7) (.75) (.7);
model response &j= trt time /ddfm=kenwardroger;
repeated /type=ar(l) subject=subject group=trt;
random subject;

ods output fitstatistics=harre;

ods output tests3=pval harre;

run;

ods listing;

data harre2;set harre;retain aic bic;keep aic bic model type
covstruct iter;model type='HARRE ';covstruct="&j";

if descr='AIC (smaller is better)' then do; aic=value;
bic=.;end;

if descr='BIC (smaller is better)' then
do;bic=value;output;end; run;
data harrel;
set harrel harre2; run;

data pval harre2; set pval harre; model type='HARRE
';covstruct="&j";keep effect probf model type
covstruct iter;

data pval harrel;

set pval harrel pval harre2; run;

ods listing close;

proc mixed data=one;
by iter;
class trt subject;
parms (.25) (.75) (2.56) (4.55) (.7)
(.75) (2.56) (4.55) (.7)
(.75) (2.56) (4.55) (.7);
model response &j= trt time /ddfm=kenwardroger;
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repeated /type=arh(l) subject=subject group=trt;
random subject;

ods output fitstatistics=harhre;

ods output tests3=pval harhre;

run;

ods listing;

data harhre2;set harhre;retain aic bic;keep aic bic model type
covstruct iter;model type='HARHRE';covstruct="&j";

if descr='AIC (smaller is better)' then do; aic=value;
bic=.;end;

if descr='BIC (smaller is better)' then
do;bic=value;output;end; run;
data harhrel;
set harhrel harhre2; run;

data pval harhre2; set pval harhre;

model type='HARHRE';covstruct="&J";keep effect probf model type
covstruct iter;

data pval harhrel;

set pval harhrel pval harhre2; run;

ods listing close;

proc mixed data=one;

by iter;
class trt subject;
parms (.3) (-.03) (.2) (.3) (-.03) (.2) (.3) (-.03) (.2) (2);

model response &j= trt time /ddfm=kenwardroger;

random intercept time /type=un subject=subject group=trt;
ods output fitstatistics=hrc;

ods output tests3=pval hrc;

run;

ods listing;

data hrc2;set hrc;retain aic bic;keep aic bic model type covstruct

iter;model type='HRC ';covstruct="&3";

if descr='AIC (smaller is better)' then do; aic=value;
bic=.;end;

if descr='BIC (smaller is better)' then
do;bic=value;output;end; run;
data hrcl;

set hrcl hrc2; run;

data pval hrc2; set pval hrc; model type='HRC ';covstruct="&7"; keep
effect probf model type

covstruct iter;

data pval hrcl;

set pval hrcl pval hrc2; run;

ods listing close;

proc mixed data=one;
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by iter;

class trt subject;

parms (1) (.5) (.3) (1) (.5) (.3) (1) (.5) (.3);
model response &j= trt time /ddfm=kenwardroger;
repeated /type=toep subject=subject group=trt;
ods output fitstatistics=htoep;

ods output tests3=pval htoep;

run;

ods listing;

data htoe2;set htoep;retain aic bic;keep aic bic model type covstruct
iter;model type='HTOEP ';covstruct="&j";

if descr="'AIC (smaller is better)' then do; aic=value;
bic=.;end;

if descr='BIC (smaller is better)' then
do;bic=value;output;end; run;
data htoel;

set htoel htoe2; run;

data pval htoe2; set pval htoep; model type='HTOEP
';covstruct="&j";keep effect probf model type
covstruct iter;

data pval htoel;

set pval htoel pval htoe2; run;

ods listing close;

proc mixed data=one;

by iter;

class trt subject;

parms (1) (2.81) (4.80) (.5) (.3) (1) (2.81) (4.80) (.5) (.3) (1)
(2.81) (4.80) (.5) (.3);

model response &j= trt time /ddfm=kenwardroger;

repeated /type=toeph subject=subject group=trt;

ods output fitstatistics=htoeph;

ods output tests3=pval htoeph;

run;

ods listing;

data htoeh2;set htoeph;retain aic bic;keep aic bic model type
covstruct iter;model type='HTOEPH';covstruct="&j";

if descr='AIC (smaller is better)' then do; aic=value;
bic=.;end;

if descr='BIC (smaller is better)' then
do;bic=value;output;end; run;
data htoehl;
set htoehl htoeh2; run;

data pval htoeh2; set pval htoeph;

model type='HTOEPH';covstruct="&j";keep effect probf model type
covstruct iter;

data pval htoehl;

set pval htoehl pval htoeh2; run;
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ods listing close;
ods listing;

