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ABSTRACT 
 
 
 

PERFORMANCE OF THE KENWARD-ROGER METHOD WHEN THE 

COVARARIANCE STRUCTURE IS SELECTED  

USING AIC AND BIC 
 
 
 

Elisa Valderas Gomez 

Department of Statistics 

Masters of Science 
 
 
 

 Linear mixed models are frequently used to analyze data with random effects 

and/or repeated measures.  A common approach to such analyses requires choosing a 

covariance structure.  Information criteria, such as AIC and BIC, are often used by 

statisticians to help with this task. However, these criteria do not always point to the 

true covariance structure and therefore the wrong covariance structure is sometimes 

chosen.  Once this step is complete, Wald statistics are used to test fixed effects.  

Degrees of freedom for these statistics are not known.  However, there are 

approximation methods, such as Kenward and Roger (KR) and Satterthwaite (SW) 

that have been shown to work well in some situations. Schaalje et al. (2002) concluded 

that the KR method would perform at least as well as or better than the SW method in 





many cases assuming that the covariance structure was known.  On the other hand, 

Keselman et al. (1999) concluded that the performance of the SW method when the 

covariance structure was selected using AIC was poor for negative pairings of 

treatment sizes and covariance matrices and small sample sizes.  Our study used 

simulations to investigate Type I error rates in test of fixed effects using Wald 

statistics with the KR adjustment method, incorporating the selection of the covariance 

structure using AIC and BIC.  Performance of the AIC and BIC criteria in selecting 

the true covariance structure was also studied.  The MIXED procedure (SAS v. 9) was 

used to analyze each simulated data set.  Type I error rates from the best AIC and BIC 

models were always higher than target values.  However, Type I error rates obtained 

by using the BIC criterion were better than those obtained by using the AIC criterion.  

Type I error rates for the correct models were often adequate depending on the sample 

size and complexity of covariance structure.  Performance of AIC and BIC was poor.  

This could be a consequence of small sample sizes and the high number of covariance 

structures these criteria had to choose from.        





ACKNOWLEDGMENTS 
 
 
 
 

 I would like to thank Dr. Bruce Schaalje for making possible the completion of 

this project by sharing his time, comments and feedback.  Also, I would like to express 

thanks to Dr. Gilbert Fellingham and Dr. William Christensen for their help and 

suggestions with computer issues.  I feel honored to have had the opportunity to work 

and learn in the Department of Statistics of Brigham Young University. 

 Special thanks go to my husband Ben for his unconditional help, love and 

support, to my mom for her faith and to my family in Spain and in the United States 

for their encouragement and trust.  Finally, I want to express my gratitude to God for 

His Love and for giving me the strength to go on every day.      

     





TABLES OF CONTENTS 

LIST OF TABLES ........................................................................................................ ix 

LIST OF FIGURES.......................................................................................................xi 

1.  INTRODUCTION.....................................................................................................1 

2.  LITERATURE REVIEW..........................................................................................3 

2.1.  Mixed Model ..........................................................................................................3 

2.2.  Selecting Covariance Structure ..............................................................................4 

2.3.  Performance of AIC and BIC .................................................................................6 

2.4.  Type I error rates ....................................................................................................9 

2.5.  Summary...............................................................................................................12 

3.  METHODOLOGY ..................................................................................................13 

3.1.  Design and conditions ..........................................................................................13 

3.2.  Equal treatment sizes............................................................................................13 

3.3.  Unequal treatment size .........................................................................................18 

3.4.  Simulation Study ..................................................................................................19 

4.  RESULTS................................................................................................................23 

4.1.  Distributions of p-values from AIC, BIC and correct models..............................23 

4.1.1.  Equal treatment sizes.........................................................................................23 

4.1.1.a.  AIC and BIC best models ...............................................................................23 

4.1.1.b.  Correct Model.................................................................................................32 

4.1.2.  Unequal treatment size ......................................................................................35 

4.1.2.a.  AIC and BIC best models ...............................................................................35 

4.1.2.b.  Correct Model.................................................................................................42 

vii 



4.2.  Performance of AIC and BIC criteria...................................................................43 

4.2.1.  Equal treatment sizes.........................................................................................43 

4.2.2.  Unequal treatment sizes.....................................................................................49 

5.  CONCLUSION .......................................................................................................53 

5.1.  Distributions of p-values from AIC, BIC and correct models..............................53 

5.2.  Performance of AIC and BIC criteria...................................................................55 

APPENDIX 1: Histograms...........................................................................................57 

APPENDIX 2: Example code ......................................................................................87 

6.  REFERENCES ......................................................................................................109 

 

 

viii 



LIST OF TABLES 

Table 1: Parameter Values for Covariance Structures Used in the Simulations ..........15 

Table 2: Values of covariance parameters used in the simulation of data with 

heterogeneity between treatment levels................................................................18 

Table 3: Commands used to model the data with the different covariance structures .20 

Table 4: Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests 

comparing the Uniform (0,1) to p-value distributions, and convergence rates for 

the 3x3 sample size studies...................................................................................24 

Table 5: Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests 

comparing the Uniform (0,1) to p-value distributions, and convergence rates for 

the 5x3 sample size studies...................................................................................26 

Table 6: Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests 

comparing the Uniform (0,1) to p-value distributions, and convergence rates for 

the 3x5 sample size studies...................................................................................28 

Table 7: Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests 

comparing the Uniform (0,1) to p-value distributions, and convergence rates for 

the 5x5 sample size studies...................................................................................30 

Table 8: Situations producing conservative error rates (less than the lower bound of 

the expected 95% confidence interval for α=0.05 or α=0.01 for the correct model 

in the equal treatment size simulation studies ......................................................34 

Table 9: Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests 

comparing the Uniform (0,1) to p-value distributions, and convergence rates for 

the .........................................................................................................................36 

ix 



Table 10: Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests 

comparing the Uniform (0,1) to p-value distributions, and convergence rates for 

the .........................................................................................................................39 

Table 11: Situations producing conservative error rates (less than the lower bound of 

the expected 95% confidence interval for α=0.05 or α=0.01) for the correct model 

in the unequal sample size simulation studies......................................................42 

Table 12: Success rates and details on covariance structures selected by AIC and BIC 

criteria for the 3x3 sample size simulation studies...............................................45 

Table 13: Success rates and details on covariance structures selected by AIC and BIC 

criteria for the 5x3 sample size simulation studies...............................................46 

Table 14: Success rates and details on covariance structures selected by AIC and BIC 

criteria for the 3x5 sample size simulation studies...............................................47 

Table 15: Success rates and details on covariance structures selected by AIC and BIC 

criteria for the 5x5 sample size simulation studies...............................................48 

Table 16: Success rates and details on covariance structures selected by AIC and BIC 

criteria for the (3, 5, 7)x3 sample size simulation studies ....................................50 

Table 17: Success rates and details on covariance structures selected by AIC and BIC 

criteria for the (3, 5, 7)x5 sample size simulation studies ....................................51 

 

 

x 



LIST OF FIGURES 

FIGURE 1: HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -

3X3 .......................................................................................................................58 

FIGURE 2: HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -3X3 .........60 

FIGURE 3: HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -

5X3 .......................................................................................................................62 

FIGURE 4: HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -5X3 .........64 

FIGURE 5: HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -

3X5 .......................................................................................................................66 

FIGURE 6: HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -3X5 .........68 

FIGURE 7: HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -

5X5 .......................................................................................................................70 

FIGURE 8: HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -5X5 .........72 

FIGURE 9: HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -(3, 

5, 7)x3...................................................................................................................74 

FIGURE 10: HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -(3, 5, 7)x3

..............................................................................................................................77 

FIGURE 11: HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -(3, 

5, 7)x5...................................................................................................................80 

FIGURE 12: HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -(3, 5, 7)x5

..............................................................................................................................83 

xi 





1.  INTRODUCTION 

Linear mixed models are frequently used to analyze data with random effects 

and/or repeated measures.  However, different techniques are used to implement linear 

mixed models.  One of the steps in a common approach (e.g. SAS Proc Mixed) is to 

choose a covariance structure.  The task of choosing a covariance structure is not 

simple, and the literature includes many examples of how important it is to choose the 

right structure (Grady and Helms, 1995;  Singer, 1998;  Littell et al., 2000), and the 

consequences of not doing so on the type I error rates for testing the fixed effects 

(Keselman et al., 1999;  Ferron et al., 2002). 

Information criteria (AIC, BIC) are often used by statisticians to choose the 

covariance structure (Singer, 1998;  Keselman et al., 1999;  Littell et al., 2000).  

Unfortunately, these criteria do not always point to the true covariance structure 

(Keselman et al., 1999;  Ferron et al., 2002).  Therefore, by only relying on these 

criteria, the wrong choice of covariance structure will be sometimes made. 

Once the covariance structure has been chosen, the next step often involves 

tests and estimates of fixed effects using Wald statistics (Schaalje et al., 2001;  

Schaalje et al., 2002).  Valid inferences about fixed effects in linear mixed models 

depend on the calculation of appropriate denominator degrees of freedom and the 

adjustment of the estimated covariance matrix and the Wald statistic.  Such methods 

have been suggested, including the Satterthwaite (SW) and the Kenward-Roger (KR) 

procedures (Fai and Cornelius, 1996;  Kenward and Roger, 1997).  It has been shown, 

using simulation studies, that the SW and KR methods behave well in complicated 
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situations (Keselman et al., 1998;  Schaalje et al, 2002).  However, how well they 

behave depends on the true underlying covariance structure.  

An alternative method of testing fixed effects in linear mixed models 

eliminates the necessity of choosing a covariance structure.  This method is a non-

pooled adjusted degrees of freedom multivariate test called the Welch-James-type test 

(WJ) (Johansen, 1980;  Keselman et al., 1993).  Simulations have shown the 

robustness of this method in several complex situations (Keselman et al., 1998).  Some 

important restrictions apply to this method since it is appropriate only for repeated 

measures designs without covariates or missing values.  

Schaalje et al. (2002) studied and compared Type I error rates in tests of fixed 

effects in linear mixed models.  Wald statistics with the SW and KR methods were 

used.  In their study, the true covariance structure was assumed to be known.  On the 

other hand, Keselman et al. (1999) studied Type I error rates in tests of fixed effects of 

repeated measures.  They used Wald statistics with the SW denominator degrees of 

freedom method and incorporated selection of the covariance structure into the error 

rates.  In addition, they compared these results to the Type I error rates obtained using 

the WJ test. 

This study investigates Type I error rates in tests of fixed effects in linear 

mixed models using Wald statistics with the KR method, incorporating the selection of 

covariance structure using AIC and BIC, as well as using the true covariance structure.  

Performance of the AIC and BIC criteria in selecting the true covariance structure will 

also be studied. 
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2.  LITERATURE REVIEW 

2.1.  Mixed Model 

The mixed model can be written as: 

y = Xβ + Zu +ε, 

where X and Z are the corresponding design matrices for the fixed and the random 

effects, β and u are the vectors of coefficients of the fixed and random effects, 

respectively, and ε denotes a vector of errors.  The vector of coefficients of the random 

effects, u, is assumed to follow the normal distribution with mean 0 and covariance 

matrix G.  ε is assumed to follow a normal distribution with mean 0 and covariance 

matrix R.  Neither G nor R needs to be a diagonal matrix.  The vectors u and ε are 

assumed independent; consequently, cov (u, ε) = 0, and Var (y) = ZGZ’ + R = V. 

If V is known, the generalized least squares estimator is the best linear 

unbiased estimator and can be written as:  

yVX'X)V(X'β -11-1
gls

−=ˆ  

If V is unknown, the estimated generalized least squares estimate of  is: β

yVX'X)V(X'β -11-1
egls ˆˆˆ −=  

where is an estimate of the covariance matrix. This estimate is often obtained using 

maximum likelihood (ML) or restricted maximum likelihood (REML) methodology.  

The approximate covariance matrix of β  is (X' .  A commonly used test 

statistic for is known as the Wald statistic.  It can be written as: 

V̂

eglsˆ 1-1X)V −ˆ

0C β =:H 0

)β(C1)C'1X)1-V(C(X')'β(C eglsegls ˆˆˆW −−=   
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where C is a matrix of contrasts of rank q.  Asymptotically, W follows a chi-square 

distribution with q degrees of freedom if there is no variation in the term 

.  Another option is to use the Wald F statistic, )C'X)V(C(X' 1-1 −ˆ W/qF ddf q, = , where 

ddf is the denominator degrees of freedom.  This statistic takes into account that 

 is estimated and not known.  A common method to calculate the ddf 

is the Satterthwaite (SW) method which computes the ddf using spectral 

decomposition of the hypothesis matrix together with repeated application of a method 

for single-degree-of-freedom-tests (Fai and Cornelius, 1996;  Schaalje et al., 2002).  

Kenward and Roger (1997) have suggested a method which calculates the ddf, 

modifies the estimate of and further adjusts the Wald F statistic to account for 

small sample bias and variability in (Schaalje et al., 2001). 

)C'X)V(C(X' 1-1 −ˆ

V

V̂

 

2.2.  Selecting Covariance Structure 

The process of analyzing data using usually begins with the choice of G and R, 

often referred as the covariance structure specification.  Commenting on the 

importance of this decision, Littell et al. (2000) noted that by using incorrect 

covariance structures we risk obtaining invalid estimators and inferences. Since the 

generalized least squares estimator is the best linear unbiased estimator, an incorrect 

covariance structure will affect the quality of the estimator.  Littell et al. (2000) 

suggested that the first thing to do when choosing a covariance structure in repeated 

measures studies is to compute the unstructured sample covariance matrix and 

compare it to the covariance matrix estimates obtained using other structures including 
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compound symmetry (CS), autoregressive order 1 (AR(1)), autoregressive with 

random effects, and  toeplitz.  They observed which covariance matrices preserved the 

main patterns observed in the unstructured covariance matrix.  They also used the 

correlogram (Cressie, 1993), a graphical tool which plots the correlation function, as a 

technique for visualizing patterns in the covariance structure.   

Other tools in covariance structure selection were Akaike’s information 

(Akaike, 1973) and Schwarz’s Bayesian criteria (Schwarz, 1978), AIC and BIC 

respectively.  These criteria are used as goodness-of-fit statistics to compare models 

with the same fixed effects but different covariance structures.  Both criteria penalize 

for the number of parameters in the covariance structure in question, the penalty 

imposed by BIC being greater.   

Littell et al.(2000) chose to rely more on BIC since their objective was 

parsimonious modeling.  An advantage of parsimonious modeling is more powerful 

tests and more efficient estimates of fixed effects (Keselman et al., 1998).  After 

considering all of the mentioned aids to covariance structure selection, Littell et. al. 

(2000) decided the autoregressive plus random coefficient structure was the best one 

for their study.  This structure had the best BIC value, but more than that, it preserved 

the properties they were expecting to see in their study, that is, correlated observations 

in the same patient and correlation decreasing as the time lag increased. Later, they 

fitted other covariance structures and found that the estimates for the fixed effects 

were similar for some of these structures. However, the standard deviations changed, 

which resulted in unusually large or small F-values for tests of fixed effects.  
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Grady and Helms (1995) argued that a better understanding of the data is 

obtained as a consequence of the covariance-modeling process because the covariance 

structure followed by the data may contain much information of interest to the 

researcher.  In their study, Grady and Helms dealt with missing data.  One advantage 

of the covariance structure modeling approach is that it can deal with missing data 

without the necessity of case-wise deletion of data.  They mentioned that a main 

aspect of choosing a covariance structure other than the unstructured one is the 

reduction in the number of parameters.  This is an advantage when the chosen 

covariance structure is adequate, yielding good estimators and test statistics.  

However, if the structure is not adequate, ill-fitting estimators of the true variance will 

be obtained (Littell et al., 2000).  Grady and Helms also recommended the use of 

correlograms to recognize correlation patterns to help in identifying an adequate 

structure.  After considering several structures, likelihood ratio tests were computed 

and found to be helpful in recognizing a sensible structure.  Grady and Helms pointed 

out that the high number of subjects in each group and repeated measures for each 

subject in their study could result in ‘too much’ power for the likelihood ratio tests.   

 

2.3.  Performance of AIC and BIC 

Littell et al. (2000) recommended the use of the AIC and BIC criteria to help 

statisticians choose an adequate covariance structure.  Keselman et al. (1998) studied 

the effectiveness of these two criteria in non-well-behaved, but common types of data 

in social sciences.  These situations included nonspherical covariance structures, 

unequal sample sizes, unequal covariance structure by group, and normal/non-normal 
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data.  They simulated data from three covariance structures, including Unstructured 

(UN), AR(1), and Random Coefficients (RC).  These structures were used with and 

without heterogeneity within subjects and between groups. 

Their results show that AIC chose the correct covariance structure 47% of the 

time while BIC was right 35% of the time.  They also showed that the number of times 

AIC chose the right structure depended on the true covariance structure.  For normal 

AR(1) and RC data with heterogeneity within-subjects and between groups, or log-

normal UN data with heterogeneity between groups, AIC performed better.  BIC 

picked the wrong covariance structure more often than the correct one for most types 

of data.  The negative results obtained for BIC could be due to the severe penalty 

imposed for the number of parameters (Keselman et al., 1998).  A possible 

explanation for the low success of both criteria could be that other simpler structures 

were good approximations to the true covariance structure. 

Ferron et al. (2002) also looked at the performance of the AIC, BIC and 

likelihood ratio test (LRT) in helping the statistician choose an adequate covariance 

structure.  Data were generated following an AR(1) structure with different sample 

sizes, numbers of repeated measures, and levels of autocorrelation.  AIC, BIC and 

LRT were computed for the true covariance structure, AR(1), and for a single 

alternative, σ .  The results show that AIC was more successful than the other two 

criteria for every combination of sample size, length of repeated measures and level of 

autocorrelation.  AIC choose the right covariance structure 79% of the time versus 

66% and 71% for BIC and LRT, respectively.  AIC, BIC and LRT performed better 

when the sample size, the length of the repeated measures and the level of 

I2
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autocorrelation were higher, the length of the repeated measures being the most 

influential characteristic.  The effect of sample size was greater when the length of the 

repeated measures was short. The rates of success of these criteria also depended on 

the parameter values chosen to generate the data. It is important to notice that AIC, 

BIC and LRT may perform worse when there are more than two covariance structures 

to choose from, as in this case. 

