
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2004-05-14 

The "Fair" Triathlon: Equating Standard Deviations Using Non-The "Fair" Triathlon: Equating Standard Deviations Using Non-

Linear Bayesian Models Linear Bayesian Models 

Steven McKay Curtis 
Brigham Young University - Provo 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Statistics and Probability Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Curtis, Steven McKay, "The "Fair" Triathlon: Equating Standard Deviations Using Non-Linear Bayesian 
Models" (2004). Theses and Dissertations. 32. 
https://scholarsarchive.byu.edu/etd/32 

This Selected Project is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more 
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarsarchive.byu.edu%2Fetd%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/32?utm_source=scholarsarchive.byu.edu%2Fetd%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


THE “FAIR” TRIATHLON: EQUATING STANDARD DEVIATIONS USING

NON-LINEAR BAYESIAN MODELS

by

S. McKay Curtis

A Project submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Statistics

Brigham Young University

April 2004





BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a Project submitted by

S. McKay Curtis

This Project has been read by each member of the following graduate committee
and by majority vote has been found to be satisfactory.

Date Gilbert W. Fellingham, Chair

Date C. Shane Reese

Date G. Bruce Schaalje





BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the Project of S.
McKay Curtis in its final form and have found that (1) its format, citations, and
bibliographical style are consistent and acceptable and fulfill university and de-
partment style requirements; (2) its illustrative materials including figures, tables,
and charts are in place; and (3) the final manuscript is satisfactory to the graduate
committee and is ready for submission to the university library.

Date Gilbert W. Fellingham
Chair, Graduate Committee

Accepted for the Department

G. Bruce Schaalje
Graduate Coordinator

Accepted for the College

G. Rex Bryce
Associate Dean, College of Physical and
Mathematical Sciences





ABSTRACT

THE “FAIR” TRIATHLON: EQUATING STANDARD DEVIATIONS USING

NON-LINEAR BAYESIAN MODELS

S. McKay Curtis

Department of Statistics

Master of Science

The Ironman triathlon was created in 1978 by combining events with the

longest distances for races then contested in Hawaii in swimming, cycling, and

running. The Half Ironman triathlon was formed using half the distances of each

of the events in the Ironman. The Olympic distance triathlon was created by

combining events with the longest distances for races sanctioned by the major

federations for swimming, cycling, and running. The relative importance of each

event in overall race outcome was not given consideration when determining the

distances of each of the races in modern triathlons. Thus, the swimming portion

in the modern triathlon is underweighted. We present a nonlinear Bayesian model

for triathlon finishing times that models time and standard deviation of time as

a function of distance. We use this model to create “fair” triathlons by equating

the standard deviations of the times taken to complete the swimming, cycling,

and running events. Thus, in these “fair” triathlons, a one standard deviation

improvement in any event has an equivalent impact on overall race time.
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Chapter 1

Introduction

According to popular myth1, the first Ironman triathlon was conceived in a

bar in Hawaii. Chatting over a few beers, Naval Commander John Collins debated

with several others the following question: “Who are the toughest athletes—

swimmers, cyclists, or runners.” Collins suggested that to answer the question

athletes from each discipline should compete in an event that consists of all three

sports run back-to-back. Collins proposed a race comprised of the longest events

in swimming, cycling, and running then contested in Hawaii—the 2.4 mile Waikiki

Rough Water Swim, the 112 mile Around Oahu Bike Ride, and the 26.2 mile Hon-

olulu Marathon. So, in 1978, Collins and a little over a dozen others participated

in the first Ironman triathlon.

The popularity of the Ironman triathlon increased dramatically after the

second Hawaii Ironman when Sports Illustrated ran a story on the 1979 winner

Tom Warren and ABC began coverage of the Hawaii triathlon in 1980. Soon, other

shorter-distance triathlons emerged. The Half-Ironman triathlon was formed by

1 For Collins’ comments and clarifications on the genesis of the Ironman triathlon see http:
//vnews.ironmanlive.com/vnews//1043361628/?keywords=john:collins
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taking half the distances of each event in the Ironman triathlon (1.2 mile swim,

56 mile bike, and a 13.1 mile run). The International Triathlon Union (ITU)

formed the Olympic triathlon by combining the longest event distances used in

races sanctioned by each of the major federations for swimming (the International

Federation for Swimming), cycling (International Cycling Union), and track (In-

ternational Association of Athletics Federations).2The Olympic Triathlon consists

of a 1.5 km (0.93 miles) swim, a 40 km (24.86 miles) bike, and a 10 km (6.21

miles) run.

Today, the three major triathlon types are the Olympic, Half-Ironman,

and Ironman triathlons. However, triathletes can compete in a plethora of other

triathlons of different distances. Sprint triathlons are composed of events of shorter

distances than the Olympic triathlon. Triathletes also compete in Double and

Triple Ironman triathlons, which—as their names imply—are twice and three times

the distance of the Ironman triathlon.

As the history of the modern triathlon indicates, little consideration was

given to the relative importance of each event when forming the various triathlons.

In fact, empirical evidence indicates that the swimming portion of the modern

triathlon is extremely underweighted. Dengel et al. (1989), in a study of eleven

male triathletes, report that, “swimming time was not significantly related to

overall triathlon time.”

In a fair triathlon, a one standard deviation improvement in time in any of

2 See http://www.triathlon.org/tv/FAQs.htm.
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the three triathlon components results in the same improvement in overall time.

As described in Section 3.1, the standard deviations in each component of a fair

trithlon are equal. Because finishing times in each triathlon component increase

with distance, a fair tritathlon can be constructed by finding distances for each

event such that event standard deviations are the same. Thus, a statistical model

for triathlon finishing times can be used to find the appropriate distances that

equate the standard deviations in each triathlon component.