/**merging all the resulted data sets together and separating them
depending on the covariance structure used to generate the data**/

data alll all2 all3 all4d all5 alle all7 all8;
aic=aicl bic=bicl))

merge csl (rename=(

cshl (rename=(
arrel (rename=(
arhrel (rename=(

rcl (rename=(

toel (rename=(
toehl (rename=(

unl (rename= (

hcsl (rename= (
hcshl (rename=(
harrel (rename=(
(rename= (
hrcl (rename=(
htoel (rename=(
htoehl (rename= (

harhrel

by covstruct iter;
drop model type;

if
if
if
if
if
if
if
if
if

iter ne .;

covstruct=1
covstruct=2
covstruct=3
covstruct=4
covstruct=5
covstruct=6
covstruct=7
covstruct=8

run;

then
then
then
then
then
then
then
then

aic=aic2 bic=bic2))

aic=aic3 bic=bic3))
aic=

aic4 bic=bicd))

aic=aich bic=bich))
aic=aic6 bic=bico))

aic=aic7 bic=bic7))

aic=aic8 bic=bic8))
aic=aic9 bic=bic9))

aic=aiclO bic=bicl0))
aic=
aic=aicl2 bic=bicl2))

aicll bic=bicll))

aic=aicl3 bic=bicl3))

output
output
output
output
output
output
output
output

aic=aicld bic=bicld))
aic=aicl5 bic=biclb));

alll;
all2;
all3;
alld;
alls;
alle;
all’7;
allg;

data pval alll pval all2 pval all3 pval all4 pval allb pval allé6

pval all7 pval

merge pval csl

pval cshl
pval arrel
pval arhrel

pval rcl

pval toel
pval toehl

alls

’

(rename=( probf=probfl))
(rename=( probf=probf2))

(rename=( probf=probf3))
(rename=( probf=probf4))

(rename=( probf=probfb))
(rename=( probf=probfo6))

(rename=( probf=probf7))

pval unl (rename=( probf=probf8))
(rename=( probf=probf9))

pval hcsl
pval hcshl
pval harrel

pval harhrel
(rename=( probf=probfl3))

pval hrcl
pval htoel
pval htoehl

by covstruct iter;

(rename=( probf=probfl0))
(rename=( probf=probfll))
(rename=( probf=probfl2))

(rename=( probf=probfl4))
(rename=( probf=probflb));
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if covstruct=1l then output pval alll;
if covstruct=2 then output pval all2;
if covstruct=3 then output pval all3;
if covstruct=4 then output pval all4;
if covstruct=5 then output pval all5;
if covstruct=6 then output pval allé6;
if covstruct=7 then output pval all7;
if covstruct=8 then output pval all8;
run;

/** final data sets for data following CS**/

data duml;

set alll;

minaic=min (of aicl-aiclb);
minbic=min (of bicl-bicl5);
array a(l5) aicl-aicl5;
array b(15) bicl-bicl5;

do i=1 to 15;

if a(i)=minaic then aicm=i;
if b(i)=minbic then bicm=i;
end;

keep iter aicm bicm;

run;

data finaltrl finaltml;
merge duml pval alll;

by iter;

array p(15) probfl-probfl5;

if effect='trt' then do;
var="'trt cs 'y
correctp=probfl;
do i=1 to 15;
if aicm=1i then bestaicp=p (i)
if bicm=1i then bestbicp=p (i)
end;
keep var iter aicm bicm bestaicp bestbicp correctp;
output finaltrl;
end;

if effect='time' then do;
correctp=probfl;
var="'time cs';
do i=1 to 15;
if aicm=1i then bestaicp=p (i)
if bicm=i then bestbicp=p(i):;
end;
keep var iter aicm bicm bestaicp bestbicp correctp;
output finaltml;
end;
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/** final data sets for data following CSH**/

data dum?2;

set all2;

minaic=min (of aicl-aiclb);
minbic=min (of bicl-bicl5);
array a(l5) aicl-aicl5;
array b(15) bicl-bicl5;

do i=1 to 15;

if a(i)=minaic then aicm=i;
if b(i)=minbic then bicm=i;
end;

keep iter aicm bicm;

run;

data finaltr2 finaltm2;
merge dum2 pval all2;

by iter;

array p(1l5) probfl-probfl5;

if effect='trt' then do;
correctp=probf2;
var="'trt csh';
do i=1 to 15;
if aicm=1i then bestaicp=p (i)
if bicm=1i then bestbicp=p (i)
end;
keep var iter aicm bicm bestaicp bestbicp correctp;
output finaltr2;
end;

if effect='time' then do;
correctp=probf2;
var='tim csh';
do i=1 to 15;
if aicm=1i then bestaicp=p (i)
if bicm=i then bestbicp=p(i);
end;
keep var iter aicm bicm bestaicp bestbicp correctp;
output finaltm2;
end;