Since AIC and BIC may lead the researcher to fit an incorrect covariance 

structure, Ferron et al. (2002) studied the effects of a special case of misspecification 

of the R matrix on the estimates and tests of fixed effects.  Data with linear and non-

linear growth curves from two covariance structures, AR(1) and moving average 

(MA), were generated.  Sample size, length of repeated measures and level of 

autocorrelation were varied.  Data included missing and unequally spaced 

observations.  An RC model was fitted with   and an unstructured G.  The 

Wald F statistic with the between/within method of SAS (Proc Mixed) for the ddf was 

used for tests of fixed effects (Ferron et al., 2002).  As a consequence of the false 

assumption of , estimates of the variance parameters were biased, the bias of 

the estimates being larger for shorter lengths of repeated measures.  However, 

estimates of the fixed effects were not biased unless observations were unequally 

spaced and followed nonlinear growth curves.  Similarly, inflated Type I error rates 

for the fixed effects were obtained when unequally spaced observations were present 

in nonlinear growth curves.  Since misspecification of R occasioned problems on the 

estimates of the covariance, Ferron et al. (2002) advised caution in making 

IR 2σ=

IR 2σ=
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conclusions about covariance parameters when there is uncertainty about the true 

covariance structure.  

2.4.  Type I error rates 

Schaalje et al. (2002) studied the Type I error rates for Wald F tests in mixed 

linear models with varying sample size, covariance structure and degree of imbalance.  

Their simulations included split-plot and repeated measures designs.  The KR and SW 

methods were used for the tests of fixed effects.  The SW method was proposed by Fai 

and Cornelius (1996), who tested it using simulations based on split-plot models 

varying the degree of imbalance and the value of intra-class correlation.  Kenward and 

Roger (1997) proposed the KR method and studied its behavior under several 

covariance structures.  Schaalje et al. (2002) expanded the study of the SW and KR 

methods to investigate their performance with small sample sizes and some 

complicated covariance structures, which were assumed to be known. These 

covariance structures included: compound symmetry (CS), Toeplitz (TOEP), 

heterogeneous compound symmetry (CSH), first order heterogeneous autoregressive 

(ARH(1)), and first-order-ante-dependence (ANTE(1)). 

Type I error rates for the KR method were adequate for all CS simulations, for 

most of the TOEP simulations, and for CSH and ARH(1) simulations with larger 

sample sizes.  CSH and ARH(1) simulations with small sample sizes and ANTE(1) 

simulations with large sample sizes produced reasonable Type I error rates. The KR 

method performed better with balanced designs for every covariance structure except 

CS. The KR method did as well or better than the FC method in every situation.  
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However, its performance varied depending on the sample size, the complexity of the 

covariance structure and the degree of imbalance of the data.  

Robertson (1996) simulated data from three covariance structures including 

compound symmetry (CS), first order autoregressive plus common covariance 

(AR(1)+CC) and unstructured (UN).  She studied the performance of the Wald F 

statistic using the between/within method of SAS (Proc Mixed) for cases with known 

covariance structure and for cases where the AIC, BIC and other covariance structure 

selection criteria were used. Her results were optimistic for CS data.  However, Type I 

error rates obtained from AR(1)+CC and UN data were inflated, even when the true 

covariance structure was used.  This could be a consequence of the fact that the 

between/within ddf method was used in all simulations.     

Keselman et al. (1999) studied the performance of the SW method for  tests of 

fixed effects when the covariance structure is known and when the data are used to 

choose the covariance structure.  Their simulations included repeated measures 

designs with complete measurements on each subject.  Three types of covariance 

structures were used to generate balanced and unbalanced designs containing one 

between-subject and one within-subject factor.  Six conditions were varied, including 

type of population covariance structure, equal/unequal covariance structures among 

groups, total sample size, equal/unequal group sizes, “positive”/“negative” pairings of 

covariance matrices and group sizes (see Keselman et al., 1999) and normal/non-

normal data.   

Keselman et al. (1999) claimed that Type I error rates were adequate using the 

SW method with the true covariance structure unless the true covariance was UN.  
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When AIC was used to select a covariance structure, the performance of the SW 

method varied. Type I error rates tended to be adequate when the pairing was 

“positive” or the total sample size was large.  Surprisingly, fitting the AR(1) or RC 

covariance structures with between-and within-group heterogeneity resulted in well 

behaved Type I error rates in all cases, even when the true covariance structure was 

UN.  Results from non-normal data in general reflected those obtained from normal 

data. When the total sample size was increased, Type I error rates got closer to target 

values. 

Keselman et al. (1999) also studied the Type I error rates produced by testing 

fixed effects using the WJ method.  This is a non-pooled multivariate test used for 

testing the null hypothesis: 0C β =:H 0 , where is a vector of means.  The WJ test 

is: 

β

)()'( )'( T -1
wJ YCCSCYC=  

where Y is the vector of sample means and )
n

,...,
n
S( diag

J1

1 JSS = , where Sj  is the 

sample covariance matrix of the jth-group and J is the number of groups.  TWJ / c 

follows an approximate F distribution with degrees of freedom equal to q and 

q(q+2)/(3A), where 2)6A/(q2Aqc +−+=  and A is equation 3.1.3 of Keselman et al. 

(1999). 

The Type I error rates obtained from the WJ method were well behaved most 

of the time for testing the main effect.  However, when  testing the interaction, the WJ 

method produced inflated Type I error rates for negative pairings especially when the 
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total sample size was smaller.  Overall, Type I error rates obtained with the SW 

method were comparable to the ones obtained by the WJ method. 

 

2.5.  Summary 

The analysis of a mixed model requires the choice of a covariance structure. 

The quality of the estimator and inferences derived from the analysis depend upon this 

choice.  Some of the tools that can help to make an adequate choice are AIC, BIC, and 

correlograms. For parsimonious modeling BIC is advised over AIC (Little et al., 

2000).  For a nested model the likelihood ratio test is also an appropriate tool (Grady 

and Helms, 1995).  Unfortunately, neither AIC nor BIC always point to the true 

covariance structure, AIC having the higher performance in simulation studies 

(Keselman et al. 1998;  Ferron et al. 2002).  Misspecification influences estimates of 

the covariance structure and standard deviations of fixed effects. 

The Wald F statistic is often used to test fixed effects in mixed models. SW is a 

common method to approximate the ddf, and KR further adjusts the estimates of the 

covariance matrix and thus adjusts the test statistic.  The KR method always works as 

well or better than the SW method if the correct covariance structure is used.  Type I 

error rates are adequate if covariance structures are known and not too complex 

(Schaalje et al. 2002).  The performance of the SW method when the data are used to 

choose the covariance structure depends on the sample size and the “pairings”.  The 

WJ method produced adequate type I error rates in general, especially for large sample 

sizes.   
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3.  METHODOLOGY 

3.1.  Design and conditions 

Simulations were used to investigate Type I error rates of Kenward-Roger tests 

of fixed effects in repeated measures designs.  The simulated data followed a repeated 

measure design with one between-subject factor with three treatment levels and one 

within-subject continuous covariate.  The true parameter values for both factors were 

zero.  The simulation study was divided in two studies depending on equality or 

inequality of treatment sample sizes. 

 

3.2.  Equal treatment sizes 

The conditions considered in the equal treatment size study included: 3 or 5 

subjects per treatment, 3 or 5 repeated measures per subject and fifteen covariance 

structures.  The covariance structures are denoted  CS, HCS, CSH, HCSH, ARRE, 

HARRE,  ARHRE, HARHRE, RC, HRC, TOEP, HTOEP, TOEPH, HTOEPH, and 

UN, where the letter “H” at the beginning of the denotations indicates heterogeneity in 

covariance parameters values  for the between-subject factor.  Details on these 

covariance structures when the number of repeated measures was 5 are in Table 1.  

The upper left 3  submatrices were used in the simulations when the number of 

repeated measures was 3.  Since the complete covariance matrix (V) is a block-

diagonal matrix, only one block is presented for each covariance structure.  Structures 

with heterogeneity for the between-subject factor are not shown in Table 1; for these 

cases the block covariance matrices for each treatment level were obtained by 

3 x 
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multiplying the covariance parameters of the corresponding non-heterogeneous 

structures by 1/3, 1 and 5/3.  Table 2 gives details on the heterogeneous between-

treatment structures.  The combinations of number of subjects, number of repeated 

measures, and covariance structures yielded 60 (2x2x5) situations.
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Table 1: Parameter Values for Covariance Structures Used in the Simulations 
Covariance Structures Covariance parameters values 

Compound Symmetry (CS) 























1
1

1
1

1

2

ρρρρ
ρρρ

ρρ
ρ

σ  

 























15.5.5.5.
15.5.5.

15.5.
15.

1

 

 
Heterogeneous Compound Symmetry (CSH) 

 























2
554535251

2
4434241

2
33231

2
221

2
1

σρσσρσσρσσρσσ
σρσσρσσρσσ

σρσσρσσ
σρσσ

σ

 

 

 
 























79.628.385.218.230.1
35.676.211.226.1

80.484.110.1
81.284.

1

Autoregressive Order 1 plus Random Effect (ARRE) 























+























22222

2222

222

22

2

234

23

22

1
1

1
1

1

RRRRR

RRRR

RRR

RR

R

σσσσσ
σσσσ

σσσ
σσ

σ

ρρρρ
ρρρ

ρρ
ρ

σ  

 
 























178.62.51.43.
178.62.51.

178.62.
178.

1
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Heterogeneous Autoregressive Order 1 plus Random Effect (ARHRE) 
 























+























22222

2222

222

22

2

2
554

2
53

3
52

4
51

2
443

2
42

3
41

2
332

2
31

2
221

2
1

RRRRR

RRRR

RRR

RR

R

σσσσσ
σσσσ

σσσ
σσ

σ

σρσσρσσρσσρσσ
σρσσρσσρσσ

σρσσρσσ
σρσσ

σ

 

 
 
 























79.667.492.265.178.
35.694.319.298.

80.464.216.1
81.222.1

1

Random Coefficients (RC) 
 























+






















































10000
1000

100
10

1

41
31
21
11
01

41
31
21
11
01

2
2

2

σ
σσ
σσ

T

sIS

ISI  

 























26.549.272.195.18.
92.335.178.21.

98.261.24.
44.227.

30.2

Toeplitz (TOEP) 
 























1
1

1
1

1

1234

123

12

1
2

ρρρρ
ρρρ

ρρ
ρ

σ  

 

 
 























15.3.2.1.
15.3.2.

15.3.
15.

1
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Heterogeneous Toeplitz (TOEPH) 























2
5154253352451

2
4143242341

2
3132231

2
2121

2
1

σρσσρσσρσσρσσ
σρσσρσσρσσ

σρσσρσσ
σρσσ

σ

 

 
 




















 79.628.371.187.26.
35.676.227.150.

80.484.166.
81.284.

1

 

Unstructured (UN) 























2
554535251

2
4434241

2
33231

2
212

2
1

σσσσσ
σσσσ

σσσ
σσ

σ

 

 
 




















 79.695.50.250.125.
35.695.295.65.

80.485.195.
81.292.

1
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Table 2: Values of covariance parameters used in the simulation of data with 
heterogeneity between treatment levels 

Covariance 
Structures 

Parameter Values 
for treatment 1 

Parameter Values 
for treatment 2 

Parameter Values 
for treatment 3 

HCS 
 

σ2=.33, ρ=.5 σ2=1, ρ=.5 σ2=1.67, ρ=.5 

HCSH 

 

 
 

σ1
2=.33, σ2

2=.94, 
σ3

2=1.6, σ4
2=2.12, 

σ5
2=2.26, ρ=.5 

σ1
2=1, σ2

2=2.81, 
σ3

2=4.80, σ4
2=6.35, 

σ5
2=6.79, ρ=.5 

σ1
2=1.67, σ2

2=4.68, 
σ3

2=8, σ4
2=10.58, 

σ5
2=11.32, ρ=.5 

HARRE 
 
 

σ2=.25, ρ=.7, 
σR

2=.25 
σ2=.75, ρ=.7, 
σR

2=.25 
σ2=1.25, ρ=.7, 

σR
2=.25 

HARHRE 
 
 
 
 

σ1
2=.25, σ2

2=.85, 
σ3

2=1.52, σ4
2=2.03, 

σ5
2=2.18, ρ=.7, 
σR

2=.25 

σ1
2=.75, σ2

2=2.56, 
σ3

2=4.55, σ4
2=6.1, 

σ5
2=6.54, ρ=.7, 
σR

2=.25 

σ1
2=1.25, σ2

2=4.27, 
σ3

2=7.58, σ4
2=10.17, 

σ5
2=10.9, ρ=.7, 
σR

2=.25 

HRC 
 
 

σI
2=.1, σS

2=.067, 
σIS=-.01, σ2=2 

σI
2=.3, σS

2=.2, 
σIS=-03, σ2=2 

σI
2=.5, σS

2=.33, 
σIS=-.05, σ2=2 

HTOEP 

 
 

σ2=.33, ρ1=.5, ρ2=.3, 
ρ3=.2, ρ4=.1 

σ2=1, ρ1=.5, ρ2=.3, 
ρ3=.2, ρ4=.1 

σ2=1.67, ρ1=.5, 
ρ2=.3, ρ3=.2, ρ4=.1 

HTOEPH 

 

 
 

σ1
2=.33, σ2

2=.94, 
σ3

2=1.6, σ4
2=2.12, 

σ5
2=2.26,  ρ1=.5, 

ρ2=.3, ρ3=.2, ρ4=.1 

σ1
2=1, σ2

2=2.81, 
σ3

2=4.80, σ4
2=6.35, 

σ5
2=6.79, ρ1=.5, 

ρ2=.3, ρ3=.2, ρ4=.1 

σ1
2=1.67, σ2

2=4.68, 
σ3

2=8, σ4
2=10.58, 

σ5
2=11.32, ρ1=.5, 

ρ2=.3, ρ3=.2, ρ4=.1 
 

3.3.  Unequal treatment size 

Numbers of subjects per treatment were 3, 5 and 7 for the three treatment 

levels.  As before, there were 3 or 5 repeated measures per subject and the same 

covariance structures as in the equal treatment size study were used.  For those seven 

covariance structures with heterogeneity for the between-subject factor (Table 2), 

positive and negative pairings were considered.  Positive pairing occurred when the 

treatment level with more subjects followed the covariance structure with larger 

variance parameters.  Negative pairing occurred in the opposite situation.  The number 
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of situations resulting from the varying the number of repeated measures, the 

covariance structures and the pairing was 44 (2x8 from the homogenous case plus 

2x7x2 from the heterogeneous case). 

 

3.4.  Simulation Study 

Ten thousand simulated data sets were generated for every situation.  Data for 

the fifteen described covariance structures were generated following the two-step 

method of Ripley (1987).  In the first step a random multivariate normal vector was 

generated with E(y)=0 and Var(y)=I, where I is the identity matrix.  In the second step 

this vector was multiplied by the Cholesky descomposition of the covariance matrix 

corresponding to the covariance structure in question.  The resulting random vector 

had a mean vector of zero, and covariance matrix V whose blocks were the covariance 

matrices in Tables 1 and 2.   

Data were simulated using PROC IML of SAS, and every simulated data set 

was analyzed with PROC MIXED.  Some of the data sets were simulated using a 

Penguin Computing Dual Opteron Altus 1000E Linux machine using SAS v. 9.  Other 

data sets were simulated using a Dell Power Edge 350 with a Pentium processor, using 

SAS v. 8.2.  All the analyses were done on a Penguin Computing Dual Opteron Altus 

1000E Linux machine using SAS v. 9.   

The model used in the analysis of each data set was additive; that is, there was 

not an interaction term.  The MODEL statement was y=treatment time, where the 

treatment effect was a categorical variable and the time effect was continuous.  Fifteen 

covariance structures were fitted to each data set by appropriate specification in the 
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RANDOM and REPEATED statements.  Table 3 specifies the appropriate commands 

for the covariance structures with homogeneity and heterogeneity between treatments.   

 
Table 3: Commands used to model the data with the different covariance structures 

Covariance 
Structures 

Commands for 
between-treatment 

homogeneity 

Commands for between-treatment 
heterogeneity 

CS/ HCS 
 
 

Repeated / type=CS 
subject=subject 

Repeated / type=CS group=treatment 
subject=subject 

CSH/ 
HCSH 

 

Repeated / type=CSH 
subject=subject 

Repeated / type=CSH group=treatment 

ARRE/ 
HARRE 

 
 

Random subject 
Repeated /type=AR(1) 

subject=subject 

Random subject 
Repeated /type=AR(1) 

group=treatment subject=subject 

ARHRE/ 
HARHRE 

 
 

Random subject 
Repeated / type=ARH(1) 

subject=subject 

Random subject 
Repeated / type=ARH(1) 

group=treatment subject=subject 

RC/ HRC 
 
 

Random intercept time/ 
type=UN  

subject=subject 

Random intercept time/ type=UN 
group=treatment subject=subject 

TOEP/ 
HTOEP 

 

Repeated/ type=TOEP 
subject=subject 

Repeated/ type=TOEP 
group=treatment subject=subject 

TOEPH/ 
HTOEPH 

 

Repeated/type=TOEPH 
subject=subject 

Repeated/type=TOEPH 
group=treatment subject=subject 

UN Repeated/type=UN 
subject=subject 

 

 

The DDFM option in the MODEL statement was specified as 

KENWARDROGER.  This option calculates the p-values for tests of fixed and 

random effects using the Kenward-Roger adjustments to the denominator degrees of 

freedom, the estimates of the covariance matrix, and F statistic.   
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The AIC and BIC criteria were used to choose a covariance structure for the 

data.  The number of times these criteria selected the true covariance structure was 

recorded in each situation.  Rates of success of these criteria were compared.  P-values 

corresponding to the tests of the true null hypotheses regarding the effects of treatment 

and time were recorded separately for the best AIC, best BIC, and correct models.  