This project presents a Bayesian model for the distribution of triathlon

times as a function of distance. The core feature of this model is unique in the

statistics literature and consists of a nonlinear functional for the parameter µ in a

lognormal distribution and use of a third parameter α to account for tail thickness

in the data. This model makes it possible to equate standard deviations of the

three race elements as a function of distance—thus, creating a “fair” triathlon.

This report details the model for triahtlon finishing times and begins in

Chapter 2 by discussing the relevant literature of Bayesian estimation, nonlinear

models, and triathlon research. Chapter 3 defines the fair triathlon and describes

the model for triathlon finishing times as a function of distance. Chapter 4 is

a paper, which was submitted to a student paper competition sponsored by the

Western North American Region of the International Biometric Society (WNAR),

that contains the results of the triathlon model, including a method for construct-

ing the fair triathlon. Chapter 5 presents some drawbacks to the model, discusses

possible areas for further research, and outlines the contributions to statistical

3



practice.
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Chapter 2

Review of Literature

This chapter is a review of the literature that describes the statistical

methodology appropriate for modeling triathlon race times as a function of dis-

tance. This literature can be separated into three broad categories. The first

category is Bayesian inference; the second category is nonlinear models; and the

third category is general triathlon research.

2.1 Bayesian Methods

Bayesian methodology relies solely on Bayes’ Theorem for estimation of

model parameters. Although named after Thomas Bayes for work published

posthumously in 1764 (see Bayes 1764), Bayes’ Theorem first appeared in Hartley

(1749) where Hartley claimed an “ingenious Friend has communicated to me of

the solution of the inverse problem...” (see Stigler 1983). A modern version of

Hartley’s “Friend’s” theorem is stated succinctly below:

Theorem 1 (Bayes’ Theorem) For two events A and B

P (B|A) =
P (A|B)P (B)

P (A)

5



Bayes’ Theorem can be used for parameter estimation simply by substitut-

ing the vector of model parameters θ for B and the vector of observed data y into

the theorem to obtain

π(θ|y) =
f(y|θ)π(θ)

f(y)

or, alternatively,

π(θ|y) =
f(y|θ)π(θ)∫
f(y|θ)π(θ)dθ

, (2.1)

where f(y|θ) is the sampling density of the data given the parameter θ, π(θ) is

the prior distribution for the parameter θ, f(y) is the marginal distribution of y,

and π(θ|y) is the posterior distribution for the parameter θ.

Bayes (1764) is the first known example of parameter estimation using

Bayes’ Theorem. Bayes presented the problem of estimating a binomial parameter

using Bayes’ Theorem in a scenario where a ball is rolled across a table in such

a way that the probability of it resting at any one horizontal position is uniform.

If one edge of the table has a horizontal coordinate of zero and the other edge of

the table has a horizontal coordinate of one, then the horizontal coordinate of the

resting place of the ball θ is a number between zero and one. In Bayes’ scenario

another ball is rolled across the table p+ q times and the number of times the ball

comes to rest to the left of θ is recorded as p and the number of times the ball

comes to rest to the right of θ is recorded as q. Thus, if X is a binomial random

variable of the number of times the ball comes to rest to the right of θ in p + q

trials, then the likelihood for X is given by

6



(
n
p

)
θp(1 − θ)n−p.

And, by Bayes’ Theorem,

P [a < θ < b|X = p] =

∫ b

a

(
n
p

)
θp(1 − θ)n−pdθ∫ 1

0

(
n
p

)
θp(1 − θ)n−pdθ

.

which assumes a uniform prior on θ (i.e. π(θ) = 1). Bayes justified the use

of this prior distribution in a scholium to his 1764 paper. (For an explanation

and clarification of modern commentators’ misperceptions of Bayes’ scholium, see

Stigler 1982. For a summary of Bayes’ paper see Gelman et al. 2004, pp. 34–36

and Stigler 1982.)

Although most likely unacquainted with the work of Thomas Bayes (Stigler

1978), Laplace (1774, reprinted in 1986) also used Bayes Theorem to estimate a bi-

nomial parameter. Laplace used a hypothetical urn containing an infinite number

of black and white tickets in an unknown ratio as his motivating example. Laplace

also used a uniform prior distribution for the binomial parameter θ, although he

gave no justification for the use of such a prior.

Laplace (1774, reprinted in 1986) also approached the problem of what

“mean” of three observations should be used in estimating the true mean of a

population. He proposed two “means”—the median of the posterior distribution

and the quantity that minimizes the absolute error loss—and then proved that

these two quantities were the same. (For a summary of Laplace 1774, reprinted

in 1986, see Stigler 1986.)
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Despite its beginnings in the 18th century, Bayesian methodology did not

gain widespread use because of computational difficulties. Even for very simple

problems, such as estimating the mean of a normal population with unknown vari-

ance, the posterior distribution is intractable because the integral in the denomi-

nator of equation (2.1)—called the normalizing constant—is difficult or impossible

to calculate. However, since the 1950’s several methods have been devised for ap-

proximating distributions through simulation by using Markov chain Monte Carlo

(MCMC) methods. Metropolis et al. (1953) devised a procedure to simulate from a

target distribution π(θ|y) using Markov chains. The first step in the algorithm in-

volves choosing a starting value of the parameter vector θ(0) for the Markov chain.

The next step is to simulate a “candidate” θ(cand) from a “proposal” distribution,

where the proposal distribution p must be symmetric—that is, p(θa|θb) = p(θb|θa)

for all θa and θb. Then, for the tth iteration, the ratio r = g(θ(cand))/g(θ(t−1)) is

calculated, where g(·) is the unnormalized posterior distribution of θ—that is,

g(θ) = f(y|θ)π(θ)

is the numerator of equation (2.1) The tth value of the Markov chain is then

determined by the following:

θ(t) =

{
θ(cand) with probability min(r, 1)
θ(t−1) otherwise.