/** final data sets for data following ARRE**/

data dum3;

set all3;

minaic=min (of aicl-aiclh);
minbic=min (of bicl-biclb):;
array a(l5) aicl-aicl5;
array b (15) bicl-bicl5;

do i=1 to 15;

if a(i)=minaic then aicm=1i;
if b(i)=minbic then bicm=i;
end;

keep iter aicm bicm;
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runy;

data finaltr3 finaltm3;
merge dum3 pval all3;

by iter;

array p(1l5) probfl-probfl5;

if effect="trt' then do;
correctp=probf3;
var='trt arre';
do i=1 to 15;
if aicm=i then bestaicp=p(i):;
if bicm=i then bestbicp=p(i);
end;
keep var iter aicm bicm bestaicp bestbicp correctp;
output finaltr3;
end;

if effect="'time' then do;
correctp=probf3;
var='tim arre';
do i=1 to 15;
if aicm=i then bestaicp=p(i);
if bicm=i then bestbicp=p(i);
end;
keep var iter aicm bicm bestaicp bestbicp correctp;
output finaltm3;
end;

/** final data sets for data following ARHRE**/
data dum4;

set all4;

minaic=min (of aicl-aiclb):;
minbic=min (of bicl-biclh);
array a(l5) aicl-aicl5;
array b (15) bicl-bicl5;

do i=1 to 15;

if a(i)=minaic then aicm=i;
if b(i)=minbic then bicm=i;
end;

keep iter aicm bicm;

run;

data finaltr4 finaltm4;
merge dum4 pval allé;

by iter;

array p(1l5) probfl-probfl5;

if effect="trt' then do;
correctp=probf4;
var='trt arhre';
do i=1 to 15;
if aicm=i then bestaicp=p(i);
if bicm=i then bestbicp=p (i)
end;
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keep var iter aicm bicm bestaicp bestbicp correctp;
output finaltr4;
end;

if effect='time' then do;
correctp=probf4;
var='tim arhre';
do i=1 to 15;
if aicm=i then bestaicp=p(i);
if bicm=i then bestbicp=p (i)
end;
keep var iter aicm bicm bestaicp bestbicp correctp;
output finaltm4;
end;

/** final data sets for data following RC**/

data dumb5;

set allb;

minaic=min (of aicl-aiclb);
minbic=min (of bicl-bicl5);
array a(l5) aicl-aicl5;
array b(1l5) bicl-bicl5;

do i=1 to 15;

if a(i)=minaic then aicm=1i;
if b(i)=minbic then bicm=i;
end;

keep iter aicm bicm;

run;

data finaltrb finaltmb5;
merge dumb5 pval all5;

by iter;

array p(15) probfl-probfl5;

if effect='trt' then do;
correctp=probf5;
var='trt rc';
do i=1 to 15;
if aicm=i then bestaicp=p (i)
if bicm=1i then bestbicp=p (i)
end;
keep var iter aicm bicm bestaicp bestbicp correctp;
output finaltr5;
end;

if effect='time' then do;
correctp=probf5;
var='tim rc';
do i=1 to 15;
if aicm=1i then bestaicp=p (i)
if bicm=i then bestbicp=p(i);
end;
keep var iter aicm bicm bestaicp bestbicp correctp;
output finaltmb;
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end;
/** final data sets for data following TOEP **/

data dumé6;

set allé6;

minaic=min (of aicl-aiclh);
minbic=min (of bicl-biclh);
array a(l5) aicl-aicl5;
array b (15) bicl-bicl5;

do i=1 to 15;

if a(i)=minaic then aicm=1i;
if b(i)=minbic then bicm=i;
end;

keep iter aicm bicm;

run;

data finaltr6 finaltm6;
merge dum6 pval all6;

by iter;

array p(1l5) probfl-probfl5;

if effect="trt' then do;
correctp=probf6;
var='trt toep';
do i=1 to 15;
if aicm=i then bestaicp=p(i);
if bicm=i then bestbicp=p(i);
end;
keep var iter aicm bicm bestaicp bestbicp correctp;
output finaltr6;
end;

if effect="'time' then do;
correctp=probf6;
var='tim toep';
do i=1 to 15;
if aicm=i then bestaicp=p(i);
if bicm=i then bestbicp=p(i);
end;
keep var iter aicm bicm bestaicp bestbicp correctp;
output finaltmé6;
end;