The proportion of times the p-values were less than or equal to 05.0=α  and 

01.0=α was recorded.  The standard deviation for the estimated Type I error rates for 

n observations is equal to p p
n

( )1− .  For 10,000 observations, the standard deviations 

would be approximately 0.002 and 0.001 for 0.05 and 0.01 respectively (Schaalje et al. 

2002).  Therefore, if the performance of the Kenward-Roger method were perfect, 

with 95% confidence, the expected proportions would be in the interval [0.046-0.054] 

for 05.0=α  and [0.008-0.012] for 01.0=α .  A chi-square goodness-of-fit test was 

performed in each situation to verify if the p-values followed the Uniform (0,1).   
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4.  RESULTS 

4.1.  Distributions of p-values from AIC, BIC and correct models 

4.1.1.  Equal treatment sizes 

4.1.1.a.  AIC and BIC best models 

Distributions of p-values from fitting the best AIC and BIC models did not 

follow the uniform distribution for any covariance structure or sample size (Tables 4 

to 7, Figures 1 to 8 in Appendix 1).  The highest p-value for a goodness-of-fit test to 

the uniform (0,1) was .0131.  This came from the 5x5 CS case for the within-subject 

effect (time) and the BIC selection criterion.  Generally, distributions of p-values 

followed right skewed distributions, which will result in anti-conservative test 

statistics of the effects and thus increased Type I error rates. 

Proportions of p-values less than or equal to α=0.05 or α =0.01 were always 

higher than the target values (Tables 4 to 7) and were never included in the expected 

95% confidence intervals.  However, there were some cases in which the empirical 

error rates were robust according to Bradley’s criterion of robustness (Bradley, 1978); 

that is between .5α and 1.5α.  For α =0.05 and 0.01, these intervals were [.025-.075] 

and [.005-.015], respectively.  With one exception, all the situations in which observed 

error rates were robust came from the best BIC procedure and the 5x3 or 5x5 sample 

sizes (Tables 4 to 7). For the CSH 5x3 case and the time effect, the empirical Type I 

error rate was .0749 with α=0.05. 
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Table 4: Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 3x3 sample 
size studies 

Best AIC model Best BIC model  Correct  model Covariance 
Structures 

Effect 

Prop ≤  
α=0.05 

Prop ≤   
α=0.01 

χ² 
p-value 

Prop ≤  
α=0.05 

Prop ≤  
α=0.01 

χ² 
p-value 

Prop ≤  
α=0.05 

Prop ≤  
α=0.01 

χ² 
p-value 

Convergence 
rates for 
correct 
model 

Treatment          .1491 .0589 <.0001 .1409 .0574 <.0001 .0525* .0118* .2941CS 
Time 

 
.1311         

          
         

          
         

          
         

          
         

          
         

          
         

          
         

          
         

          
          

.0564 <.0001 .1179 .0511 <.0001 .0493* .0104* .1572
100 

Treatment .1556 .0623 <.0001 .1523 .0603 <.0001 .0728^ .0187 <.0001CSH 
Time 

 
.1437 .0681 <.0001 .132 .0632 <.0001 .0477* .0088* .5118

100 

Treatment .156 .0592 <.0001 .1509 .0562 <.0001 .1165 .0613 <.0001ARRE 
Time 

 
.147 .0686 <.0001 .1363 .064 <.0001 .0369^ .0069^ <.0001

100 

Treatment .1634 .0599 <.0001 .1618 .0598 <.0001 .0632^ .0168 .00013ARHRE 
Time 

 
.1653 .0785 <.0001 .154 .0716 <.0001 .0961 .047 <.0001

92.74 

Treatment .1385 .054 <.0001 .1336 .0526 <.0001 .0538* .0117* .1795RC 
Time 

 
.1354 .0605 <.0001 .1233 .055 <.0001 .0363^ .0067^ .00087

100 

Treatment .1468 .058 <.0001 .1426 .0564 <.0001 .0537* .0119* .1305TOEP 

Time 
 

.1368 .0586 <.0001 .1272 .0541 <.0001 .0513* .0116* .8607
100 

Treatment .1508 .0567 <.0001 .1472 .0555 <.0001 .0867 .0239 <.0001TOEPH 

Time 
 

.1437 .0643 <.0001 .1319 .0583 <.0001 .0491* .0088* .8495
100 

Treatment .1559 .0554 <.0001 .1541 .0553 <.0001 .1143 .0374 <.0001UN 

Time 
 

.1441 .0669 <.0001 .1344 .061 <.0001 .0568^ .0119* .0983
100 

Treatment .165 .0693 <.0001 .1615 .0689 <.0001 .0249^ .0028 <.0001HCS 
Time 

 
.1336 .0531 <.0001 .1254 .0488 <.0001 .1305 .0171 <.0001

99.99 

Treatment .1842 .0738 <.0001 .1811 .0731 <.0001 .0909 .0228 <.0001HCSH 
Time .1537 .066 <.0001 .1434 .0621 <.0001 .1305 .052 <.0001

77.63 

Note1: * Proportions included in expected 95% intervals. 
Note2: ^ Robust proportions ([.025-0.075] for α=.05 or [.005-.015] for α=.01) not included in the expected 95% confidence intervals. 
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Table 4 (Cont.): Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 3x3 
sample size studies 

Best AIC model Best BIC model Correct model Covariance 
Structures 

Effect 

Prop ≤  
α=0.05 

Prop ≤   
α=0.01 

χ² 
p-value 

Prop ≤  
α=0.05 

Prop ≤  
α=0.01 

χ² 
p-value 

Prop ≤  
α=0.05 

Prop ≤  
α=0.01 

χ² 
p-value 

Convergence 
rates for 
correct 
model 

Treatment          .1651 .0623 <.0001 .1629 .0628 <.0001 .0388^ .0101* <.0001HARRE 
Time 

 
.1576         

          
         

          
         

          
         

            
         

.0697 <.0001 .1499 .0657 <.0001 .0615^ .0128^ .0053
100 

Treatment .1773 .0722 <.0001 .178 .0725 <.0001 .1198 .0479 <.0001HARHRE 
Time 

 
.1637 .0791 <.0001 .1561 .0766 <.0001 .2218 .1084 <.0001

65.41 

Treatment .1394 .0523 <.0001 .1372 .0512 <.0001 .0337^ .0068^ <.0001HRC 
Time 

 
.1268 .0546 <.0001 .1177 .0503 <.0001 .0393^ .0095* <.0001

90.68 

Treatment .1653 .0684 <.0001 .1655 .06 <.0001 .0401^ .0993 <.0001HTOEP 

Time 
 

.1359 .0593 <.0001 .131 .0564 <.0001 .101 .025 <.0001
99.61 

HTOEPH Treatment .1726 .0718 <.0001 .1738
 

.0725 <.0001 .0949 .02788 <.0001 22.95
 Time .1479 .0654 <.0001 .14 .0618 <.0001 .1895 .0636 <.0001

Note1: * Proportions included in expected 95% intervals. 
Note2: ^ Robust proportions ([.025-0.075] for α=.05 or [.005-.015] for α=.01) not included in the expected 95% confidence intervals. 
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Table 5: Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 5x3 sample 
size studies 

Best AIC model Best BIC model Correct model Covariance 
Structures 

Effect 

Prop ≤   
α=0.05 

Prop ≤   
α=0.01 

χ² 
p-value 

Prop ≤  
α=0.05 

Prop ≤  
α=0.01 

χ² 
p-value 

Prop ≤  
α=0.05 

Prop ≤  
α=0.01 

χ² 
p-value 

Convergence 
rates for 
correct 
model 

Treatment          .0961 .0275 <.0001 .0772 .0211 <.0001 .0479* .0088* .1854CS 
Time 

 
.0763         

          
         

          
         

          
         

          
         

          
         

          
         

          
         

          
         

          
          

.0227 <.0001 .0605^ .0177 <.0001 .0497* .0104* .8304
100 

Treatment .0982 .0306 <.0001 .0863 .0249 <.0001 .0594^ .0128^ .0183CSH 
Time 

 
.0749^ .0248 <.0001 .0626^ .0174 <.0001 .0501* .0107* .6288

100 

Treatment .1048 .038 <.0001 .0855 .0293 <.0001 .0989 .0437 <.0001ARRE 
Time 

 
.085 .0301 <.0001 .0772 .0242 <.0001 .0354^ .0056^ <.0001

100 

Treatment .1035 .0305 <.0001 .0939 .0248 <.0001 .0589^ .0123* .0054ARHRE 
Time 

 
.0935 .0354 <.0001 .0796 .0251 <.0001 .083 .0379 <.0001

97.49 

Treatment .0916 .0283 <.0001 .0745^ .0205 <.0001 .0495* .0096* .6332RC 
Time 

 
.0801 .0251 <.0001 .0675^ .0183 <.0001 .0431^ .009* .0631

100 

Treatment .0933 .0295 <.0001 .075^ .0225 <.0001 .046* .009* .5392TOEP 

Time 
 

.0866 .0267 <.0001 .0764 .0202 <.0001 .0513* .0092* .27034
100 

Treatment .1031 .0312 <.0001 .0891 .026 <.0001 .0629^ .0147^ .0009TOEPH 

Time 
 

.0823 .028 <.0001 .0691^ .0211 <.0001 .0482* .0103* .3397
100 

Treatment .0948 .0283 <.0001 .0826 .0229 <.0001 .0641^ .0162 <.0001UN 

Time 
 

.0772 .0243 <.0001 .0655^ .0184 <.0001 .0499* .0104* .4552
100 

Treatment .1087 .0359 <.0001 .0933 .0305 <.0001 .0428^ .0086* .2580HCS 
Time 

 
 

.0873 .0278 <.0001 .0766 .0227 <.0001 .0572^ .0128^ .0525
100 

Treatment .1207 .0416 <.0001 .1151 .0364 <.0001 .0773 .0205 <.0001HCSH 
Time .093 .0305 <.0001 .0806 .0236 <.0001 .0718^ .0181 <.0001

100 

Note1: * Proportions included in expected 95% intervals. 
Note2: ^ Robust proportions ([.025-0.075] for α=.05 or [.005-.015] for α=.01) not included in the expected 95% confidence intervals. 
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Table 5 (Cont.): Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 5x3 
sample size studies 

Best AIC model Best BIC model Correct model Covariance 
Structures 

Effect 

Prop ≤   
α=0.05 

Prop ≤   
α=0.01 

χ² 
p-value 

Prop ≤  
α=0.05 

Prop ≤  
α=0.01 

χ² 
p-value 

Prop ≤  
α=0.05 

Prop ≤  
α=0.01 

χ² 
p-value 

Convergence 
rates for 
correct 
model 

Treatment          .1071 .0366 <.0001 .09 .0302 <.0001 .0612^ .0169 <.0001HARRE 
Time 

 
.0945         

          
         

          
         

          
         

          
          

.0294 <.0001 .0965 .0274 <.0001 .0466* .0098* <.0001
100 

Treatment .1261 .0418 <.0001 .1204 .0396 <.0001 .0822 .0287 <.0001HARHRE 
Time 

 
.1031 .0375 <.0001 .0912 .0329 <.0001 .1141 .0497 <.0001

76.25 

Treatment .0966 .0319 <.0001 .079 .0251 <.0001 .0376^ .0068^ <.0001HRC 
Time 

 
.0782 .0242 <.0001 .0664^ .0189 <.0001 .0371^ .0077^ <.0001

99.91 

Treatment .1133 .0399 <.0001 .0982 .0321 <.0001 .0562^ .0112* .2505HTOEP 

Time 
 

.0919 .0299 <.0001 .0872 .0277 <.0001 .071^ .0195 <.0001
99.99 

Treatment .1229 .0394 <.0001 .118 .0406 <.0001 .1014 .0265 <.0001HTOEPH 

Time .0988 .0306 <.0001 .0894 .0278 <.0001 .0813 .0204 <.0001
99.75 

Note1: * Proportions included in expected 95% intervals. 
Note2: ^ Robust proportions ([.025-0.075] for α=.05 or [.005-.015] for α=.01) not included in the expected 95% confidence intervals. 
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Table 6: Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 3x5 sample 
size studies 

Best AIC model Best BIC model Correct model Covariance 
Structures 

Effect 

Prop ≤   
α=0.05 

Prop ≤   
α=0.01 

χ² 
p-value 

Prop ≤  
α=0.05 

Prop ≤  
α=0.01 

χ² 
p-value 

Prop ≤  
α=0.05 

Prop ≤  
α=0.01 

χ² 
p-value 

Convergence 
rates for 
correct 
model 

Treatment          .2024 .1153 <.0001 .176 .0991 <.0001 .0498* .0092* .5415CS 
Time 

 
.1164         

          
         

          
         

          
         

          
         

          
         

          
         

          
         

          
         

          
          

.053 <.0001 .103 .0452 <.0001 .0516* .011* .5129
100 

Treatment .2526 .1569 <.0001 .2302 .1416 <.0001 .0747^ .0198 <.0001CSH 
Time 

 
.1313 .0602 <.0001 .1163 .0501 <.0001 .0636^ .016 .0072

99.99 

Treatment .2213 .1331 <.0001 .1964 .1156 <.0001 .0653^ .0197 <.0001ARRE 
Time 

 
.1342 .066 <.0001 .1194 .0575 <.0001 .0447^ .0103* .0012

100 

Treatment .2695 .1577 <.0001 .2458 .1428 <.0001 .0644^ .0146^ .0084ARHRE 
Time 

 
.1521 .073 <.0001 .1396 .0652 <.0001 .0928 .0342 <.0001

91.19 

Treatment .2012 .124 <.0001 .175 .1051 <.0001 .0499* .0116* .0142RC 
Time 

 
.1343 .0611 <.0001 .1222 .055 <.0001 .0463* .012* .041

100 

Treatment .2032 .1235 <.0001 .1775 .1055 <.0001 .0522* .012* .3575TOEP 

Time 
 

.1246 .0549 <.0001 .1131 .0488 <.0001 .0466* .0089* .0304
100 

Treatment .2485 .1435 <.0001 .2261 .1287 <.0001 .1153 .0370 <.0001TOEPH 

Time 
 

.141 .0662 <.0001 .1275 .0578 <.0001 .0661^ .0174 <.0001
99.93 

Treatment .29 .1736 <.0001 .2722 .1617 <.0001 .3383 .1997 <.0001UN 

Time 
 

.141 .0639 <.0001 .1289 .0579 <.0001 .1136 .0422 <.0001
99.71 

Treatment .2261 .1415 <.0001 .2004 .125 <.0001 .0251^ .0024 <.0001HCS 
Time 

 
.1284 .0598 <.0001 .1155 .0519 <.0001 .0561^ .0121* .7905

100 

Treatment .2952 .1798 <.0001 .2748 .1669 <.0001 .1107 .0317 <.0001HCSH 
Time .1528 .0652 <.0001 .1419 .0583 <.0001 .1871 .0674 <.0001

74.44 

Note1: * Proportions included in expected 95% intervals. 
Note2: ^ Robust proportions ([.025-0.075] for α=.05 or [.005-.015] for α=.01) not included in the expected 95% confidence intervals. 
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Table 6 (Cont.): Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 3x5 
sample size studies  

Best AIC model Best BIC model Correct model Covariance 
Structures 

Effect 

Prop ≤   
α=0.05 

Prop ≤   
α=0.01 

χ² 
p-value 

Prop ≤ 
α=0.05 

Prop ≤  
α=0.01 

χ² 
p-value 

Prop ≤  
α=0.05 

Prop ≤  
α=0.01 

χ² 
p-value 

Convergence 
rates for 
correct 
model 

Treatment          .2273 .1409 <.0001 .2038 .1251 <.0001 .039^ .0056^ .0027HARRE 
Time 

 
.1567         

          
         

          
         

          
         

          
          

.0754 <.0001 .1447 .0702 <.0001 .0656^ .0197 <.0001
100 

Treatment .29 .1723 <.0001 .2735 .1607 <.0001 .1356 .0481 <.0001HARHRE 
Time 

 
.1693 .081 <.0001 .1586 .0753 <.0001 .200 .0898 <.0001

57.43 

Treatment .2012 .1198 <.0001 .1796 .104 <.0001 .0305^ .0088* <.0001HRC 
Time 

 
.1232 .0602 <.0001 .1132 .0515 <.0001 .0499* .0145^ <.0001

91.22 

Treatment .2184 .1337 <.0001 .1974 .1177 <.0001 .0061 .00047 <.0001HTOEP 

Time 
 

.1483 .068 <.0001 .138 .0632 <.0001 .2199 .1026 <.0001
42.78 

Treatment .2911 .1751 <.0001 .268 .1593 <.0001 0 0 .HTOEPH 

Time .1559 .0712 <.0001 .1448 .0646 <.0001 0 0 .
.01 

Note1: * Proportions included in expected 95% intervals. 
Note2: ^ Robust proportions ([.025-0.075] for α=.05 or [.005-.015] for α=.01) not included in the expected 95% confidence intervals. 
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Table 7: Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 5x5 sample 
size studies 

AIC model BIC model Correct model Covariance 
Structures 

Effect 

Prop ≤   
α=0.05 

Prop ≤   
α=0.01 

χ² 
p-value 

Prop ≤  
α=0.05 

Prop ≤  
α=0.01 

χ² 
p-value 

Prop ≤  
α=0.05 

Prop ≤  
α=0.01 

χ² 
p-value 

Convergence 
rates for 
correct 
model 

Treatment          .1027 .0346 <.0001 .0726^ .0199 <.0001 .0504* .0089* .1707CS 
Time 

 
.0828         

          
         

          
         

          
         

          
         

          
         

          
         

          
         

          
         

          
          