Metropolis’ algorithm was generalized by Hastings (1970) and is commonly

referred to as the Metropolis-Hastings algorithm. Hastings’ version of the algo-

8



rithm doesn’t require the proposal density to be symmetric. Because the proposal

density is no longer required to be symmetric, the ratio r becomes

r =
g(θ(cand))/p(θ(cand)|θ(t−1))

g(θ(t−1))/p(θ(t−1)|θ(cand))

(See Chib and Greenberg 1995 for a more detailed introduction to the Metropolis-

Hastings algorithm.)

Geman and Geman (1984) use a special case of the Metropolis-Hastings

algorithm (Gelman et al. 2004, p. 293) for generating from a posterior distribution.

The algorithm, which they named the Gibbs sampler, entails generating values of

θi from the conditional distributions θi|θ1, . . . , θi−1, θi+1, . . . , θk. As explained in

Casella and George (1992), “knowledge of the conditional distributions is sufficient

to determine a joint [posterior] distribution.” Thus, as the chain of simulations

converges, the conditional distribution of θi|θ1, . . . , θi−1, θi+1, . . . , θk converges to

the marginal distribution of θi; and the marginal distributions of θi for each i

collectively form draws from the joint posterior density.

Although the Gibbs sampler gained popularity in image processing re-

search, Gibbs sampling was not commonly used for more general statistical prob-

lems until Gelfand and Smith (1990). Gelfand and Smith present many appli-

cations of the Gibbs sampler in common statistical problems. These examples

include the simplest case of a variance components model, where yij = θi + εij

and θ and ε are random components, and the normal means model, where Yij ∼

N(θi, σ
2
i ), θi ∼ N(µ, τ), and σ2 ∼ IG(a, b) (i.e. each observation can potentially

come from a different normal distribution).

9



The increasing use of MCMC methods for simulating from a posterior dis-

tribution has given rise to many practical issues such as assessing convergence,

choosing the number of iterations, and choosing the burn-in length. Kass et al.

(1998) is a discussion with several experts in Bayesian analysis on many of these

practical issues. Their advice includes using the convergence diagnostic R̂ (Gel-

man and Rubin 1992). The diagnostic R̂ uses multiple MCMC sequences for the

same parameter θi to compute within-sequence variation and between-sequence

variation. R̂ is a function of the two variances and converges to one as the se-

quence approaches the target density. Gelman et al. (2004, p. 297) recommend

continuing simulation until all R̂’s are close to one for each parameter.

Raferty and Lewis (1996) address the problems of the number of iterations

and the length of the burn-in for a MCMC simulation. They motivate their so-

lution with an appeal to the estimation of quantiles of the posterior distribution.

In other words, they find the number of iterations and burn-in length that will

provide an estimate of the qth quantile of the posterior distribution to within ±r

with probability s. Raferty and Lewis implement their solutions in their gibbsit

software. For a given MCMC sequence, the gibbsit software computes the rec-

ommended burn-in length, the number of iterations after burn-in, and the “thin”

(where a thin value of k requires that only every kth iteration from the final chain

be kept). The gibbsit software also provides the quantity I which “measures

the increase in the [recommended] number of iterations due to dependence in the

sequence” (Raferty and Lewis 1996, p. 119). Values near one are desirable, and
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values greater than five indicate “problems that might be alleviated by changing

the implementation” of the MCMC sequence (Raferty and Lewis 1996, p. 119).

The field of statistics is generally concerned with creating mathematical

models of data for use in inference and prediction. Bayesian statistics is no excep-

tion. Lindley and Smith (1972) outline the Bayesian linear model. They present

two versions of the model; the first models the mean of the distribution of the

data as a linear function of a vector of parameters,

y| θ1 ∼ N(A1θ1,C1)

θ1 ∼ N(A2θ2,C2),

and the second adds an additional level by modeling the mean of the distribution

of the parameter θ1 as a linear function of a vector of hyperparameters θ2,

θ1| θ2 ∼ N(A2θ2,C2)

θ2 ∼ N(A3θ3,C3).

Lindley and Smith use the two-factor effects model to demonstrate a practical

application of the Bayesian linear model.

The hierarchical model is a natural fit for Bayesian estimation because

the number of parameters in a hierarchical model usually exceeds the number

of data points—making maximum likelihood estimation impossible. Reese et al.

(2001) use a hierarchical model to estimate fetal growth and gestation for bowhead

whales. Their model includes three parameters for every observation—a parameter

for length of fetus at birth, date of birth, and date of conception. Using Bayesian

estimation, Reese et al. estimate conception dates, parturition dates and fetal
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length as a function of fetal age. Graves et al. (2003) hierarchically model the

finishing positions of race-car drivers. Using a hierarchical structure and Bayesian

estimation, Graves et al. are able to estimate driver abilities and track-driver

interactions.

2.2 Nonlinear Models

In the nonlinear and growth models literature, Chambers (1973) reviews

several different numerical techniques—including Newton-Raphson—for estimat-

ing nonlinear regression parameters. Chambers describes a general approach to

estimation whereby a value for θ is found that minimizes some objective function

F (θ). Chambers also gives some practical advice for incorporating considerations

of the numerical estimation procedure into the statistical model. Gallant (1975)

gives a gentle introduction to nonlinear regression. Gallant discusses least-squares

estimation of parameters, statistical properties of least-squares estimators, hypoth-

esis testing, and confidence intervals. Sandland and McGilchrist (1979) present a

general class of growth models based on the stochastic differential equation

(1/W )dW/dt = f [W (t), α, ε(t)],

where t is time, W is a measure of growth, α is a vector of parameters, and ε(t)

is random error.

Schnute (1981) presents a general growth model under which several other

popular growth models are special cases (e.g. Gompertz, von Bertalanffy, Richards,
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Logistic). Schnute bases his model on the following differential equations:

Z =
1

Y

dY

dt
(2.2)

1

Z

dZ

dt
= −(a − bZ) (2.3)

where Y is some biological measurement (e.g. length, weight) as a function of time.