/** final data sets for data following TOEPH **/

data dum7;

set all7;

minaic=min (of aicl-aiclb):;
minbic=min (of bicl-biclb);
array a(l5) aicl-aicl5;
array b(15) bicl-bicl5;

do i=1 to 15;

if a(i)=minaic then aicm=i;
if b(i)=minbic then bicm=i;
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end;
keep iter aicm bicm;
run;

data finaltr7 finaltm7;
merge dum?7 pval all7;

by iter;

array p(1l5) probfl-probfl5;

if effect="trt' then do;
correctp=probf7;
var='trt toeph';
do i=1 to 15;
if aicm=i then bestaicp=p(i);
if bicm=i then bestbicp=p (i)
end;
keep var iter aicm bicm bestaicp bestbicp correctp;
output finaltr7;
end;

if effect='time' then do;
correctp=probf7;
var="'tim toeph';
do i=1 to 15;
if aicm=1i then bestaicp=p (i)
if bicm=1i then bestbicp=p (i)
end;
keep var iter aicm bicm bestaicp bestbicp correctp;
output finaltm7;
end;

/** final data sets for data following UN **/

data dum8;

set alls8;

minaic=min (of aicl-aiclh);
minbic=min (of bicl-biclh);
array a(l5) aicl-aicl5;
array b(1l5) bicl-bicl5;

do i=1 to 15;

if a(i)=minaic then aicm=i;
if b(i)=minbic then bicm=i;
end;

keep iter aicm bicm;

run;

data finaltr8 finaltm8;
merge dum8 pval all8;

by iter;

array p(1l5) probfl-probfl5;

if effect="trt' then do;
correctp=probf8;
var='trt un';

do i=1 to 15;
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if aicm=1i then bestaicp=p (i)
if bicm=i then bestbicp=p(i);
end;
keep var iter aicm bicm bestaicp bestbicp correctp;
output finaltr8;
end;

if effect="'time' then do;
correctp=probf8;
var='tim un';
do i=1 to 15;
if aicm=i then bestaicp=p(i):;
if bicm=i then bestbicp=p(i);
end;
keep wvar iter aicm bicm bestaicp bestbicp correctp;
output finaltm8;
end;

run;
%end;

$mend names;

tnames;

/********************************************************************

creating external data set with the results
/*******************************************************************/
data trlhom33;

set finaltrl;

file 'trlhom33';

put var iter aicm bicm bestaicp bestbicp correctp;
run;

data tr2hom33;

set finaltr2;

file 'tr2hom33';

put var iter aicm bicm bestaicp bestbicp correctp;

data tr3hom33;

set finaltr3;

file 'tr3hom33';

put var iter aicm bicm bestaicp bestbicp correctp;
run;

data tr4hom33;

set finaltr4;

file 'trd4dhom33';

put var iter aicm bicm bestaicp bestbicp correctp;

data tr5hom33;

set finaltr5;

file 'tr5hom33"';

put var iter aicm bicm bestaicp bestbicp correctp;

data tr6hom33;
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set finaltro;
file 'trohom33';
put var iter aicm
run;

data tr7hom33;
set finaltr7;
file 'tr7hom33';
put var iter aicm

data tr8hom33;
set finaltr8;
file 'tr8hom33';
put var iter aicm
run;

data tmlhom33;
set finaltml;
file 'tmlhom33';
put var iter aicm
run;

data tm2hom33;
set finaltm2;
file 'tm2hom33';
put var iter aicm

data tm3hom33;
set finaltm3;
file 'tm3hom33';
put var iter aicm
run;

data tm4hom33;
set finaltm4;
file 'tm4hom33';
put var iter aicm
run;

data tm5hom33;
set finaltm5;
file 'tm5hom33';
put var iter aicm

data tm6hom33;
set finaltm6;
file 'tm6ohom33';
put var iter aicm
run;

data tm7hom33;
set finaltm7;
file 'tm7hom33';
put var iter aicm

data tm8hom33;
set finaltm8;
file 'tm8hom33';
put var iter aicm

bicm

bicm

bicm

bicm

bicm

bicm

bicm

bicm

bicm

bicm

bicm

bestaicp

bestaicp

bestaicp

bestaicp

bestaicp

bestaicp

bestaicp

bestaicp

bestaicp

bestaicp

bestaicp

bestbicp

bestbicp

bestbicp

bestbicp

bestbicp

bestbicp

bestbicp

bestbicp

bestbicp

bestbicp

bestbicp
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