.028 <.0001 .0598^ .0168 .0131 .0526* .0116* .6907
100 

Treatment .1202 .0437 <.0001 .0877 .0269 <.0001 .0564^ .0121* <.0001CSH 
Time 

 
.0916 .0351 <.0001 .0614^ .0185 <.0001 .0507* .0166 .6075

100 

Treatment .0961 .0353 <.0001 .0727^ .0226 <.0001 .0564^ .0133^ .0276ARRE 
Time 

 
.0785 .0275 <.0001 .0548^ .0175 .0001 .0408^ .0084* .0045

100 

Treatment .1098 .0381 <.0001 .0861 .027 <.0001 .0513* .0118* .3743ARHRE 
Time 

 
.1028 .0385 <.0001 .081 .0277 <.0001 .0722^ .0228 <.0001

95.58 

Treatment .0942 .0309 <.0001 .0698^ .0188 <.0001 .0499* .0103* .708RC 
Time 

 
.089 .0308 <.0001 .0751^ .0238 <.0001 .0461* .0092* .3493

100 

Treatment .0953 .0313 <.0001 .0678^ .0167 <.0001 .0475* .0088* .6891TOEP 

Time 
 

.0939 .0358 <.0001 .0808 .0271 <.0001 .0519* .0118* .3504
100 

Treatment .119 .0388 <.0001 .0859 .0258 <.0001 .0646^ .0139^ <.0001TOEPH 

Time 
 

.1016 .0389 <.0001 .0841 .0261 <.0001 .0565^ .0115* .2255
100 

Treatment .1365 .0516 <.0001 .1109 .0383 <.0001 .1178 .0412 <.0001UN 

Time 
 

.0968 .0318 <.0001 .0773 .0223 <.0001 .0665^ .0153^ <.0001
100 

Treatment .0928 .0284 <.0001 .0733^ .0202 <.0001 .0437^ .0074^ .1815HCS 
Time 

 
.0779 .0241 <.0001 .0627^ .0168 <.0001 .0486* .0096* .004

100 

Treatment .1433 .052 <.0001 .1265 .0438 <.0001 .0979 .0263 <.0001HCSH 
Time .1083 .0372 <.0001 .0828 .0268 <.0001 .1059 .0357 <.0001

99.16 

Note1: * Proportions included in expected 95% intervals. 
Note2: ^ Robust proportions ([.025-0.075] for α=.05 or [.005-.015] for α=.01) not included in the expected 95% confidence intervals. 
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Table 7 (Cont.): Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 5x5 
sample size studies 

BIC model Correct model Covariance 
Structures 

Prop ≤   
α=0.05 

Prop ≤   
α=0.01 

χ² 
α=0.05 

Prop ≤  
α=0.01 

χ² 
p-value α=0.05 

Prop ≤  
α=0.01 

χ² 
p-value 

Convergence 
rates for 
correct 
model 

Treatment          .0934 .0319 <.0001 .0218 <.0001 .0545^ .0105* .37679HARRE 
Time 

 
.0825         

          
         

          
         

          
         

          
          

.0298 .0701^ .0252 <.0001 .0494* .0143^

Treatment .1314 .0465 .1116 .0354 <.0001 .0916 .0337HARHRE 
Time 

 
.1164 <.0001 .0896 .0312 <.0001 .1316

Treatment .0908 <.0001 .0743^ .021 <.0001 .0420^HRC 
Time 

 
.0301 <.0001 .076 .0241 <.0001

99.94 

Effect AIC model 

Prop ≤  Prop ≤  
p-value 

.0738^ 100 
<.0001 .0002

<.0001 <.0001 71.60 
.0463 .0513 <.0001

.0291 .0083* <.0001
.0864 .0523* .0136^ <.0001

Treatment .0884 .0311 <.0001 .0713^ .0231 <.0001 .0576^ .0154^ .003HTOEP 

Time 
 

.0959 .0322 <.0001 .0914 .0276 <.0001 .0910 .0294 <.0001
99.98 

Treatment .1399 .0545 <.0001 .1149 .0423 <.0001 0 0 .HTOEPH 

Time .1199 .0422 <.0001 .0978 .031 <.0001 0 0 .
0 

Note1: * Proportions included in expected 95% intervals. 
Note2: ^ Robust proportions ([.025-0.075] for α=.05 or [.005-.015] for α=.01) not included in the expected 95% confidence intervals. 
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In general, sample sizes had an influence on the proportions obtained, the 3x5 

(with proportions of up to .2952 for α=0.05) being the farthest proportions from 

expected values, followed by 3x3 (with proportions of up to.1842 for α=0.05), 5x5 

(with proportions of up to .1433 for α=0.05) and 5x3 (with proportions of up to.1261 

for α=0.05).  When the within-subject effect was tested, proportions were usually 

closer to expected values than when the between-subject effect (treatment) was tested.   

In addition, proportions from the best BIC models were usually closer to target 

values that the ones from the best AIC models.  The covariance structure followed by 

the data also played an important role. Typically, the simpler the covariance structure, 

the closer the proportions were to expected values. 

 

4.1.1.b.  Correct Model 

 Convergence was achieved in most cases; however, the more complicated the 

covariance structure was, the lower the convergence rate (Tables 4 to 7).  The most 

extreme cases of this fact happened for HTOEPH data and sizes 3x5 and 5x5 where 

the convergence rates were 0.01% and 0% respectively.   

Distributions of p-values from fitting the correct model often followed the 

uniform distribution, depending on the sample size and covariance structure (Tables 4 

to 7).  P-values from data following the CS, TOEP and RC covariance structures had a 

uniform distribution for all the situations considered, except for the within-subject 

effect when the covariance structure was RC and the sample size was 3x3.  However, 

this was a conservative case since the proportions less than α=0.05 and α =0.01 were 

.0363 and .0067 respectively.  We would say that empirical Type I error rates are 
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conservative when they are less than the lower bound of the expected 95% confidence 

interval for α=0.05 or α =0.01.  For 10,000 observations the lower bounds would be 

.046 and .008 for α=0.05 and 0.01 respectively.   

Other instances of lack-of-fit to the uniform distribution were also of 

conservative nature (Table 8, Figures 1 to 8 in Appendix 1).  This is important to 

mention because these distributions did not follow the uniform distribution, but they 

would cause less concern than the anti-conservative case because the Type I error 

obtained would be less than the expected.  Many of the conservative p-values came 

from covariance structures with heterogeneity between treatment levels.    

P-values obtained by fitting CSH, ARRE, ARHRE, TOEPH, UN, HCS, 

HARRE and HTOEP covariance structures followed the uniform distribution in some 

cases, depending on the sample size.  The 5x3 and 5x5 cases were the most favorable.  

For the HCSH, HARHRE, HRC and HTOEPH covariance structures, the p-values did 

not follow the uniform distribution for any situation.  These are complicated 

covariance structures with heterogeneity within- and between-subjects and did not 

produce conservative test statistics, except for the HRC covariance structure (Table 8). 

There were some cases where the p-values did not follow the uniform 

distribution but the proportions less than or equal to α=0.05 or α =0.01 were included 

in the 95% confidence expected intervals or were considered robust according to 

Bradley’s criterion (Bradley, 1978).  Some of these cases include 5x3 ARHRE for 

treatment, 5x5 CSH for treatment, 5x5 HRC for time and 5x5 HTOEP for treatment 

(Table 4 to 7). 
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Proportions of p-values less than or equal to α=0.05 or α =0.01 for correct 

models were usually closer to target than those obtained by fitting the best AIC and 

BIC models.  The exceptions to this pattern include the HARHRE and HTOEPH 

covariance structures for the within-subject effect (Tables 4 to 7).  

 
Table 8: Situations producing conservative error rates (less than the lower bound of the expected 95% confidence 
interval for α=0.05 or α=0.01 for the correct model in the equal treatment size simulation studies 

Size Covariance 
structure 

Effect Prop ≤ 0.05 Prop ≤ 0.01 

3x3 
 

ARRE Time .0369 .0069 

3x3 
 

RC Time .0363 .0067 

3x3 
 

HCS Treatment .0249 .0028 

3x3 
 

HARRE Treatment .0388 .0101 

3x3 
 

HRC Treatment .0337 .0068 

3x3 
 

HRC Time .0393 .0095 

3x3 
 

HTOEP Treatment .0401 .0993 

5x3 
 

ARRE Time .0354 .0056 

5x3 
 

RC Time .0431 .009 

5x3 
 

HRC Treatment .0376 .0068 

5x3 
 

HRC Time .0371 .0077 

3x5 
 

ARRE Time .0447 .0103 

3x5 
 

HCS Treatment .0251 .0024 

3x5 
 

HARRE Treatment .039 .0056 

3x5 
 

HRC Treatment .0305 .0088 

3x5 
 

HTOEP Treatment .0061 .00047 

5x5 
 

ARRE Time .0408 .0084 

5x5 
 

HCS Treatment .0437 .0074 

5x5 HRC Treatment .0420 .0083 
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4.1.2.  Unequal treatment size 

4.1.2.a.  AIC and BIC best models 

P-values from fitting the best AIC and BIC models in the unequal treatment 

size case were similar to those from the equal treatment size case.  Distributions of 

these p-values did not follow the uniform distribution in any case (Tables 9 and 10, 

Figures 9 to 12 in Appendix 1). However, there were several cases in which the 

proportions of p-values less than or equal to α=0.05 or α =0.01 were considered robust 

according to Bradley’s criterion (Bradley, 1978). 

Most of the observed proportions less than or equal to α=0.05 or α =0.01 that 

were robust came from the (3, 5, 7)x5 sample size and best BIC models. Best BIC 

models usually presented closer proportions to expected values than those obtained 

from best AIC models.   

Similarly, robust proportions occurred more often with 5 rather than 3 repeated 

measures.  When the within-subject effect was tested, empirical Type I error rates 

were usually closer to expected values. However, for positive pairings, empirical Type 

I error rates for the between-subject effect were closer to expected values.  Proportions 

obtained by fitting data with negative pairings were considerably more anti-

conservative than those obtained from positive pairings for the between-subject effect. 

However, for the within-subject effect, the opposite situation obtained.  Proportions 

for the positive pairings were slightly more anti-conservative than for the negative 

pairings. 
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Table 9: Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 
 (3, 5, 7)x3 sample size studies 

Best AIC model  Best BIC model Correct model Covariance 
Structures 

Effect 

Prop ≤ 
α=0.05 

Prop ≤ 
α=0.01 

χ² 
p-value 

Prop ≤ 
α=0.05 

Prop ≤ 
α=0.01 

χ² 
p-value 

Prop ≤ 
α=0.05 

Prop ≤ 
α=0.01 

χ² 
p-value 

Convergence 
rates for 
correct 
model 

Treatment          .1193 .0477 <.0001 .0879 .0306 <.0001 .0514* .0098* .2446CS 
Time 

 
.0861         

          
         

          
         

          
         

          
         

          
         

          
         

          
         

          
         

          
          

.0298 <.0001 .067^ .0215 <.0001 .0497* .0104* .8304
100 

Treatment .1216 .0444 <.0001 .0978 .0328 <.0001 .0591^ .0144^ .0257CSH 
Time 

 
.0858 .0308 <.0001 .069^ .0212 <.0001 .0498* .0105* .3506

99.99 

Treatment .1281 .0532 <.0001 .0937 .0354 <.0001 .0972 .0418 <.0001ARRE 
Time 

 
.0946 .0345 <.0001 .0825 .0271 <.0001 .0352^ .0061^ <.0001

100 

Treatment .1241 .0451 <.0001 .1062 .0348 <.0001 .0570^ .0127^ .4211ARHRE 
Time 

 
.1023 .0394 <.0001 .0836 .0284 <.0001 .0855 .0358 <.0001

97.36 

Treatment .1123 .0443 <.0001 .0848 .0299 <.0001 .0509* .0098* .5352RC 
Time 

 
.0868 .0299 <.0001 .0721^ .021 <.0001 .0431^ .0083* .17604

100 

Treatment .1168 .0455 <.0001 .0854 .0291 <.0001 .0502* .0088* .40832TOEP 

Time 
 

.0974 .0355 <.0001 .0837 .0261 <.0001 .0511* .0094* .4788
100 

Treatment .1184 .0472 <.0001 .098 .0354 <.0001 .062^ .016 .0017TOEPH 

Time 
 

.0932 .038 <.0001 .0755 .0281 <.0001 .0486* .0099* .4715
100 

Treatment .1171 .0422 <.0001 .0946 .0306 <.0001 .0657^ .0151^ <.0001UN 

Time 
 

.0959 .0333 <.0001 .0722^ .0229 <.0001 .0499* .0104* .4418
100 

Treatment .1004 .0356 <.0001 .0766 .0269 <.0001 .0366^ .0045^ .0003HCS 
positive Time 

 
.1111 .042 <.0001 .0935 .0325 <.0001 .062^ .0148^ .0004

99.99 

Treatment .0976 .0355 <.0001 .0781 .0273 <.0001 .0733^ .0181 <.0001HCSH 
positive Time .1201 .047 <.0001 .099 .0379 <.0001 .0876 .0288 <.0001

92.45 

Note1: * Proportions included in expected 95% intervals. 
Note2: ^ Robust proportions ([.025-0.075] for α=.05 or [.005-.015] for α=.01) not included in the expected 95% confidence intervals. 
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Table 9 (Cont.): Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 
 (3, 5, 7)x3 sample size studies 

Best AIC model Best BIC model Correct model Covariance 
Structures 

Effect 

Prop ≤ 
α=0.05 

Prop ≤ 
α=0.01 

χ² 
p-value 

Prop ≤ 
α=0.05 

Prop ≤ 
α=0.01 

χ² 
p-value 

Prop ≤ 
α=0.05 

Prop ≤ 
α=0.01 

χ² 
p-value 

Convergence 
rates for 
correct 
model 

Treatment          .1062 .0417 <.0001 .0861 .0329 <.0001 .0599^ .0166 <.0001HARRE 
positive Time 

 
.1261         

          
         

          
         

          
         

          
         

          
         

          
         

          
         

          
          

.0474 <.0001 .1098 .0387 <.0001 .0535* .009* .1156
100 

Treatment .1118 .0425 <.0001 .0968 .0362 <.0001 .1020 .0491 <.0001HARHRE 
positive Time 

 
.1327 .0562 <.0001 .1087 .0448 <.0001 .1538 .074 <.0001

72.17 

Treatment .1039 .0386 <.0001 .0767 .0243 <.0001 .0542* .0131^ .0004HRC 
positive Time 

 
.0913 .0326 <.0001 .0752^ .0242 <.0001 .0369^ .0085* <.0001

96.96 

Treatment .096 .0367 <.0001 .0735^ .0263 <.0001 .0485* .0126^ .3191HTOEP 
positive Time 

 
.1208 .047 <.0001 .1085 .0397 <.0001 .0839 .0227 <.0001

99.74 

Treatment .1012 .0381 <.0001 .081 .0285 <.0001 .0864 .0229 <.0001HTOEPH 
positive Time 

 
.1276 .0473 <.0001 .1043 .0362 <.0001 .1094 .0328 <.0001

60.33 

Treatment .1969 .0989 <.0001 .1649 .0785 <.0001 .0534* .0152^ .00079HCS 
negative Time 

 
.0791 .0263 <.0001 .0751^ .0222 <.0001 .057^ .0137^ .2739

100 

Treatment .2217 .103 <.0001 .2049 .0911 <.0001 .1310 .0528 <.0001HCSH 
negative Time 

 
.0831 .0277 <.0001 .0785 .0254 <.0001 .066^ .0175 <.0001

92.64 

Treatment .1742 .0817 <.0001 .1488 .0651 <.0001 .0647^ .0202 <.0001HARRE 
negative Time 

 
.0846 .0313 <.0001 .0876 .0308 <.0001 .0429^ .0087* <.0001

100 

Treatment .2006 .0913 <.0001 .1879 .0828 <.0001 .1181 .0499 <.0001HARHRE 
negative Time .0965 .0357 <.0001 .0868 .0294 <.0001 .1019 .0429 <.0001

74.75 

Note1: * Proportions included in expected 95% intervals. 
Note2: ^ Robust proportions ([.025-0.075] for α=.05 or [.005-.015] for α=.01) not included in the expected 95% confidence intervals. 
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Table 9 (Cont.): Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 
 (3, 5, 7)x3 sample size studies 

Best AIC model Best BIC model Correct model Covariance 
Structures 

Effect 

Prop ≤ 
α=0.05 

Prop ≤ 
α=0.01 

χ² 
p-value 

Prop ≤ 
α=0.05 

Prop ≤ 
α=0.01 

χ² 
p-value 

Prop ≤ 
α=0.05 

Prop ≤ 
α=0.01 

χ² 
p-value 

Convergence 
rates for 
correct 
model 

Treatment          .1415 .0545 <.0001 .1132 .0379 <.0001 .0721^ .0219 <.0001HRC 
negative Time 

 
.088         

          
         

          
          

.0302 <.0001 .0745^ .0236 <.0001 .0375^ .0084* <.0001
97.53 

Treatment .1925 .0929 <.0001 .1653 .0784 <.0001 .0927 .0402 <.0001HTOEP 
negative Time 

 
.0875 .0294 <.0001 .0837 .0276 <.0001 .0634 .0172 <.0001

99.87 

Treatment .219 .1068 <.0001 .204 .0974 <.0001 .1634 .0677 <.0001HTOEPH 
negative Time .0855 .0278 <.0001 .0806 .0251 <.0001 .0723^ .0233 <.0001

62.66 

Note1: * Proportions included in expected 95% intervals. 
Note2: ^ Robust proportions ([.025-0.075] for α=.05 or [.005-.015] for α=.01) not included in the expected 95% confidence intervals. 
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Table 10: Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 
 (3, 5, 7)x5 sample size studies 

Best AIC model Best BIC model Correct model Covariance 
Structures 

Effect 

Prop ≤ 
α=0.05 

Prop ≤ 
α=0.01 

χ² 
p-value 

Prop ≤ 
α=0.05 

Prop ≤ 
α=0.01 

χ² 
p-value 

Prop ≤ 
α=0.05 

Prop ≤ 
α=0.01 

χ² 
p-value 

Convergence 
rates for 
correct 
model 

Treatment          .1055 .0355 <.0001 .0797 .0225 <.0001 .0502* .0096* .8938CS 
Time 