The quantity (2.2) is the relative growth rate, and the quantity (2.3) is the relative

growth rate of the relative growth rate. Schnute solves the system of differential

equations for different cases when a and b are equal to zero or not equal to zero.

To solve the differential equations, Schnute makes some model constraints. For

example, if at times τ1and τ2, the biological measurement is constrained to equal

y1 and y2 respectively, then the growth function based on (2.2) and (2.3) is

Y (t) =

[
yb

1 + (yb
2 − yb

1)
1 − e−a(t−τ1)

1 − e−a(τ2−τ1)

]1/b

, (2.4)

when a �= 0 and b �= 0.

White (1981) discusses the consequences of least-squares estimation of non-

linear regression parameters (namely inconsistent estimators) when the nonlinear

model is misspecified. White demonstrates that, under certain conditions, the

least squares estimator “converges strongly to the parameters of a (weighted) least

squares approximation to the true model.” White also shows that, under some

additional conditions, the least squares estimators are asymptotically normally

distributed. In addition, White presents a modified estimator of the covariance

matrix that is robust to model misspecification. Cook and Tsai (1985) show that

use of “ordinary” residuals in nonlinear models can be misleading. Cook and Tsai
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propose the use of “projected residuals” and illustrate their superiority to ordinary

residuals.

In the literature on nonlinear models from the Bayesian perspective, Eaves

(1983) derives an “objective” prior distribution for θ and σ in the model y =

g(θ)+σε. Eaves demonstrates the use of his prior with an enzyme-kinetics example.

Hills (1987) discusses two nonlinear models—the Michaelis-Menton model and the

logistic model—with reference priors and unidentifiable parameters. Hills presents

some model constraints that correct for the unidentifiablility in the parameters.

2.3 Triathlon Research

In the triathlon literature, Laursen and Rhodes (2001) discuss how predic-

tors such as VO2max and anaerobic threshold (AT) are correlated with performance

in endurance events. However, Laursen and Rhodes also point out that VO2max

and AT are not good predictors of “ultra-endurance triathlons” (which they define

as triathlons with finishing times greater than four hours). Laursen and Rhodes

review several different factors—substrate utilization, fluid and electrolyte home-

ostasis, and cardiovascular drift—that could account for the poor prediction by

VO2max and AT. Laursen and Rhodes urge researchers to examine other threshold

values (perhaps related to AT) that can be used for prediction of ultra-endurance

triathlon performance.

Millet et al. (2002) compare the differences in swimming styles between

triathletes and swimmers. Millet et al. investigated the stroke rate, and the stroke
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length, and the “index of coordination” (IdC), which they define as the difference

in time between the end of the propulsion phase of one arm to the beginning

of the propulsion phase of the other arm expressed as a percentage of the mean

time of the entire stroke. They measured each of the responses on triathletes

and swimmers at six different velocities (where the velocities were measured as a

percentage of the athlete’s maximal velocity). Millet et al. do not find differences

in IdC or in stroke rate between triathletes and swimmers. However, they report

significant differences in the stroke length—triathletes had significantly shorter

stroke lengths than swimmers.

This chapter has reviewed the statistical literature appropriate for modeling

triathlon data. The next chapter builds on this foundation by detailing a model

for triathlon finishing times.
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Chapter 3

The Model

This chapter describes the model for triathlon finishing times. The chapter

begins with a section that motivates the model by defining the fair triathlon. The

next section describes the data used to fit the model. The final section presents the

model for the fair triathlon, which includes a discussion of the sampling density,

prior distributions, computation, and model checking.

3.1 The Fair Triathlon Defined

The fair triathlon is defined as a triathlon in which a one standard deviation

improvement in time in any of the individual triathlon components results in the

same improvement in overall triathlon time. This “fair” result can happen if the

standard deviations in each of the triathlon components are the same—that is, if

the standard deviations of finishing times in swimming, cycling, and running are

equal. For example, the overall finishing time to for an arbitrary triathlete in an

arbitrary triathlon can be written

to = ts + tb + tr
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where to is the triathlete’s finishing time for the entire triathlon and ts, tb, and tr

are the triathlete’s finishing times for swimming, cycling, and running respectively.

Adding and subtracting the mean overall finishing time µo for all triathletes in

the triathlon gives

to = µo + ts + tb + tr − µs − µb − µr (3.1)

where µo = µs + µb + µr and µs, µb, and µr are the mean finishing times in swim-

ming, cycling, and running for all triathletes the triathlon. In the fair triathlon,

the standard deviations in each of the three events are equal. We represent this

standard deviation by σ. Then rearranging the terms and multiplying by one (σ
σ
)

gives

to = µo +
σ

σ
(ts − µs + tb − µb + tr − µr) (3.2)

to = µo + σ

(
ts − µs

σ
+

tb − µb

σ
+

tr − µr

σ

)

to = µo + σ (Zs + Zb + Zr) . (3.3)

Thus, if a triathlete finishes one standard deviation faster than the mean

time in any of the triathlon components, equation 3.3 becomes one of

to = µo + σ (−1 + 0 + 0)

to = µo + σ (0 − 1 + 0)

to = µo + σ (0 + 0 − 1)

and the improvement in the overall time is the same (−σ) in each case.
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If the standard deviations in each event are not the same, it is not possible

to distribute a common standard deviation in equation (3.2) to obtain equation

(3.3). However, rearranging and multiplying the terms on the right of equation

(3.1) by one gives

to = µo +
σs

σs

(ts − µs) +
σb

σb

(tb − µb) +
σr

σr

(tr − µr)

to = µo + σs

(
ts − µs

σs

)
+ σb

(
tb − µb

σb

)
+ σr

(
tr − µr

σr

)

to = µo + σs (Zs) + σb (Zb) + σr (Zr) (3.4)

If the standard deviations are not the same in each triathlon component, then the

components with the largest standard deviations have the largest influence on the

overall triathlon time. For example, the data set described in Section 3.2 estimates

the standard deviation in each of the race components of the an Ironman to be 8

minutes for the swim, 23 minutes for the bike, 23 minutes for the run. So, in a

Half Ironman triathlon, if a triathlete finishes one standard deviation better than

the mean in the swim, the overall time improves by only eight minutes. However,

if the triathlete improves by one standard deviation in the bike or the run, the

overall time improves by about 23 minutes.