 
.0788         

          
         

          
         

          
         

          
         

          
         

          
         

          
         

          
         

          
          

.0274 <.0001 .0601^ .0177 .0007 .0526* .0116* .6955
100 

Treatment .1121 .037 <.0001 .0894 .026 <.0001 .0588^ .0129^ .0265CSH 
Time 

 
.0771 .0255 <.0001 .0605^ .0152^ .0002 .0514* .0108* .7298

100 

Treatment .1009 .033 <.0001 .0774 .0206 <.0001 .0561^ .0099* .0159ARRE 
Time 

 
.0797 .0309 <.0001 .0575^ .0178 .0003 .0406* .0079* .0113

100 

Treatment .0993 .0357 <.0001 .0846 .0271 <.0001 .0494* .0108* .733ARHRE 
Time 

 
.0969 .0365 <.0001 .0810 .0291 <.0001 .0718^ .0230 <.0001

95.48 

Treatment .0984 .0316 <.0001 .0754^ .0182 <.0001 .0442^ .0073^ .2439RC 
Time 

 
.0851 .0303 <.0001 .075^ .0232 <.0001 .0454^ .0096* .7388

100 

Treatment .0962 .0361 <.0001 .0685^ .0213 <.0001 .048* .0107* .1771TOEP 

Time 
 

.095 .0378 <.0001 .0792 .0277 <.0001 .0522* .012* .0046
100 

Treatment .1098 .0382 <.0001 .0929 .0278 <.0001 .0718^ .0158 <.0001TOEPH 

Time 
 

.0922 .034 <.0001 .0802 .026 <.0001 .057^ .0112* .1781
100 

Treatment .1316 .0452 <.0001 .1091 .0331 <.0001 .1188 .0398 <.0001UN 

Time 
 

.0892 .0295 <.0001 .0766 .0215 <.0001 .0665^ .0153 <.0001
100 

Treatment .0802 .0268 <.0001 .0601^ .0165 .0093 .0389^ .0054^ .0012HCS 
positive Time 

 
.0999 .0376 <.0001 .0744^ .0237 <.0001 .0536* .0111* .1107

100 

Treatment .1078 .0371 <.0001 .078 .0247 <.0001 .0915 .0286 <.0001HCSH 
positive Time .125 .047 <.0001 .0855 .0277 <.0001 .1376 .0476 <.0001

90.42 

Note1: * Proportions included in expected 95% intervals. 
Note2: ^ Robust proportions ([.025-0.075] for α=.05 or [.005-.015] for α=.01) not included in the expected 95% confidence intervals. 
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Table 10 (Cont.): Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 
 (3, 5, 7)x5 sample size studies 

Best AIC model Best BIC model Correct model Covariance 
Structures 

Effect 

Prop ≤ 
α=0.05 

Prop ≤ 
α=0.01 

χ² 
p-value 

Prop ≤ 
α=0.05 

Prop ≤ 
α=0.01 

χ² 
p-value 

Prop ≤ 
α=0.05 

Prop ≤ 
α=0.01 

χ² 
p-value 

Convergence 
rates for 
correct 
model 

Treatment          .0839 .0275 <.0001 .0666^ .0183 <.0001 .0542* .0097* .0499HARRE 
positive Time 

 
.1062         

          
         

          
         

          
         

          
         

          
         

          
         

          
         

          
          

.0448 <.0001 .0821 .0302 <.0001 .0542* .0158 .0001
100 

Treatment .1164 .0395 <.0001 .0864 .0261 <.0001 .1091 .0425 <.0001HARHRE 
positive Time 

 
.1353 .0549 <.0001 .1033 .0393 <.0001 .16 .0668 <.0001

64.18 

Treatment .0742^ .0252 <.0001 .0592^ .0158 <.0001 .0454^ .0117* <.0001HRC 
positive Time 

 
.0912 .0347 <.0001 .078 .0265 <.0001 .0556^ .0132^ <.0001

96.38 

Treatment .0753^ .0235 <.0001 .0591^ .014^ .0033 .033^ .0063^ <.0001HTOEP 
positive Time 

 
.1211 .0512 <.0001 .102 .0382 <.0001 .1362 .0553 <.0001

74.71 

Treatment .1061 .0386 <.0001 .0798 .0261 <.0001 0 0 .HTOEPH 
positive Time 

 
.1361 .05 <.0001 .1041 .0352 <.0001 0 0 .

0 

Treatment .1242 .056 <.0001 .1012 .0404 <.0001 .053* .0158 .0021HCS 
negative Time 

 
.0726^ .0248 <.0001 .0611^ .0178 .0023 .047* .0104* .7801

100 

Treatment .202 .0968 <.0001 .182 .0837 <.0001 .1336 .0539 <.0001HCSH 
negative Time 

 
.0923 .0299 <.0001 .0754^ .0215 <.0001 .09 .0261 <.0001

90.96 

Treatment .1081 .0416 <.0001 .0892 .031 <.0001 .0542* .012* .0014HARRE 
negative Time 

 
.0804 .0298 <.0001 .0677^ .0235 <.0001 .0427^ .0108* <.0001

100 

Treatment .1698 .0742 <.0001 .1532 .0653 <.0001 .1204 .0466 <.0001HARHRE 
negative Time .1143 .0444 <.0001 .0883 .0323 <.0001 .119 .0483 <.0001

69.34 

Note1: * Proportions included in expected 95% intervals. 
Note2: ^ Robust proportions ([.025-0.075] for α=.05 or [.005-.015] for α=.01) not included in the expected 95% confidence intervals. 
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Table 10 (Cont.): Simulated Type I error rates (α=0.05 and 0.01), goodness of fit tests comparing the Uniform (0,1) to p-value distributions, and convergence rates for the 
 (3, 5, 7)x5 sample size studies 

Best AIC model Best BIC model Correct model Covariance 
Structures 

Effect 

Prop ≤ 
α=0.05 

Prop ≤ 
α=0.01 

χ² 
p-value 

Prop ≤ 
α=0.05 

Prop ≤ 
α=0.01 

χ² 
p-value 

Prop ≤ 
α=0.05 

Prop ≤ 
α=0.01 

χ² 
p-value 

Convergence 
rates for 
correct 
model 

Treatment          .131 .0499 <.0001 .107 .0377 <.0001 .077 .0284 <.0001HRC 
negative Time 

 
.0896         

          
         

          
          

.035 <.0001 .0794 .0273 <.0001 .05* .0121* <.0001
97.29 

Treatment .1191 .0503 <.0001 .0985 .0358 <.0001 .0491* .0113* <.0001HTOEP 
negative Time 

 
.0916 .0312 <.0001 .0851 .0283 <.0001 .0928 .0305 <.0001

75.19 

Treatment .1921 .0888 <.0001 .1586 .0717 <.0001 0 0 .HTOEPH 
negative Time .1052 .0382 <.0001 .0899 .0294 <.0001 0 0 .

0 

Note1: * Proportions included in expected 95% intervals. 
Note2: ^ Robust proportions ([.025-0.075] for α=.05 or [.005-.015] for α=.01) not included in the expected 95% confidence intervals.
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4.1.2.b.  Correct Model 

 Distributions of p-values from fitting the correct model in the unequal 

treatment size case followed the uniform distribution for both effects and both 

numbers of repeated measures when the covariance structures were CS, CSH, or RC.  

Depending on the number of repeated measures and the effect tested, uniformly 

distributed p-values were also produced for the ARRE, ARHRE, TOEP, TOEPH, UN, 

HCS positive, HARRE positive, HTOEP positive, and HCS negative covariance 

structures.  The rest of covariance structures never produced uniformly distributed p-

values.  

 For the unequal treatment size simulations, there were also situations 

producing conservative error rates (Table 11, Figures 9 to 12 in Appendix 1).  Once 

more almost all of these situations involve heterogeneity between treatments. 

 
Table 11: Situations producing conservative error rates (less than the lower bound of the expected 95% confidence 
interval for α=0.05 or α=0.01) for the correct model in the unequal sample size simulation studies 

Size Covariance structure Effect Prop ≤ 0.05 Prop ≤ 0.01 
(3, 5, 7)x3 

 
ARRE Time .0352 .0061 

(3, 5, 7)x3 
 

RC Time .0431 .0083 

(3, 5, 7)x3 
 

HCS positive Treatment .0366 .0045 

(3, 5, 7)x3 
 

HRC positive Time .0369 .0085 

(3, 5, 7)x3 
 

HARRE negative Time .0429 .0087 

(3, 5, 7)x3 
 

HRC negative Time .0375 .0084 

(3, 5, 7)x5 
 

RC Treatment .0442 .0073 

(3, 5, 7)x5 
 

RC Time .0454 .0096 

(3, 5, 7)x5 
 

HCS positive Treatment .0389 .0054 

(3, 5, 7)x5 
 

HRC positive Treatment .0454 .0117 

(3, 5, 7)x5 
 

HTOEP positive Treatment .033 .0063 

(3, 5, 7)x5 HARRE negative Time .0427 .0108 
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 There were some situations in which the proportions of p-values less than or 

equal to α=0.05 or α =0.01 were robust according to Bradley’s criterion (Bradley, 

1978) or were included in the expected 95% confidence intervals (Table 9 to 10).  

 

4.2.  Performance of AIC and BIC criteria 

4.2.1.  Equal treatment sizes 

The success rate, the percent of times that AIC or BIC chose the correct covariance 

structure, depended greatly on the sample size and covariance structure (Tables 12 to 

15).  The success rates were generally low.  For instance, for the 3x3 sample case, the 

success rate ranged from 2.51 to 29.98%.  The highest success rate was 73.91%, for 

the largest sample size and a simple covariance structure (ARRE).  Success rates were 

higher for larger sample sizes and simpler covariance structures. 

AIC had a higher success rate than BIC for complicated structures, especially for 

those with heterogeneity between-treatments. However, BIC had higher success rate 

than AIC for simpler structures.   

A covariance structure was considered to be consistent if the correct covariance 

structure was chosen more often than any other specific structure.  Consistency was 

more common for larger sample size cases.  CS and CSH were always consistent 

independently of the situation.  Other structures as ARRE, ARHRE, RC, UN, HCS, 

HCSH, HARRE, HARHRE, HRC and HTOEPH were sometimes consistent 

depending on the sample size and the type of criteria used.  The TOEP, TOEPH and 

HTOEP covariance structures were never consistent. 
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Usually, when the number of repeated measures was larger, the “wrong” choices 

made by AIC and BIC made more sense.  For instance, for the 5 repeated measures 

cases, AIC and BIC most often chose the ARRE and ARHRE covariance structures 

when data followed the TOEP and TOEPH covariance structures, respectively.  This 

made sense since ARRE and ARHRE were specified with patterns similar to those of 

TOEP and TOEPH.  However, for the 5x3 sample size, AIC and BIC most often chose 

the CS and CSH covariance structures when data followed the TOEP and TOEPH 

covariance structures respectively.  TOEP and CS did not follow the same pattern, nor 

did TOEPH and CSH.  Still, it is important to notice that TOEP was specified in such 

way that it decreased rapidly, while ARRE decreased much slower (Table 1).  
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Table 12: Success rates and details on covariance structures selected by AIC and BIC criteria for the 3x3 sample 
size simulation studies 

Covariance 
Structures 

Criterion Success rate 
 

Most often chosen 
model 

Rate for most often 
chosen model 

AIC 23.46 CS 23.46 CS 
BIC 

 
29.98 CS 29.98 

AIC 15.96 CSH 15.96 CSH 
BIC 

 
17.79 CSH 17.79 

AIC 16.00 HRC 19.68 ARRE 
BIC 

 
19.99 CS 20.5 

AIC 11.43 HRC 18.7 ARHRE 
BIC 

 
12.01 HRC 17.1 

AIC 8.29 CS 17.84 RC 
BIC 

 
9.36 CS 22.5 

AIC 3.43 HRC 19.78 TOEP 

BIC 
 

3.61 CS 20.92 

AIC 5.67 HRC 17.11 TOEPH 

BIC 
 

5.69 HRC 15.57 

AIC 6.65 CSH 16.67 UN 

BIC 
 

5.89 CSH 18.19 

AIC 9.32 HRC 15.62 HCS 
BIC 

 
9.30 CS 15.62 

AIC 9.76 HRC 14.71 HCSH 
BIC 

 
7.56 HRC 13.68 

AIC 6.85 HRC 17.32 HARRE 
BIC 

 
6.59 HRC 15.74 

AIC 12.59 HRC 17.42 HARHRE 
BIC 

 
10.26 HRC 16.21 

AIC 17.90 CS 18.12 HRC 
BIC 

 
15.49 CS 22.51 

AIC 16.45 HRC 17.87 HTOEP 

BIC 
 

14.30 HRC 16.03 

AIC 3.42 HRC 16.64 HTOEPH 

BIC 2.51 HRC 15.56 
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Table 13: Success rates and details on covariance structures selected by AIC and BIC criteria for the 5x3 sample 
size simulation studies 

Covariance 
Structures 

Criterion Success rate Most often chosen 
model 

Rate for most often 
chosen model 

AIC 41.22 CS 41.22 CS 
BIC 

 
62.11 CS 62.11 

AIC 35.42 CSH 35.42 CSH 
BIC 

 
41.75 CSH 41.75 

AIC 27.15 ARRE 27.15 ARRE 
BIC 

 
37.08 ARRE 37.08 

AIC 27.80 ARHRE 27.80 ARHRE 
BIC 

 
29.83 ARHRE 29.83 

AIC 12.47 CS 26.67 RC 
BIC 

 
13.79 CS 40.03 

AIC 4.52 CS 27.84 TOEP 

BIC 
 

3.89 CS 41.30 

AIC 6.81 CSH 24.96 TOEPH 

BIC 
 

5.51 CSH 29.34 

AIC 5.76 CSH 33.41 UN 

BIC 
 

3.45 CSH 40.08 

AIC 28.40 HCS 28.40 HCS 
BIC 

 
26.49 CS 27.06 

AIC 16.53 HCSH 16.53 HCSH 
BIC 

 
6.57 CSH 27.51 

AIC 23.88 HARRE 23.88 HARRE 
BIC 

 
18.89 CS 21.22 

AIC 12.60 HTOEPH 16.89 HARHRE 
BIC 

 
4.47 ARHRE 22.73 

AIC 8.18 CS 26.53 HRC 
BIC 

 
3.28 CS 40.19 

AIC 9.49 HARRE 21.49 HTOEP 

BIC 
 

5.05 CS 19.28 

AIC 16.39 HTOEPH 16.39 HTOEPH 

BIC 5.03 CSH 19.05 
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Table 14: Success rates and details on covariance structures selected by AIC and BIC criteria for the 3x5 sample 
size simulation studies 

Covariance 
Structures 

Criterion Success rate Most often chosen 
model 

Rate for most often 
chosen model 

AIC 26.47 CS 26.47 CS 
BIC 

 
34.73 CS 34.73 

AIC 23.02 CSH 23.02 CSH 
BIC 

 
25.42 CSH 25.42 

AIC 30.45 ARRE 30.45 ARRE 
BIC 

 
38.14 ARRE 38.14 

AIC 24.71 ARHRE 24.71 ARHRE 
BIC 

 
26.91 ARHRE 26.91 

AIC 20.20 HRC 23.71 RC 
BIC 

 
23.29 RC 23.29 

AIC 6.23 ARRE 22.15 TOEP 

BIC 
 

6.32 ARRE 27.72 

AIC 10.21 ARHRE 19.80 TOEPH 

BIC 
 

9.46 ARHRE 21.24 

AIC 32.58 UN 32.58 UN 

BIC 
 

26.57 UN 26.57 

AIC 25.98 HCS 25.98 HCS 
BIC 

 
28.23 HCS 28.23 

AIC 10.57 UN 25.20 HCSH 
BIC 

 
7.59 UN 20.71 

AIC 28.64 HARRE 28.64 HARRE 
BIC 

 
30.07 HARRE 30.07 

AIC 12.45 UN 23.94 HARHRE 
BIC 

 
8.15 UN 19.67 

AIC 25.17 HRC 25.17 HRC 
BIC 

 
23.04 HRC 23.04 

AIC 5.44 HARRE 23.76 HTOEP 

BIC 
 

4.00 HARRE 24.37 

AIC 0 UN 24.46 HTOEPH 

BIC 0 UN 19.91 
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Table 15: Success rates and details on covariance structures selected by AIC and BIC criteria for the 5x5 sample 
size simulation studies 

Covariance 
Structures 

Criterion Success Rate Most often chosen 
model 

Rate for most often 
chosen model 

AIC 41.69 CS 41.69 CS 
BIC 

 
69.03 CS 69.03 

AIC 50.38 CSH 50.30 CSH 
BIC 

 
60.39 CSH 60.39 

AIC 51.26 ARRE 51.26 ARRE 
BIC 

 
73.91 ARRE 73.91 

AIC 56.41 ARHRE 56.41 ARHRE 
BIC 

 
68.46 ARHRE 68.46 

AIC 40.52 RC 40.52 RC 
BIC 

 
49.32 RC 49.32 

AIC 6.62 ARRE 38.28 TOEP 

BIC 
 

4.30 ARRE 54.08 

AIC 10.49 ARHRE 45.87 TOEPH 

BIC 
 

5.86 ARHRE 50.85 

AIC 25.62 UN 25.62 UN 

BIC 
 

9.01 CSH 38.08 

AIC 51.39 HCS 51.39 HCS 
BIC 

 
60.00 HCS 60.00 

AIC 34.07 HCSH 34.07 HCSH 
BIC 

 
8.60 CSH 36.10 

AIC 61.56 HARRE 61.56 HARRE 
BIC 

 
64.20 HARRE 64.20 

AIC 25.96 HARHRE 25.96 HARHRE 
BIC 

 
6.54 ARHRE 40.37 

AIC 21.38 RC 35.29 HRC 
BIC 

 
11.05 RC 45.68 

AIC 15.33 HARRE 52.59 HTOEP 

BIC 
 

4.15 HARRE 54.97 

AIC 0 HARHRE 20.43 HTOEPH 

BIC 0 HARRE 27.83 
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4.2.2.  Unequal treatment sizes 

 The success rates of AIC and BIC in the unequal treatment size situations were 

comparable to those of the equal treatment size cases with 5 repeated measures per 

subject. This is reasonable because the total number of subjects was the same.  