To correct for the difference in the standard deviations of triathlon compo-

nents, triathlon finishing times are modeled as a function of distance. This model

is fit three different times—one for swim times, one for bike times, and one for run

times. The three models are then used to find the distances of each event that

equate the standard deviations.
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3.2 Data Description

The data are a collection of finishing times from 55 different triathlons

found on several different internet sites. The data set contains triathlons from 1996

to 2003. Table 3.1 contains information on the length of each triathlon component,

the number of triathlons, and the number triathletes for each triathlon type in

the data set. By far, the most numerous triathlons in the data set are the three

standard distance triathlons—Olympic, Half Ironman, and Ironman. However,

the shorter-distance sprint triathlons and the longer-distance double and triple

Ironman triathlons allow prediction of standard deviations at shorter or longer

distances when constructing the fair triathlon.

3.3 Model

This section describes the model used to fit the triathlon finishing times.

Each event in a triathlon is modeled independently; therefore, the model described

in this section is used to fit the data three different times—once to the swim times,

once to the bike times, and once to the run times. The model can be broken down

into several major parts—the sampling density, the prior distributions, posterior

calculation, posterior summaries, and model checking.

3.3.1 Sampling Density Model

The sampling density in any model is the population density from which the

observations in the data are drawn. Thus, the sampling density should “match”
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Table 3.1: Types of triathlons in the dataset and their respective distances in
miles for the swim, bike, and run. “Number” is the number of triathlons of that
type in the data set. “Triathletes” is the number of triathletes in the data set who
recorded a finishing time in that type of triathlon.

Type Swim Bike Run Number Triathletes

Sprint 1 0.249 10.00 3.00 1 269
Sprint 2 0.310 11.80 3.10 2 1,246
Sprint 3 0.500 20.00 6.20 2 60
Sprint 4 0.466 12.40 3.10 1 50
Sprint 5 0.249 9.32 3.10 1 116
Olympic 0.930 24.86 6.21 13 5,686
Half Ironman 1.200 56.00 13.10 10 5,168
Ironman 2.400 112.00 26.20 15 13,427
Double Ironman 4.800 224.00 52.40 5 53
Triple Ironman 7.200 336.00 78.60 5 30
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the data in terms of its general shape and its parameters. The shape of the

distribution is discussed in section 3.3.1.1, and the parameters of the distribution—

which must be modeled according to distance—are discussed in sections 3.3.1.2

and 3.3.1.3.

3.3.1.1 General Shape

The shape of the sampling density should approximately match the “shape”

of the data. Figure 3.1 is a plot of finishing times for swimming, cycling, and

running from three different triathlon types—the Olympic, Half Ironman, and

Ironman. As Figure 3.1 shows, finishing times in all three events and across

triathlons of different lengths are clearly nonnormal. In all cases, the data are

right skewed and, in some cases, have fairly thick tails. Thus, the sampling density

for the model must also be skewed and have flexibility in its tail thickness.

The three-parameter lognormal distribution satisfies both concerns. The

lognormal distribution is right skewed, and the three-parameter lognormal distri-

bution has an extra parameter α (sometimes called the “peakedness parameter,”

see Gajewski, Sedwick, and Antonelli (2004)) that allows for greater thickness

in the tails of the distribution. This peakedness parameter makes the three-

parameter lognormal distribution a superior choice to the two-parameter lognor-

mal distribution. The two-parameter lognormal distribution lacks the flexibility

to simultaneously increase the density in both tails while keeping the same gen-

eral shape. Simply changing the parameter σ2 in the two-parameter lognormal
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Figure 3.1: Histograms of the finishing times for each of the three events in the
Olympic, Half Ironman, and Ironman triathlons in the data set. Each histogram
is fit with a density smoother to highlight the shape of the data.
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distribution results in an extremely skewed distribution that clearly does not fit

the triathlon data.

Figure 4.2 is a plot of three lognormal distributions. Each distribution in

the figure has E[X] = 40; but each distribution has a different value of the peaked-

ness parameter α. The three-parameter lognormal distribution with peakedness of

zero is simply the two-parameter lognormal distribution. The figure shows that,

as the peakedness parameter increases, more of the density shifts into the tails of

the distribution.

The density of the three-parameter lognormal is

f(x) =
1√

2πσ2(x + α)
e−

1
2σ2 [ln(x+α)−µ]2 . (3.5)

The parameter α in (3.5) is the peakedness parameter, µ is the mean of the

distribution of ln(X + α), and σ2 is the variance of the distribution of ln(X + α).

The expected value and the variance of the three-parameter lognormal distribution

are

E(X) = eµ+σ2/2 − α (3.6)

V (X) = e2µ+σ2

(eσ2 − 1) (3.7)

The square root of equation (3.7) is ultimately used for constructing the fair

triathlon. With the model for µ discussed in Section 3.3.1.2, equation (3.7) be-

comes a function of distance and can then be used to find distances in each event

that give the same standard deviation.
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Figure 3.2: Plots of the logarithm of event times versus distance. Scales on the x
and y axes are different for each plot.

3.3.1.2 Central Moment Formulation

If X follows a lognormal distribution, then the parameter µ in the log-

normal density is the mean of ln(X). If X follows a three parameter lognormal

distribution, then the parameter µ is the mean of ln(X + α), where α is the

peakedness parameter. Thus, any model for µ should closely fit the logarithm of

the data. Figure 3.2 shows plots of the logarithm of finishing times for the three

triathlon events versus distance. The plots show a definite nonlinear trend in the

means for swimming, cycling, and running. Thus, any model for µ should reflect

the nonlinear relationship between the log of finishing time and distance.

Schnute (1981) presents a general class of growth models that are appealing

for nonlinear models. A special case of these growth models is used for modeling

µ. This model is

µ = τ1 + (τ2 − τ1)
1 − e−β(d−δ1)

1 − e−β(δ2−δ1)
, (3.8)

where τ1 is the log of the sum of the peakedness parameter α and the time it takes

to complete an event (either swim, cycle, or run) of distance δ1, τ2 is the log of the
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sum of the peakedness parameter α and the time it takes to complete an event of

distance δ2, β is the growth rate of finishing times according to distance, and d is

the actual distance of the event.

The model in equation (4.8) is particularly nice for Bayesian modeling

because of the interpretability of the parameters τ1 and τ2. The parameters τ1

and τ2 are the log of the sum of αand finishing times for distances of δ1 and δ2.

This interpretability makes specifying prior distributions more manageable.

Although not as easily interpretable as τ1 and τ2, the parameter β has some

nice properties that are useful in prior elicitation. Larger values of β give longer

finishing times for shorter distances than smaller values of β. So, for example, the

growth rate for swim times as a function of distance should be much larger than

the growth rate for running times or cycling times.

Also, the value of β determines the shape of the growth curve. Positive

values of β result in growth curves that are concave down. Negative values of β

result in growth curves that are concave up. Therefore, beliefs about the shape of

the growth in finishing times can be incorporated into the prior distributions for

β.

3.3.1.3 Higher Order Moment Formulations

If X follows a three-parameter lognormal distribution, the parameter σ2 is

the variance of ln(X + α). Thus, any model for σ2 must approximate the spread

of the log of the data. In Figure 3.2, the spread of the log finishing times at
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each distance is approximately equal. Therefore, σ2 is modeled as constant for all

distances within an event (swimming, cycling, or running).

3.3.1.4 The Likelihood

The likelihood is now determined by equations (3.5) and (3.8). The likeli-

hood is

f(x|µ, α, σ2) =
1

(x + α)
√

2πσ2
e−

1
2σ2 (log(x+α)−µ)2 (3.9)

where, as mentioned previously, x is the finishing time, α is the peakedness pa-

rameter, σ2 is the variance of ln(X+α), and µ is a function of the distance d of the

event according to the growth curve τ1+(τ2−τ1)
1−e−β(d−δ1)

1−e−β(δ2−δ1) . The quantities δ1 and

δ2 are not parameters but are constants that are chosen to be the distances that

correspond respectively to parameters τ1 and τ2. In each triathlon component,

δ1 and δ2 were chosen to be the distances corresponding to an Olympic triathlon

and an Ironman triathlon, respectively. For example, in the swim component,

δ1 = 0.93 and δ2 = 2.4.

3.3.2 Prior Distribution Model

The likelihood from equation (3.9) contains five parameters, thus a prior

distributions must be specified for τ1, τ2, β, α, and σ2for the three different events

in a triathlon. The choices for the distributional form of each prior distribution

are explained in this section. The choices for the parameter values for the prior

distributions are also discussed.

26



The parameters τ1 and τ2 are defined as the natural log of the sum of α and

finishing times for particular events of distances δ1 and δ2. Theoretically, τ1 and τ2

can be negative for certain values of finishing times and α (i.e. if the finishing time

and α sum to a number between zero and one). However, in each of the triathlon

components, the values of δ1 and δ2 correspond to the Olympic triathlon distances

and the Ironman triathlon distances, respectively. Times for competitors at these

distances always exceed one minute. Therefore, the quantities τ1 and τ2 are always

positive quantities. The gamma distribution is defined for positive real numbers,

and the gamma distribution is also flexible in its shape—it can be symmetric or

skewed. Therefore, we use gamma prior distributions for τ1 and τ2 in each event.

The peakedness parameter α and σ2 in the three-parameter lognormal dis-

tribution are both defined as a positive quantities. Again, the gamma distribution

is defined for positive real numbers and offers flexibility in its shape. Thus, as

with τ1 and τ2 we use gamma prior distributions for α and σ2.

The parameter β represents the “growth rate” of finishing times. Theoreti-

cally, β can be either positive or negative, which suggests using a prior distribution

defined on the entire real line. Also, a priori, there is no reason to believe that

β is more likely take on larger values than smaller values (or smaller values than

larger values), which suggests using a symmetric prior distribution. Because of

these considerations, a normal prior distribution is used for β.
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Table 3.2: Table of parameter values for prior distributions for all three portions
of a triathlon.

Prior Parameter Swim Cycle Run

aτ1 1156.0 529.0 430.0
bτ1 340.0 115.0 104.0
aτ2 900.0 1600.0 529.0
bτ2 200.0 267.0 92.0
aα 4.0 4.0 4.0
bα 0.2 0.2 0.2
aσ 9.0 1.7 4.0
bσ 300.0 130.0 200.0
mβ 0.6 0.1 0.05
s2

β 0.04 0.25 2.25×10−4

The prior distributions for each parameter are

π(τ1) ∝ τ1
aτ1−1e−τ1bτ1

π(τ2) ∝ τ2
aτ2−1e−τ2bτ2

π(β) ∝ e
−(β−mβ)

2

2s2
β

π(σ2) ∝ (σ2)aσ−1e−σ2bσ

π(α) ∝ αaα−1e−αbα

where the values for the prior parameters are listed in Table 3.2 and the values for

the expected values and standard deviations of the prior distributions are listed

in Table 3.3.