Success rates depended on the number of repeated measures and covariance structure 

(Tables 16 to 17).  The success increased by increasing the number of repeated 

measures and using simple covariance structures.   

Once again, AIC frequently had higher success rates than BIC for complicated 

structures, especially for those with heterogeneity between-treatments. However, BIC 

had higher success rates than AIC for simpler structures.  Often AIC and BIC were 

able to recognize the correct structure other than the between-treatment heterogeneity.   

CS, CSH, ARRE, and ARHRE covariance structures were consistent 

independently of the number of repeated measures and the type of criteria used.  Other 

structures as RC, UN, HCS positive, HARRE positive, HCS negative, HCSH 

negative, HARRE negative and HARHRE negative were consistent depending on the 

number of repeated measures and the criteria used.  The rest of the covariance 

structures were never consistent. 

As in the equal treatment size case, AIC and BIC most often chose ARRE, 

ARHRE, HARRE, and HARHRE instead of TOEP, TOEPH, HTOEP, and HTOEPH 

respectively in the 5 repeated measure cases.   

  Pairing did not seem to have a great influence on the performance (success rate 

and consistency) of AIC and BIC.  However, there was a slight improvement in the 

success rates of these criteria when the pairing was negative. 
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Table 16: Success rates and details on covariance structures selected by AIC and BIC criteria for the (3, 5, 7)x3 
sample size simulation studies 

Covariance 
Structures 

Criterion Success rate Most often chosen 
model 

Rate for most often 
chosen model 

AIC 38.35 CS 38.35 CS 
BIC 

 
60.13 CS 60.13 

AIC 33.61 CSH 33.61 CSH 
BIC 

 
40.57 CSH 40.57 

AIC 25.01 ARRE 25.01 ARRE 
BIC 

 
36.14 ARRE 36.14 

AIC 25.95 ARHRE 25.95 ARHRE 
BIC 

 
28.87 ARHRE 28.87 

AIC 12.20 CS 25.49 RC 
BIC 

 
13.03 CS 39.75 

AIC 4.02 CS 25.14 TOEP 
BIC 

 
3.53 CS 39.21 

AIC 6.92 ARHRE 19.67 TOEPH 
BIC 

 
5.47 CSH 28.28 

AIC 5.53 CSH 31.06 UN 
BIC 

 
3.31 CSH 39.17 

AIC 20.33 HCS 20.33 HCS 
positive BIC 

 
17.93 CS 35.23 

AIC 14.40 CSH 19.54 HCSH 
positive BIC 

 
5.49 CSH 31.45 

AIC 17.87 HARRE 17.89 HARRE 
positive BIC 

 
12.96 CS 25.12 

AIC 15.78 ARHRE 18.06 HARHRE 
positive BIC 

 
6.13 ARHRE 24.35 

AIC 11.32 CS 24.03 HRC positive 
BIC 

 
5.02 CS 37.77 

AIC 11.80 HARRE 11.80 HTOEP 
positive BIC 6.01 CS 25.04 

AIC 8.50 ARHRE 12.60 HTOEPH 
positive BIC 

 
2.74 CSH 22.18 

AIC 25.15 CS 25.15 HCS 
negative BIC 

 
26.53 CS /26.53 

AIC 17.39 CSH 17.39 HCSH 
negative BIC 

 
7.52 CSH 24.07 

AIC 21.49 HARRE 21.49 HARRE 
negative BIC 

 
18.27 CS 19.92 
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Table 16 (Cont.): Success rates and details on covariance structures selected by AIC and BIC criteria for the  
(3, 5, 7)x3 sample size simulation studies 

Covariance 
Structures 

Size 
(3, 5, 7)x3 

Success rate Most often chosen 
model 

Rate for most often 
chosen model 

AIC 15.20 HARHRE 15.20 HARHRE 
negative BIC 

 
5.96 ARHRE 19.41 

AIC 12.09 CS 24.95 HRC negative 
BIC 

 
5.60 CS 39.38 

AIC 13.36 HARRE 18.76 HTOEP 
negative BIC 

 
7.54 HCS 19.15 

AIC 9.79 HARHRE 12.99 HTOEPH 
negative BIC 3.09 CSH 17.71 

 

 
Table 17: Success rates and details on covariance structures selected by AIC and BIC criteria for the (3, 5, 7)x5 
sample size simulation studies 

Covariance 
Structures 

Size 
(3, 5, 7)x5 

Success rate Most often chosen 
model 

Rate for most often 
chosen model 

AIC 41.44 CS 41.44 CS 
BIC 

 
68.17 CS 68.17 

AIC 52.79 CSH 52.79 CSH 
BIC 

 
59.68 CSH 59.68 

AIC 50.42 ARRE 50.42 ARRE 
BIC 

 
73.22 ARRE 73.22 

AIC 59.22 ARHRE 59.22 ARHRE 
BIC 

 
67.87 ARHRE 67.87 

AIC 40.00 RC 40.00 RC 
BIC 

 
48.62 RC 48.26 

AIC 6.86 ARRE 38.55 TOEP 
BIC 

 
4.42 ARR 53.62 

AIC 11.52 ARHRE 48.20 TOEPH 
BIC 

 
6.23 ARHRE 50.73 

AIC 26.62 UN 26.62 UN 
BIC 9.12 CSH 37.81 
AIC 45.90 HCS HCS/45.90 HCS 

positive BIC 
 

47.85 HCS HCS/47.85 

AIC 25.29 CSH CSH/27.38 HCSH 
positive BIC 

 
6.03 CSH CSH/44.71 

AIC 55.08 HARRE HARRE/55.08 HARRE 
positive BIC 

 
51.46 HARRE 51.46 

AIC 22.38 ARHRE 33.61 HARHRE 
positive BIC 5.82 ARHRE 50.88 
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Table 17 (Cont.): Success rates and details on covariance structures selected by AIC and BIC criteria for the  
(3, 5, 7)x5 sample size simulation studies 

Covariance 
Structures 

Size 
(3, 5, 7)x5 

Success rate Most often chosen 
model 

Rate for most often 
chosen model 

AIC 23.77 RC 39.33 HRC positive 
BIC 

 
12.68 RC 49.91 

AIC 9.74 HARRE 48.22 HTOEP 
positive BIC 

 
2.43 HARRE 44.89 

AIC 0 ARHRE 24.62 HTOEPH 
positive BIC 

 
0 ARHRE 34.89 

AIC 51.37 HCS 51.37 HCS 
negative BIC 

 
60.33 HCS 60.33 

AIC 33.60 HCSH 33.60 HCSH 
negative BIC 

 
10.04 CSH 31.83 

AIC 63.40 HARRE 63.40 HARRE 
negative BIC 

 
64.92 HARRE 64.92 

AIC 26.66 HARHRE 26.66 HARHRE 
negative BIC 

 
7.97 ARHRE 35.18 

AIC 23.97 RC 29.33 HRC negative 
BIC 

 
13.50 RC 38.06 

AIC 9.84 HARRE 53.57 HTOEP 
negative BIC 

 
2.46 HARRE 54.61 

AIC 0 HARHRE 23.29 HTOEPH 
negative BIC 0 HARRE 27.28 
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5.  CONCLUSION 

5.1.  Distributions of p-values from AIC, BIC and correct models. 

Distributions of Kenward-Roger method p-values from fitting the best AIC and 

BIC models did not follow the uniform distribution for any sample size or covariance 

structure.  These distributions were always right skewed which implies that Type I 

error rates were always higher than the target values.  Type of selection criterion, 

number of subjects per treatment, number of repeated measures, effect tested, 

covariance structure and pairing affected the Type I error rates.  Equality or inequality 

of number of subjects per treatment did not seem to affect the Type I error rates.  

The best BIC models usually produced closer Type I error rates to target values 

than the best AIC models.  Type I error rates were usually the farthest from target 

values for the 3x5 sample size situation and were closest for the 5x5 sample size 

situation.  Tests for the within-subject effect generally produced closer Type I error 

rates to target values.  Covariance structures with heterogeneity between- and within- 

treatment levels produced higher Type I error rates than those with only one type of 

heterogeneity or complete homogeneity.  For tests of the between-subject effect, 

negative pairing produced dramatically higher Type I error rates than positive pairing. 

However, for tests of the within-subject effect, negative pairing produced slightly 

better Type I error rates than positive pairing.  This disagrees with the results obtained 

by Keselman et al. (1999). They found that negative pairings had an adverse effect on 

Type I error rates for the within-subject effect.  The disagreement could be due to the 

Kenward-Roger adjustment or the difference in sample sizes. 

53 



Convergence rates when the correct model was fitted depended on the 

complexity of the covariance structure.  When the covariance structure was HTOEPH 

and the number of repeated measures was 5, the model converged only once in 20000 

simulations.  Therefore, it would be wise to not consider this covariance structure as a 

possibility when the available sample size is of the same order of magnitude as in this 

study. 

Distributions of p-values from fitting the correct model often followed the 

uniform distribution.  However, this depended on the sample size, equality of numbers 

of subjects per treatment, effect tested, pairing and covariance structure.  P-values 

from data following the CS and RC covariance structures always followed the uniform 

distribution.  P-values for TOEP data in the equal treatment size situation and CSH 

data in the unequal treatment size situation also were uniformly distributed.  P-values 

for data with heterogeneity between- and within-treatment levels were seldom 

uniformly distributed, especially for negative pairings. 

Distributions of p-values based on the correct model were sometimes left 

skewed, producing conservative type I error rates.  This result did not occur with best 

AIC and best BIC models.   

Unless sample sizes are large, if AIC and BIC are used, users should be aware 

that Type I error rates are higher than target values.  Therefore, it is important to be 

cautious about declaring significance when AIC and BIC are the only tools used to 

select models.  It would be wise to not rely just on AIC and BIC to choose a model, 

but to use the design and other practical knowledge to guide the choice of the 

covariance structure.   
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In general, results obtained by Keselman et al. (1999) were more optimistic than 

the ones obtained in this study for AIC models.  Keselman et al. (1999) obtained 

conservative Type I error rates by using the best AIC models. This was probably due 

to the use of lager sample sizes. 

Keselman et al. (1999) concluded that Type I error rates from fitting the HRC 

and HARH (similar to our HARHRE but without the random effect) covariance 

structures to every data set were adequate.  They did not compare the distributions of 

p-values to the uniform, and their Type I error rates were only reasonably close to 

target values.  Our study could not confirm the conclusions of Keselman et al. because 

only best AIC, best BIC and correct models were examined.  However, even when the 

correct HARHRE structure was used, Type I error rates were far greater than target 

values.  The smaller sample sizes used in our study could account for this difference.   

Even if the correct covariance structure is known, Type I error rates are higher 

for complex structures and small sample size.  This agrees with the results obtained by 

Schaalje et al. (2002).   

 

5.2.  Performance of AIC and BIC criteria 

Percentages of times that the correct model was chosen by the AIC and BIC 

criteria were lower than those obtained by Keselman et al. (1998) and Ferron et al. 

(2002).  However, Ferron et al. (2002) allowed choice between only two structures, 

and had much larger sample sizes.  Keselman et al. (1998) allowed choice between 11 

structures, but had much larger sample sizes than the ones used in our study.   
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AIC generally produced better success rates for data following covariance 

structures with heterogeneity between- and within-treatment levels.  This result agrees 

with Keselman et al. (1998).  However, for simpler covariance structures BIC had 

better success rates than AIC.  Overall, both AIC and BIC had better success rates for 

simpler covariance structures and larger sample sizes.   

For larger number of repeated measures and data following covariance structures 

with high number of parameters, AIC and BIC tended to most often choose covariance 

structures with the same patterns and lower numbers of parameters.   

AIC and BIC are useful tools to help the research to choose a covariance structure. 

However, since they unfortunately do not always point to the correct covariance 

structure, it would be wise to not depend on them exclusively when choosing a 

covariance structure.  It is important to be especially careful for small sample sizes 

because success rates were very low.  Other resources such as correlograms (Little et 

al. (2002)), knowledge about the design and science should also be brought into play.   
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APPENDIX 1: Histograms 
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FIGURE 1: HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -3X3 
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FIGURE 1 (Cont): HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -3X3 
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FIGURE 2: HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -3X3 
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FIGURE 2 (Cont): HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -3X3 
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FIGURE 3: HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -
5X3
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FIGURE 3 (Cont): HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -5X3 
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FIGURE 4: HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -5X3 
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FIGURE 4 (Cont): HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -5X3 
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FIGURE 5: HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -

3X5
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FIGURE 5 (Cont): HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -3X5 
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FIGURE 6: HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -3X5 
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FIGURE 6 (Cont): HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -3X5 
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FIGURE 7: HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -5X5 
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FIGURE 7 (Cont): HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -5X5 
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FIGURE 8: HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -5X5 
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FIGURE 8 (Cont): HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -5X5 
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FIGURE 9: HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -(3, 5, 7)x3 
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FIGURE 9 (Cont): HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -(3, 5, 7)x3 
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FIGURE 9 (Cont): HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -(3, 5, 7)x3 
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FIGURE 10: HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -(3, 5, 7)x3 
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FIGURE 10 (Cont): HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -(3, 5, 7)x3 
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FIGURE 10 (Cont): HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -(3, 5, 7)x3 
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FIGURE 11: HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -(3, 5, 7)x5 
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FIGURE 11 (Cont): HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -(3, 5, 7)x5 
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FIGURE 11 (Cont): HISTOGRAMS OF P-VALUES FOR THE TREATMENT EFFECT -(3, 5, 7)x5 
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FIGURE 12: HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -(3, 5, 7)x5 
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FIGURE 12 (Cont): HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT -(3, 5, 7)x5 
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FIGURE 12 (Cont): HISTOGRAMS OF P-VALUES FOR THE TIME EFFECT - (3, 5, 7)x5 
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/******************************************************************** 
Generating data following the 8 covariance structures with 
homogeneity between-treatments. 
********************************************************************/ 
 
proc iml; 
seed=7; 
nit=10000  ;
dat=j(1,12); 
cs={1 .5 .5, 
    .5 1 .5,  
    .5 .5 1}; 
r_cs=I(9)@cs; 
 
csh={1  .84  1.10, 
   .84  2.81 1.84,  
    1.10 1.84 4.80};  
r_csh=I(9)@csh; 
 
arre={1 .78 .62, 
      .78  1 .78, 
      .62 .78 1}; 
r_arre=I(9)@arre; 
 
arhre={1  1.22  1.16, 
    1.22  2.81 2.64,  
    1.16 2.64 4.80}; 
r_arhre=I(9)@arhre; 
 
rc={1 0, 1 1, 1 2}*{.3 -.03, -.03  .2}*{1 1 1 , 0 1 2}+ 2*i(3); 
r_rc=I(9)@rc; 
 
toe={1 .5 .3, 
     .5 1 .5, 
     .3 .5 1}; 
r_toe=I(9)@toe; 
 
toeh={1 .84 .66, 
   .84 2.81 1.84, 
   .66 1.84 4.80}; 
r_toeh=I(9)@toeh; 
 
un={1 .92 .95, 
   .92 2.81 1.85, 
   .95 1.85 4.80}; 
r_un=I(9)@un; 
 
*generating data; 
do iter=1 to nit; 
 iter2=j(27,1,iter); 
 s={1, 2, 3, 4, 5  6, 7, 8, 9};  ,
 subject=s@j(3,1,1); 
 trt=j(9,1,1)//j(9,1,2)//j(9,1,3); 
 t={0,1,2}; 
 time=j(9,1,1)@t; 
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 y1=normal(repeat(seed,27,1)); 
 y2=normal(repeat(seed,27,1)); 
 y3=normal(repeat(seed,27,1)); 
 y4=normal(repeat(seed,27,1)); 
 y5=normal(repeat(seed,27,1)); 
 y6=normal(repeat(seed,27,1)); 
 y7=normal(repeat(seed,27,1)); 
 y8=normal(repeat(seed,27,1)); 
 response_cs=t(root(r_cs))*y1; 
 response_csh=t(root(r_csh))*y2; 
 response_arre=t(root(r_arre))*y3; 
 response_arhre=t(root(r_arhre))*y4; 
 response_rc=t(root(r_rc))*y5; 
 response_toe=t(root(r_toe))*y6; 
 response_toeh=t(root(r_toeh))*y7; 
 response_un=t(root(r_un))*y8; 
 
 
dat=dat//(iter2||subject||trt||time||response_cs||response_csh||respo
nse_arre||response_arhre||response_rc||response_toe 
           ||response_toeh||response_un); 
end; 
tot=nit*3*3*3+1; 
dat=dat[2:tot,]; 
create one from dat; 
append from dat; 
quit iml; 
run; 
 
 
data one (rename=(col1=iter col2=subject col3=trt col4=time 
col5=response_1 col6=response_2 col7=response_3  
          col8=response_4 col9=response_5 col10=response_6 
col11=response_7 col12=response_8)); 
set one; 
run; 
 
/******************************************************************** 
Macro to fit every data set with all the considered models 
********************************************************************/ 
 
 
%macro names; 
 