The values in Table 3.2 were chosen using moment matching. In other

words, values for the mean and standard deviation of the prior distribution were

chosen first. Then the mean and standard deviation were used to solve for the

actual parameters of the prior distributions.
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Table 3.3: Table of means and standard deviations for prior distributions of each
parameter in the model. Distances δ1 and δ2 (in miles) are also listed for the
parameters τ1 and τ2.

Swim Bike Run
Prior Parameter Mean Std Dev Mean Std Dev Mean Std Dev

δ1= 0.93 δ1= 24.86 δ1= 6.21
τ1 3.4 0.1 4.6 0.2 4.15 0.2

δ2= 2.4 δ2= 112.0 δ2= 26.2
τ2 4.5 0.15 4.6 0.2 5.75 0.25
α 20.0 10.0 20.0 10.0 20.0 10.0
σ2 0.03 0.01 0.013 0.01 0.02 0.01
β 0.60 0.20 0.02 0.01 0.03 0.015
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Values for the prior distribution of τ1 were chosen based on beliefs about

an average triathlete. Because τ1 is the log of the sum of α and the time it

takes to finish a race of distance δ1, we chose our prior for τ1 based on the log of

the time we believed it would take an average triathlete to swim, bike, or run a

distance of δ1, where values for δ1 for each component are the Olympic triathlon

distances—0.93 mile swim, 24.86 mile bike, and a 6.21 mile run. By taking the log

of various plausible values for finishing times, we obtained an approximate mean

and variance for the prior distributions of τ1 in each of the triathlon components.

For example, based on our prior knowledge, we felt an average triathlete might take

as little as 20 minutes or as long as 40 minutes to swim 1500 meters in an Olympic

triathlon. Taking the log of 20 and 40 minutes suggests a prior distribution for τ1

with a mean of 3.4 and a standard deviation of 0.01. The mean and the variance

for the distributions of τ1 in the cycling and running events were obtained in a

similar fashion, and parameters for the gamma prior distributions were solved

using these means and standard deviations. Values for the parameters in the prior

distributions for τ2 were chosen similarly.

The parameter σ2 is the variance of the distribution of ln(X+α), which can

be thought of more simply as the variance of ln(X). The parameter values for the

prior distributions of σ2 are based on beliefs about the maximum and minimum

time it would take a triathlete to swim, bike, or run a specified distance. The

distances used for this were 1 mile for the swim, 25 miles for the bike, and 6 miles

for the run (which are the approximate distances of an Olympic triathlon). By
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using the range of the log of the proposed maximum finishing times and the log of

the proposed minimum finishing times, we were able to obtain an estimates of the

variance of ln(X) in each triathlon component by dividing the range by six and

squaring the result. For example, in the swim event, an extremely fast swimmer

might swim a mile in 15 minutes, and an extremely slow swimmer might take as

long as 55 minutes. Or, alternatively, a fast swimmer might take 25 minutes to

swim a mile, and a slow swimmer might take 45 minutes to swim a mile. Based on

the difference between the log of 15 and the log of 55 divided by 6 and the difference

between the log of 25 and the log of 35 divided by six, the prior distribution for

σ2 in the swim event was centered at 0.03 with a standard deviation of 0.01.

The parameter β is the “growth” rate of the finishing times. To choose

a prior distribution for β in each of the three triathlon components, we calcu-

lated predicted finishing times for several different values of β at two different

distances. We looked at the change in the finishing time between the two dis-

tances to determine what values of β gave reasonable changes in finishing times

for the corresponding change in distance. For example, Table 3.4 contains pre-

dicted finishing times for a 1.0 mile and a 1.5 mile swim. These finishing times

were computed using equation (3.8) with the means of the prior distributions for

τ1 and τ2 and several values of β. For β = 0.1, the increase in time between a 1.0

mile swim and a 1.5 mile swim is 15 minutes. This implies that the average triath-

lete would finish the third half mile of a 1.5 mile swim at a pace slightly faster

than the pace of the first half mile. For β = 1.3, the increase in time between
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Table 3.4: Possible values for β and their corresponding finishing times for a swim
of 1.0 mile and 1.5 miles. The means of the prior distributions for τ1 and τ2

were used in equation(3.8) along with the values of β in the table to calculate the
predicted finishing times.

β Finish Time for 1 mile Finish Time for 1.5 miles Difference

0.1 32 47 15
0.3 32 49 17
0.5 32 51 18
0.7 33 53 20
0.9 33 55 22
1.1 33 57 24
1.3 34 59 25

a 1.0 mile swim and 1.5 mile swim is 25 minutes. This implies that the average

triathlete would finish the third half mile of a 1.5 mile race at a pace nearly twice

as slow as the pace of the first half mile. Both of the above scenarios are unlikely;

thus, a normal prior distribution with a mean of 0.6 and a standard deviation of

0.2 was chosen for β in the swim model. This prior distribution places most of

the density over the more plausible intermediary values of β.

A priori, we knew very little about the parameter α. However, we believed

the parameter to be nonzero in each event. We chose a value for α (based on

several plots of the three-parameter lognormal distribution—see Figure 4.2) to

be the mean of the prior distributions for α and chose a large variance for each

distribution. A priori, we had no reason to believe that the peakedness parameter

in each event should be different from the peakedness parameter in another event.