/*initializing the data set from where the results will be obtained*/ 
 
data cs1;aic=.; bic=.; model_type='        '; covstruct=' '; iter=.; 
output; run; 
data cs; iter=.; descr='       '; value=.; output; run; 
data csh1;aic=.; bic=.; model_type='        '; covstruct=' '; iter=.; 
output; run; 
data csh; iter=.; descr='       '; value=.; output; run; 
data arre1;aic=.; bic=.; model_type='        '; covstruct=' '; 
iter=.; output; run; 
data arre; iter=.; descr='       '; value=.; output; run; 
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data arhre1;aic=.; bic=.; model_type='        '; covstruct=' '; 
iter=.; output; run; 
data arhre; iter=.; descr='       '; value=.; output; run; 
data rc1;aic=.; bic=.; model_type='        '; covstruct=' '; iter=.; 
output; run; 
data rc; iter=.; descr='       '; value=.; output; run; 
data toe1;aic=.; bic=.; model_type='        '; covstruct=' '; iter=.; 
output; run; 
data toep; iter=.; descr='       '; value=.; output; run; 
data toeh1;aic=.; bic=.; model_type='        '; covstruct=' '; 
iter=.; output; run; 
data toeph; iter=.; descr='       '; value=.; output; run; 
data un1;aic=.; bic=.; model_type='        '; covstruct=' '; iter=.; 
output; run; 
data un; iter=.; descr='       '; value=.; output; run; 
data hcs1;aic=.; bic=.; model_type='        '; covstruct=' '; iter=.; 
output; run; 
data hcs; iter=.; descr='       '; value=.; output; run; 
data hcsh1;aic=.; bic=.; model_type='        '; covstruct=' '; 
iter=.; output; run; 
data hcsh; iter=.; descr='       '; value=.; output; run; 
data harre1;aic=.; bic=.; model_type='        '; covstruct=' '; 
iter=.; output; run; 
data harre; iter=.; descr='       '; value=.; output; run; 
data harhre1;aic=.; bic=.; model_type='        '; covstruct=' '; 
iter=.; output; run; 
data harhre; iter=.; descr='       '; value=.; output; run; 
data hrc1;aic=.; bic=.; model_type='        '; covstruct=' '; iter=.; 
output; run; 
data hrc; iter=.; descr='       '; value=.; output; run; 
data htoe1;aic=.; bic=.; model_type='        '; covstruct=' '; 
iter=.; output; run; 
data htoep; iter=.; descr='       '; value=.; output; run; 
data htoeh1; aic=.; bic=.; model_type='        '; covstruct=' '; 
iter=.; output; run; 
data htoeph; iter=.; descr='       '; value=.; output; run; 
data pval_cs1;effect='    '; NumDF=.; DenDF=.; Fvalue=.; probf=.; 
model_type='        '; covstruct=' '; iter=.; output; run; 
data pval_cs; iter=.; effect='      '; NumDF=.; DenDF=.; Fvalue=.; 
probf=.; output;run; 
data pval_csh1;effect='    '; NumDF=.; DenDF=.; Fvalue=.; probf=.; 
model_type='        '; covstruct=' '; iter=.; output; run; 
data pval_csh; iter=.; effect='      '; NumDF=.; DenDF=.; Fvalue=.; 
probf=.; output;run; 
data pval_arre1;effect='    '; NumDF=.; DenDF=.; Fvalue=.; probf=.; 
model_type='        '; covstruct=' '; iter=.; output; run; 
data pval_arre; iter=.; effect='      '; NumDF=.; DenDF=.; Fvalue=.; 
probf=.; output;run; 
data pval_arhre1;effect='    '; NumDF=.; DenDF=.; Fvalue=.; probf=.; 
model_type='        '; covstruct=' '; iter=.; output; run; 
data pval_arhre; iter=.; effect='      '; NumDF=.; DenDF=.; Fvalue=.; 
probf=.; output;run; 
data pval_rc1;effect='    '; NumDF=.; DenDF=.; Fvalue=.; probf=.; 
model_type='        '; covstruct=' '; iter=.; output; run; 
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data pval_rc; iter=.; effect='      '; NumDF=.; DenDF=.; Fvalue=.; 
probf=.; output;run; 
data pval_toe1;effect='    '; NumDF=.; DenDF=.; Fvalue=.; probf=.; 
model_type='        '; covstruct=' '; iter=.; output; run; 
data pval_toep; iter=.; effect='      '; NumDF=.; DenDF=.; Fvalue=.; 
probf=.; output;run; 
data pval_toeh1;effect='    '; NumDF=.; DenDF=.; Fvalue=.; probf=.; 
model_type='        '; covstruct=' '; iter=.; output; run; 
data pval_toeph; iter=.; effect='      '; NumDF=.; DenDF=.; Fvalue=.; 
probf=.; output;run; 
data pval_un1;effect='    '; NumDF=.; DenDF=.; Fvalue=.; probf=.; 
model_type='        '; covstruct=' '; iter=.; output; run; 
data pval_un; iter=.; effect='      '; NumDF=.; DenDF=.; Fvalue=.; 
probf=.; output;run; 
data pval_hcs1;effect='    '; NumDF=.; DenDF=.; Fvalue=.; probf=.; 
model_type='        '; covstruct=' '; iter=.; output; run; 
data pval_hcs; iter=.; effect='      '; NumDF=.; DenDF=.; Fvalue=.; 
probf=.; output;run; 
data pval_hcsh1;effect='    '; NumDF=.; DenDF=.; Fvalue=.; probf=.; 
model_type='        '; covstruct=' '; iter=.; output; run; 
data pval_hcsh; iter=.; effect='      '; NumDF=.; DenDF=.; Fvalue=.; 
probf=.; output;run; 
data pval_harre1;effect='    '; NumDF=.; DenDF=.; Fvalue=.; probf=.; 
model_type='        '; covstruct=' '; iter=.; output; run; 
data pval_harre; iter=.; effect='      '; NumDF=.; DenDF=.; Fvalue=.; 
probf=.; output;run; 
data pval_harhre1;effect='    '; NumDF=.; DenDF=.; Fvalue=.; probf=.; 
model_type='        '; covstruct=' '; iter=.; output; run; 
data pval_harhre; iter=.; effect='      '; NumDF=.; DenDF=.; 
Fvalue=.; probf=.; output;run; 
data pval_hrc1;effect='    '; NumDF=.; DenDF=.; Fvalue=.; probf=.; 
model_type='        '; covstruct=' '; iter=.; output; run; 
data pval_hrc; iter=.; effect='      '; NumDF=.; DenDF=.; Fvalue=.; 
probf=.; output;run; 
data pval_htoe1;effect='    '; NumDF=.; DenDF=.; Fvalue=.; probf=.; 
model_type='        '; covstruct=' '; iter=.; output; run; 
data pval_htoep; iter=.; effect='      '; NumDF=.; DenDF=.; Fvalue=.; 
probf=.; output;run; 
data pval_htoeh1; effect='    '; NumDF=.; DenDF=.; Fvalue=.; probf=.; 
model_type='        '; covstruct=' '; iter=.; output; run; 
data pval_htoeph; iter=.; effect='      '; NumDF=.; DenDF=.; 
Fvalue=.; probf=.; output;run; 
 
/*analyzing every data sets with all the considered models and using 
ods to obtain the p-values and AIC and BIC values for each model*/ 
 
%do j=1 %to 8; 
 
ods listing close; 
 
proc mixed data=one; 
by iter; 
class trt subject; 
parms (.5) (.5); 
model response_&j= trt time /ddfm=kenwardroger; 
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repeated /type=cs subject=subject;  
ods output fitstatistics=cs; 
ods output tests3=pval_cs; 
run; 
 
ods listing;  
 
data cs2;set cs; retain aic bic; keep aic bic model_type covstruct 
iter; model_type='CS    ';covstruct="&j"; 
      if descr='AIC (smaller is better)' then do; aic=value; 
bic=.;end; 
      if descr='BIC (smaller is better)' then do; bic=value; output; 
end; run;  
 
data cs1; 
set cs1 cs2;run; 
 
data pval_cs2; set pval_cs; model_type='CS    ';covstruct="&j"; keep 
effect probf model_type  
covstruct iter; 
 
data pval_cs1; 
set pval_cs1 pval_cs2;run; 
 
 
ods listing close; 
 
proc mixed data=one; 
by iter; 
class trt subject; 
parms (1) (2.81) (4.80) (.5); 
model response_&j =trt time /ddfm=kenwardroger; 
repeated /type=csh subject=subject; 
ods output fitstatistics=csh; 
ods output tests3=pval_csh; 
run; 
 
ods listing; 
 
data csh2;set csh;retain aic bic;keep aic bic model_type covstruct 
iter;model_type='CSH   ';covstruct="&j"; 
     if descr='AIC (smaller is better)' then do; aic=value; 
bic=.;end; 
     if descr='BIC (smaller is better)' then 
do;bic=value;output;end;run; 
data csh1; 
set csh1 csh2; run; 
 
data pval_csh2; set pval_csh; model_type='CSH   ';covstruct="&j";keep 
effect probf model_type  
covstruct iter; 
data pval_csh1; 
set pval_csh1 pval_csh2; run; 
 
ods listing close; 
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proc mixed data=one; 
by iter; 
class trt subject; 
parms (.25) (.7) (.75); 
model response_&j= trt time /ddfm=kenwardroger; 
repeated /type=ar(1) subject=subject; 
random subject; 
ods output fitstatistics=arre; 
ods output tests3=pval_arre; 
run; 
 
ods listing; 
 
data arre2;set arre;retain aic bic;keep aic bic model_type covstruct 
iter;model_type='ARRE  ';covstruct="&j"; 
       if descr='AIC (smaller is better)' then do; aic=value; 
bic=.;end;  
       if descr='BIC (smaller is better)' then 
do;bic=value;output;end;run; 
data arre1; 
set arre1 arre2; run; 
 
data pval_arre2; set pval_arre; model_type='ARRE  
';covstruct="&j";keep effect probf model_type  
covstruct iter; 
data pval_arre1; 
set pval_arre1 pval_arre2; run; 
 
ods listing close; 
 
proc mixed data=one; 
by iter; 
class trt subject; 
parms (.25) (.75) (2.56) (4.55) (.7); 
model response_&j= trt time /ddfm=kenwardroger; 
repeated /type=arh(1) subject=subject; 
random subject; 
ods output fitstatistics=arhre; 
ods output tests3=pval_arhre; 
run; 
 
ods listing; 
 
data arhre2;set arhre;retain aic bic;keep aic bic model_type 
covstruct iter;model_type='ARHRE ';covstruct="&j"; 
     if descr='AIC (smaller is better)' then do; aic=value; 
bic=.;end;    
     if descr='BIC (smaller is better)' then 
do;bic=value;output;end;run;  
data arhre1; 
set arhre1 arhre2; run; 
 
data pval_arhre2; set pval_arhre; model_type='ARHRE 
';covstruct="&j";keep effect probf model_type 
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covstruct iter; 
data pval_arhre1; 
set pval_arhre1 pval_arhre2; run; 
 
ods listing close; 
 
proc mixed data=one; 
by iter; 
class trt subject; 
parms (.3) (-.03) (.2) (2); 
model response_&j= trt time /ddfm=kenwardroger; 
random intercept time /type=un subject=subject; 
ods output fitstatistics=rc; 
ods output tests3=pval_rc; 
run; 
 
ods listing; 
 
data rc2;set rc;retain aic bic;keep aic bic model_type covstruct 
iter;model_type='RC    ';covstruct="&j"; 
     if descr='AIC (smaller is better)' then do; aic=value; 
bic=.;end; 
     if descr='BIC (smaller is better)' then 
do;bic=value;output;end;run; 
data rc1; 
set rc1 rc2; run; 
 
data pval_rc2; set pval_rc; model_type='RC    ';covstruct="&j";keep 
effect probf model_type  
covstruct iter; 
data pval_rc1; 
set pval_rc1 pval_rc2; run; 
 
ods listing close; 
 
proc mixed data=one; 
by iter; 
class trt subject; 
parms (.5) (.3) (1); 
model response_&j= trt time /ddfm=kenwardroger; 
repeated /type=toep subject=subject; 
ods output fitstatistics=toep; 
ods output tests3=pval_toep; 
run; 
 
ods listing; 
 
data toe2;set toep;retain aic bic;keep aic bic model_type covstruct 
iter;model_type='TOEP  ';covstruct="&j"; 
      if descr='AIC (smaller is better)' then do; aic=value; 
bic=.;end;  
      if descr='BIC (smaller is better)' then 
do;bic=value;output;end;run;  
data toe1; 
set toe1 toe2; run; 
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data pval_toe2; set pval_toep; model_type='TOEP  
';covstruct="&j";keep effect probf model_type  
covstruct iter; 
data pval_toe1; 
set pval_toe1 pval_toe2; run; 
 
ods listing close; 
 
proc mixed data=one; 
by iter; 
class trt subject; 
parms (1) (2.81) (4.80) (.5) (.3); 
model response_&j= trt time /ddfm=kenwardroger; 
repeated /type=toeph subject=subject; 
ods output fitstatistics=toeph; 
ods output tests3=pval_toeph; 
run; 
 
ods listing; 
 
data toeh2;set toeph;retain aic bic;keep aic bic model_type covstruct 
iter;model_type='TOEPH ';covstruct="&j"; 
     if descr='AIC (smaller is better)' then do; aic=value; 
bic=.;end; 
     if descr='BIC (smaller is better)' then 
do;bic=value;output;end;run; 
data toeh1; 
set toeh1 toeh2; run; 
 
data pval_toeh2; set pval_toeph; model_type='TOEPH 
';covstruct="&j";keep effect probf model_type  
covstruct iter; 
data pval_toeh1; 
set pval_toeh1 pval_toeh2; run; 
 
ods listing close; 
 
proc mixed data=one; 
by iter; 
class t  s ctrt ubje ; 
parms (1) (.92) (2.81) (.95) (1.85) (4.80); 
model response_&j= trt time /ddfm=kenwardroger; 
repeated /type=un subject=subject; 
ods output fitstatistics=un; 
ods output tests3=pval_un; 
run; 
 
ods listing; 
 
data un2;set un;retain aic bic;keep aic bic model_type covstruct 
iter;model_type='UN    ';covstruct="&j"; 
     if descr='AIC (smaller is better)' then do; aic=value; 
bic=.;end; 
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     if descr='BIC (smaller is better)' then 
do;bic=value;output;end;run; 
data un1; 
set un1 un2; run; 
 
data pval_un2; set pval_un; model_type='UN    ';covstruct="&j";keep 
effect probf model_type  
covstruct iter; 
data pval_un1; 
set pval_un1 pval_un2; run; 
 
ods listing close; 
 
proc mixed data=one; 
by iter; 
class trt subject; 
parms (.5) (.5) (.5) (.5) (.5) (.5); 
model response_&j= trt time /ddfm=kenwardroger; 
repeated /type=cs subject=subject group=trt;  
ods output fitstatistics=hcs; 
ods output tests3=pval_hcs; 
run; 
 
ods listing;  
 
data hcs2;set hcs; retain aic bic;keep aic bic model_type covstruct 
iter;model_type='HCS   ';covstruct="&j"; 
      if descr='AIC (smaller is better)' then do; aic=value; 
bic=.;end; 
      if descr='BIC (smaller is better)' then do; bic=value; output; 
end; run;  
data hcs1; 
set hcs1 hcs2; run; 
 
data pval_hcs2; set pval_hcs; model_type='HCS   ';covstruct="&j"; 
keep effect probf model_type  
covstruct iter; 
data pval_hcs1; 
set pval_hcs1 pval_hcs2; run; 
 
ods listing close; 
 
proc mixed data=one; 
by iter; 
class trt subject; 
parms (1) (2.81) (4.80) (.5) (1) (2.81) (4.80) (.5) (1) (2.81) (4.80) 
(.5); 
model response_&j =trt time /ddfm=kenwardroger; 
repeated /type=csh subject=subject group=trt; 
ods output fitstatistics=hcsh; 
ods output tests3=pval_hcsh; 
run; 
 
ods listing; 
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data hcsh2;set hcsh;retain aic bic;keep aic bic model_type covstruct 
iter;model_type='HCSH  ';covstruct="&j"; 
     if descr='AIC (smaller is better)' then do; aic=value; 
bic=.;end; 
     if descr='BIC (smaller is better)' then 
do;bic=value;output;end;run; 
data hcsh1; 
set hcsh1 hcsh2; run; 
 
data pval_hcsh2; set pval_hcsh; model_type='HCSH  
';covstruct="&j";keep effect probf model_type  
covstruct iter; 
data pval_hcsh1; 
set pval_hcsh1 pval_hcsh2; run; 
 
 
ods listing close; 
 
proc mixed data=one; 
by iter; 
class trt subject; 
parms (.25) (.75) (.7) (.75) (.7) (.75) (.7); 
model response_&j= trt time /ddfm=kenwardroger; 
repeated /type=ar(1) subject=subject group=trt; 
random subject; 
ods output fitstatistics=harre; 
ods output tests3=pval_harre; 
run; 
 
ods listing; 
 
data harre2;set harre;retain aic bic;keep aic bic model_type 
covstruct iter;model_type='HARRE ';covstruct="&j"; 
       if descr='AIC (smaller is better)' then do; aic=value; 
bic=.;end;  
       if descr='BIC (smaller is better)' then 
do;bic=value;output;end;run; 
data harre1; 
set harre1 harre2; run; 
 
data pval_harre2; set pval_harre; model_type='HARRE 
';covstruct="&j";keep effect probf model_type  
covstruct iter; 
data pval_harre1; 
set pval_harre1 pval_harre2; run; 
 
ods listing close; 
 
proc mixed data=one; 
by iter; 
class trt subject; 
parms (.25) (.75) (2.56) (4.55) (.7)  
            (.75) (2.56) (4.55) (.7) 
            (.75) (2.56) (4.55) (.7); 
model response_&j= trt time /ddfm=kenwardroger; 
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repeated /type=arh(1) subject=subject group=trt; 
random subject; 
ods output fitstatistics=harhre; 
ods output tests3=pval_harhre; 
run; 
 
ods listing; 
 
data harhre2;set harhre;retain aic bic;keep aic bic model_type 
covstruct iter;model_type='HARHRE';covstruct="&j"; 
     if descr='AIC (smaller is better)' then do; aic=value; 
bic=.;end;    
     if descr='BIC (smaller is better)' then 
do;bic=value;output;end;run;  
data harhre1;  
set harhre1 harhre2; run; 
 
data pval_harhre2; set pval_harhre; 
model_type='HARHRE';covstruct="&j";keep effect probf model_type  
covstruct iter; 
data pval_harhre1;  
set pval_harhre1 pval_harhre2; run; 
 
ods listing close; 
 
proc mixed data=one; 
by iter; 
class trt subject; 
parms (.3) (-.03) (.2) (.3) (-.03) (.2) (.3) (-.03) (.2) (2); 
model response_&j= trt time /ddfm=kenwardroger; 
random intercept time /type=un subject=subject group=trt; 
ods output fitstatistics=hrc; 
ods output tests3=pval_hrc; 
run; 
 
ods listing; 
 
data hrc2;set hrc;retain aic bic;keep aic bic model_type covstruct 
iter;model_type='HRC   ';covstruct="&j"; 
     if descr='AIC (smaller is better)' then do; aic=value; 
bic=.;end; 
     if descr='BIC (smaller is better)' then 
do;bic=value;output;end;run; 
data hrc1; 
set hrc1 hrc2; run; 
 
data pval_hrc2; set pval_hrc; model_type='HRC   ';covstruct="&j";keep 
effect probf model_type  
covstruct iter; 
data pval_hrc1; 
set pval_hrc1 pval_hrc2; run; 
 
ods listing close; 
 
proc mixed data=one; 
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by iter; 
class trt subject; 
parms (1) (.5) (.3) (1) (.5) (.3) (1) (.5) (.3); 
model response_&j= trt time /ddfm=kenwardroger; 
repeated /type=toep subject=subject group=trt; 
ods output fitstatistics=htoep; 
ods output tests3=pval_htoep; 
run; 
 
ods listing; 
 
data htoe2;set htoep;retain aic bic;keep aic bic model_type covstruct 
iter;model_type='HTOEP ';covstruct="&j"; 
      if descr='AIC (smaller is better)' then do; aic=value; 
bic=.;end;  
      if descr='BIC (smaller is better)' then 
do;bic=value;output;end;run;  
data htoe1; 
set htoe1 htoe2; run; 
 
data pval_htoe2; set pval_htoep; model_type='HTOEP 
';covstruct="&j";keep effect probf model_type  
covstruct iter; 
data pval_htoe1; 
set pval_htoe1 pval_htoe2; run; 
 
ods listing close; 
 
proc mixed data=one; 
by iter; 
class trt subject; 
parms (1) (2.81) (4.80) (.5) (.3) (1) (2.81) (4.80) (.5) (.3) (1) 
(2.81) (4.80) (.5) (.3);  
model response_&j= trt time /ddfm=kenwardroger; 
repeated /type=toeph subject=subject group=trt; 
ods output fitstatistics=htoeph; 
ods output tests3=pval_htoeph; 
run; 
 
ods listing; 
 
data htoeh2;set htoeph;retain aic bic;keep aic bic model_type 
covstruct iter;model_type='HTOEPH';covstruct="&j"; 
     if descr='AIC (smaller is better)' then do; aic=value; 
bic=.;end; 
     if descr='BIC (smaller is better)' then 
do;bic=value;output;end;run; 
data htoeh1; 
set htoeh1 htoeh2; run; 
 
data pval_htoeh2; set pval_htoeph; 
model_type='HTOEPH';covstruct="&j";keep effect probf model_type  
covstruct iter; 
data pval_htoeh1; 
set pval_htoeh1 pval_htoeh2; run; 
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ods listing close; 
ods listing; 
 
/**merging all the resulted data sets together and separating them 
depending on the covariance structure used to generate the data**/  
 
data all1 all2 all3 all4 all5 all6 all7 all8; 
merge cs1(rename=(  aic=aic1 bic=bic1)) 
      csh1 (rename=( aic=aic2 bic=bic2)) 
      arre1 (rename=( aic=aic3 bic=bic3)) 
      arhre1 (rename=( aic=aic4 bic=bic4)) 
      rc1 (rename=( aic=aic5 bic=bic5)) 
      toe1 (rename=( aic=aic6 bic=bic6)) 
      toeh1 (rename=( aic=aic7 bic=bic7)) 
      un1 (rename=( aic=aic8 bic=bic8)) 
      hcs1 (rename=( aic=aic9 bic=bic9)) 
      hcsh1 (rename=( aic=aic10 bic=bic10)) 
      harre1 (rename=( aic=aic11 bic=bic11)) 
      harhre1 (rename=( aic=aic12 bic=bic12)) 
      hrc1 (rename=( aic=aic13 bic=bic13)) 
      htoe1 (rename=( aic=aic14 bic=bic14)) 
      htoeh1(rename=( aic=aic15 bic=bic15)); 
by covstruct iter; 
drop model_type; 
if iter ne .; 
if covstruct=1 then output all1; 
if covstruct=2 then output all2; 
if covstruct=3 then output all3; 
if covstruct=4 then output all4; 
if covstruct=5 then output all5; 
if covstruct=6 then output all6; 
if covstruct=7 then output all7; 
if covstruct=8 then output all8; 
run; 
 
 
data pval_all1 pval_all2 pval_all3 pval_all4 pval_all5 pval_all6 
pval_all7 pval_all8 ; 
merge pval_cs1 (rename=( probf=probf1)) 
      pval_csh1 (rename=( probf=probf2)) 
      pval_arre1 (rename=( probf=probf3)) 
      pval_arhre1 (rename=( probf=probf4)) 
      pval_rc1 (rename=( probf=probf5)) 
      pval_toe1 (rename=( probf=probf6)) 
      pval_toeh1 (rename=( probf=probf7)) 
      pval_un1(rename=( probf=probf8)) 
      pval_hcs1 (rename=( probf=probf9)) 
      pval_hcsh1 (rename=( probf=probf10)) 
      pval_harre1 (rename=( probf=probf11)) 
      pval_harhre1 (rename=( probf=probf12)) 
      pval_hrc1 (rename=( probf=probf13)) 
      pval_htoe1 (rename=( probf=probf14)) 
      pval_htoeh1 (rename=( probf=probf15)); 
by covstruct iter; 
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if covstruct=1 then output pval_all1; 
if covstruct=2 then output pval_all2; 
if covstruct=3 then output pval_all3; 
if covstruct=4 then output pval_all4; 
if covstruct=5 then output pval_all5; 
if covstruct=6 then output pval_all6; 
if covstruct=7 then output pval_all7; 
if covstruct=8 then output pval_all8; 
run; 
 
/** final data sets for data following CS**/ 
 
data dum1; 
set all1; 
minaic=min(of aic1-aic15); 
minbic=min(of bic1-bic15); 
array a(15) aic1-aic15; 
array b(15) bic1-bic15; 
do i=1 to 15; 
if a(i)=minaic then aicm=i; 
if b(i)=minbic then bicm=i; 
end; 
keep iter aicm bicm; 
run; 
 
data finaltr1 finaltm1; 
merge dum1 pval_all1; 
by iter; 
array p(15) probf1-probf15; 
 
if effect='trt' then do; 
var='trt_cs    '; 
correctp=probf1; 
do i=1 to 15; 
 if aicm=i then bestaicp=p(i); 
 if bicm=i then bestbicp=p(i); 
end; 
keep var iter aicm bicm bestaicp bestbicp correctp; 
output finaltr1; 
end; 
 
if effect='time' then do; 
correctp=probf1; 
var='time_cs'; 
do i=1 to 15; 
 if aicm=i then bestaicp=p(i); 
 if bicm=i then bestbicp=p(i); 
end; 
keep var iter aicm bicm bestaicp bestbicp correctp; 
output finaltm1; 
end; 
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/** final data sets for data following CSH**/ 
 
data dum2; 
set all2; 
minaic=min(of aic1-aic15); 
minbic=min(of bic1-bic15); 
array a(15) aic1-aic15; 
array b(15 bic1-bic15; ) 
do i=1 to 15; 
if a(i)=minaic then aicm=i; 
if b(i)=minbic then bicm=i; 
end; 
keep iter aicm bicm; 
run; 
 
data finaltr2 finaltm2; 
merge dum2 pval_all2; 
by iter; 
array p(15) probf1-probf15; 
 
if effect='trt' then do; 
correctp=probf2; 
var='trt_csh'; 
do i=1 to 15; 
 if aicm=i then bestaicp=p(i); 
 if bicm=i then bestbicp=p(i); 
end; 
keep var iter aicm bicm bestaicp bestbicp correctp; 
output finaltr2; 
end; 
 
if effect='time' then do; 
correctp=probf2; 
var='tim_csh'; 
do i=1 to 15; 
 if aicm=i then bestaicp=p(i); 
 if bicm=i then bestbicp=p(i); 
end; 
keep var iter aicm bicm bestaicp bestbicp correctp; 
output finaltm2; 
end; 
 
/** final data sets for data following ARRE**/ 
 
data dum3; 
set all3; 
minaic=min(of aic1-aic15); 
minbic=min(of bic1-bic15); 
array a(15) aic1-aic15; 
array b(15) bic1-bic15; 
do i=1 to 15; 
if a(i)=minaic then aicm=i; 
if b(i)=minbic then bicm=i; 
end; 
keep iter aicm bicm; 
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run; 
 
data finaltr3 finaltm3; 
merge dum3 pval_all3; 
by iter; 
array p(15) probf1-probf15; 
 
if effect='trt' then do; 
correctp=probf3; 
var='trt_arre'; 
do i=1 to 15; 
 if aicm=i then bestaicp=p(i); 
 if bicm=i then bestbicp=p(i); 
end; 
keep var iter aicm bicm bestaicp bestbicp correctp; 
output finaltr3; 
end; 
 
if effect='time' then do; 
correctp=probf3; 
var='tim_arre'; 
do i=1 to 15; 
 if aicm=i then bestaicp=p(i); 
 if bicm=i then bestbicp=p(i); 
end; 
keep var iter aicm bicm bestaicp bestbicp correctp; 
output finaltm3; 
end; 
 
/** final data sets for data following ARHRE**/ 
data dum4; 
set all4; 
minaic=min(of aic1-aic15); 
minbic=min(of bic1-bic15); 
array a(15) aic1-aic15; 
array b(15) bic1-bic15; 
do i=1 to 15; 
if a(i)=minaic then aicm=i; 
if b(i)=minbic then bicm=i; 
end; 
keep iter aicm bicm; 
run; 
 
data finaltr4 finaltm4; 
merge dum4 pval_all4; 
by iter; 
array p(15) probf1-probf15; 
 
if effect='trt' then do; 
correctp=probf4; 
var='trt_arhre'; 
do i=1 to 15; 
 if aicm=i then bestaicp=p(i); 
 if bicm=i then bestbicp=p(i); 
end; 

103 



keep var iter aicm bicm bestaicp bestbicp correctp; 
output finaltr4; 
end; 
 
if effect='time' then do; 
correctp=probf4; 
var='tim_arhre'; 
do i=1 to 15; 
 if aicm=i then bestaicp=p(i); 
 if bicm=i then bestbicp=p(i); 
end; 
keep var iter aicm bicm bestaicp bestbicp correctp; 
output finaltm4; 
end; 
 
/** final data sets for data following RC**/ 
 
data dum5; 
set all5; 
minaic=min(of aic1-aic15); 
minbic=min(of bic1-bic15); 
array a(15) aic1-aic15; 
array b(15 bic1-bic15; ) 
do i=1 to 15; 
if a(i)=minaic then aicm=i; 
if b(i)=minbic then bicm=i; 
end; 
keep iter aicm bicm; 
run; 
 
data finaltr5 finaltm5; 
merge dum5 pval_all5; 
by iter; 
array p(15) probf1-probf15; 
 
if effect='trt' then do; 
correctp=probf5; 
var=' rt_r ; t c'
do i=1 to 15; 
 if aicm=i then bestaicp=p(i); 
 if bicm=i then bestbicp=p(i); 
end; 
keep var iter aicm bicm bestaicp bestbicp correctp; 
output finaltr5; 
end; 
 
if effect='time' then do; 
correctp=probf5; 
var='tim_rc'; 
do i=1 to 15; 
 if aicm=i then bestaicp=p(i); 
 if bicm=i then bestbicp=p(i); 
end; 
keep var iter aicm bicm bestaicp bestbicp correctp; 
output finaltm5; 
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end; 
 
/** final data sets for data following TOEP **/ 
 
data dum6; 
set all6; 
minaic=min(of aic1-aic15); 
minbic=min(of bic1-bic15); 
array a(15) aic1-aic15; 
array b(15) bic1-bic15; 
do i=1 to 15; 
if a(i)=minaic then aicm=i; 
if b(i)=minbic then bicm=i; 
end; 
keep iter aicm bicm; 
run; 
 
data finaltr6 finaltm6; 
merge dum6 pval_all6; 
by iter; 
array p(15) probf1-probf15; 
 
if effect='trt' then do; 
correctp=probf6; 
var='trt_toep'; 
do i=1 to 15; 
 if aicm=i then bestaicp=p(i); 
 if bicm=i then bestbicp=p(i); 
end; 
keep var iter aicm bicm bestaicp bestbicp correctp; 
output finaltr6; 
end; 
 
if effect='time' then do; 
correctp=probf6; 
var='tim_toep'; 
do i=1 to 15; 
 if aicm=i then bestaicp=p(i); 
 if bicm=i then bestbicp=p(i); 
end; 
keep var iter aicm bicm bestaicp bestbicp correctp; 
output finaltm6; 
end; 
 
/** final data sets for data following TOEPH **/ 
 
data dum7; 
set all7; 
minaic=min(of aic1-aic15); 
minbic=min(of bic1-bic15); 
array a(15) aic1-aic15; 
array b(15) bic1-bic15; 
do i=1 to 15; 
if a(i)=minaic then aicm=i; 
if b(i)=minbic then bicm=i; 
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end; 
keep iter aicm bicm; 
run; 
 
data finaltr7 finaltm7; 
merge dum7 pval_all7; 
by iter; 
array p(15) probf1-probf15; 
 
if effect='trt' then do; 
correctp=probf7; 
var='trt_toeph'; 
do i=1 to 15; 
 if aicm=i then bestaicp=p(i); 
 if bicm=i then bestbicp=p(i); 
end; 
keep var iter aicm bicm bestaicp bestbicp correctp; 
output finaltr7; 
end; 
 
if effect='time' then do; 
correctp=probf7; 
var='tim_toeph'; 
do i=1 to 15; 
 if aicm=i then bestaicp=p(i); 
 if bicm=i then bestbicp=p(i); 
end; 
keep var iter aicm bicm bestaicp bestbicp correctp; 
output finaltm7; 
end; 
 
/** final data sets for data following UN **/ 
 
data dum8; 
set all8; 
minaic=min(of aic1-aic15); 
minbic=min(of bic1-bic15); 
array a(15) aic1-aic15; 
array b(15) bic1-bic15; 
do i=1 to 15; 
if a(i)=minaic then aicm=i; 
if b(i)=minbic then bicm=i; 
end; 
keep iter aicm bicm; 
run; 
 
data finaltr8 finaltm8; 
merge dum8 pval_all8; 
by iter; 
array p(15) probf1-probf15; 
 
if effect='trt' then do; 
correctp=probf8; 
var=' rt_u ; t n'
do i=1 to 15; 

106 



 if aicm=i then bestaicp=p(i); 
 if bicm=i then bestbicp=p(i); 
end; 
keep  var iter aicm bicm bestaicp bestbicp correctp; 
output finaltr8; 
end; 
 
if effect='time' then do; 
correctp=probf8; 
var='tim_un'; 
do i=1 to 15; 
 if aicm=i then bestaicp=p(i); 
 if bicm=i then bestbicp=p(i); 
end; 
keep  var iter aicm bicm bestaicp bestbicp correctp; 
output finaltm8; 
end; 
 
run; 
%end; 
 
%mend names; 
 
%names; 
 
 
/******************************************************************** 
creating external data set with the results 
/*******************************************************************/ 
data tr1hom33; 
set finaltr1; 
file 'tr1hom33'; 
put var iter aicm bicm bestaicp bestbicp correctp; 
run; 
data tr2hom33; 
set finaltr2; 
file 'tr2hom33'; 
put
run; 

 var iter aicm bicm bestaicp bestbicp correctp; 

data tr3hom33; 
set finaltr3; 
file 'tr3hom33'; 
put var iter aicm bicm bestaicp bestbicp correctp; 
run; 
data tr4hom33; 
set finaltr4; 
file 'tr4hom33'; 
put
run; 

 var iter aicm bicm bestaicp bestbicp correctp; 

data tr5hom33; 
set finaltr5; 
file 'tr5hom33'; 
put
run  

 var iter aicm bicm bestaicp bestbicp correctp; 
;

data tr6hom33; 
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set finaltr6; 
file 'tr6hom33'; 
put var iter aicm bicm bestaicp bestbicp correctp; 
run; 
data tr7hom33; 
set finaltr7; 
file 'tr7hom33'; 
put
run; 

 var iter aicm bicm bestaicp bestbicp correctp; 

data tr8hom33; 
set finaltr8; 
file 'tr8hom33'; 
put var iter aicm bicm bestaicp bestbicp correctp; 
run  ;
data tm1hom33; 
set finaltm1; 
file 'tm1hom33'; 
put var iter aicm bicm bestaicp bestbicp correctp; 
run; 
data tm2hom33; 
set finaltm2; 
file 'tm2hom33'; 
put
run; 

 var iter aicm bicm bestaicp bestbicp correctp; 

data tm3hom33; 
set finaltm3; 
file 'tm3hom33'; 
put var iter aicm bicm bestaicp bestbicp correctp; 
run; 
data tm4hom33; 
set finaltm4; 
file 'tm4hom33'; 
put var iter aicm bicm bestaicp bestbicp correctp; 
run; 
data tm5hom33; 
set finaltm5; 
file 'tm5hom33'; 
put
run; 

 var iter aicm bicm bestaicp bestbicp correctp; 

data tm6hom33; 
set finaltm6; 
file 'tm6hom33'; 
put var iter aicm bicm bestaicp bestbicp correctp; 
run; 
data tm7hom33; 
set finaltm7; 
file 'tm7hom33'; 
put
run; 

 var iter aicm bicm bestaicp bestbicp correctp; 

data tm8hom33; 
set finaltm8; 
file 'tm8hom33'; 
put
run; 

 var iter aicm bicm bestaicp bestbicp correctp;   
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