Thus, the prior distribution for α in each event has a mean of 20 and a variance

of 100.
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3.3.3 Computation

The joint posterior distribution of τ1, τ2, β, α, and σ2 has no closed form

solution, so a simulation approach was used to approximate the posterior distribu-

tion. Gibbs sampling, as used by Gelfand and Smith (1990), is an algorithm that

is especially suited to statistical problems that involve multiple parameters. The

Gibbs sampling algorithm requires the use of complete conditional distributions

for each parameter. As explained in chapter 2, the complete conditional distribu-

tion for a parameter θj is the distribution of θj| θ1, . . . , θj−1, θj+1, . . . , θk. For the

model of the triathlon data, the complete conditionals are as follows, where the

notation [θ] means the distribution of θj| θ1, . . . , θj−1, θj+1, . . . , θk:

[τ1] ∝ τ
aτ1−1
1 exp

{
−τ1bτ1 −

1

2σ2

n∑
i=1

[ln(xi + α) − µ]2
}

[τ2] ∝ τ
aτ2−1
2 exp

{
−τ2bτ2 −

1

2σ2

n∑
i=1

[ln(xi + α) − µ]2
}

[β] ∝ exp

{
− 1

2s2
(β − m)2 − 1

2σ2

n∑
i=1

[ln(xi + α) − µ]2
}

[
σ2

] ∝ (σ2)aσ−1 exp

{
−σ2bσ − 1

2σ2

n∑
i=1

[ln(xi + α) − µ]2
}

[α] ∝ αaα−1

n∏
i=1

(xi + α)−1 exp

{
−αbα − 1

2σ2

n∑
i=1

[ln(xi + α) − µ]2
}

These complete conditional distributions were coded in C and used to obtain draws

from the posterior distributions of each parameter in each event.
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3.3.4 Posterior Summaries

The results of a Bayesian statistical model can be summarized by descrip-

tive statistics on the posterior distributions of the parameters. Summary statistics

for posterior distributions should include measures of central tendency and mea-

sures of spread. Thus, for the triathlon model, posterior means and standard

deviations were calculated and reported for each parameter in the model in each

of the three triathlon components. Credible intervals give a range of possible

values for the “true” value of the parameter at a certain probability. Thus, cred-

ible intervals were also computed for each parameter in the model in each of the

triathlon components.

3.3.5 Model Checking

For any statistical model, the model must be checked to see if it appro-

priately fits the data. Normal probability plots were used to check the fit of the

model for triathlon finishing times. For a random variable X distributed as a

three-parameter lognormal, the distribution of ln(X + α) is normal. Thus normal

probability plots were constructed for the residuals in each triathlon component.

In the triathlon model, the residuals are defined as

ln(X + α̂) − µ̂, (3.10)

where α̂ is the posterior mean for α, µ̂ = τ1 + (τ̂2 − τ̂1)
1−e−β̂(d−δ1)

1−e−β̂(δ2−δ1)
, and τ̂1, τ̂2, and

β̂ are the posterior means for τ1, τ2, and β.
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Chapter 4

Results

This chapter is a paper that was submitted to the Western North American

Region of the International Biometric Society (WNAR) on May 25, 2004, for a

student paper competition. The paper summarizes the major results of the model

described in Chapter 3.

4.1 Introduction

According to popular myth1, the first Ironman triathlon was conceived in a

bar in Hawaii. Chatting over a few beers, Naval Commander John Collins debated

with several others the following question: “Who are the toughest athletes—

swimmers, cyclists, or runners.” Collins suggested that to answer the question

athletes from each discipline should compete in an event that consists of all three

sports run back-to-back. Collins proposed a race comprised of the longest events

in swimming, cycling, and running then contested in Hawaii—the 2.4 mile Waikiki

Rough Water Swim, the 112 mile Around Oahu Bike Ride, and the 26.2 mile Hon-

olulu Marathon. So, in 1978, Collins and a little over a dozen others participated
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in the first Ironman triathlon.

The popularity of the Ironman triathlon increased dramatically after the

second Hawaii Ironman when Sports Illustrated ran a story on the 1979 winner

Tom Warren and ABC began coverage of the Hawaii triathlon in 1980. Soon, other

shorter-distance triathlons emerged. The Half-Ironman triathlon was formed by

taking half the distances of each event in the Ironman triathlon (1.2 mile swim,

56 mile bike, and a 13.1 mile run). The International Triathlon Union (ITU)

formed the Olympic triathlon by combining the longest event distances used in

races sanctioned by each of the major federations for swimming (the International

Federation for Swimming), cycling (International Cycling Union), and track (In-

ternational Association of Athletics Federations).2The Olympic Triathlon consists

of a 1.5 km (0.93 miles) swim, a 40 km (24.86 miles) bike, and a 10 km (6.21

miles) run.

Today, the three major triathlon types are the Olympic, Half-Ironman,

and Ironman triathlons. However, triathletes can compete in a plethora of other

triathlons of different distances. Sprint triathlons are composed of events of shorter

distances than the Olympic triathlon. Triathletes also compete in Double and

Triple Ironman triathlons, which—as their names imply—are twice and three times

the distance of the Ironman triathlon.

As the history of the modern triathlon indicates, little consideration was

1 For Collins’ comments and clarifications on the genesis of the Ironman triathlon see http:
//vnews.ironmanlive.com/vnews//1043361628/?keywords=john:collins

2 See http://www.triathlon.org/tv/FAQs.htm.
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given to the relative importance of each event when forming the various triathlons.

In fact, empirical evidence indicates that the swimming portion of the modern

triathlon is extremely underweighted. Dengel et al. (1989), in a study of eleven

male triathletes, report that, “swimming time was not significantly related to

overall triathlon time.”

In a fair triathlon, a one standard deviation improvement in time in any of

the three triathlon components results in the same improvement in overall time.

As described in Section 4.2, the standard deviations in each component of a fair

trithlon are equal. Because finishing times in each triathlon component increase

with distance, a fair tritathlon can be constructed by finding distances for each

event such that event standard deviations are the same. Thus, a statistical model

for triathlon finishing times can be used to find the appropriate distances that

equate the standard deviations in each triathlon component. In this paper we

present a Bayesian model for finishing times in each of the components of the

modern triathlon. We use this model to construct several “fair” triathlons of

different distances and provide a general ratio of event distances for constructing

fair triathlons.

4.2 The Fair Triathlon Defined

The fair triathlon is defined as a triathlon in which a one standard deviation

improvement in time in any of the individual triathlon components results in the

same improvement in overall triathlon time. This “fair” result can happen if the

37



standard deviations in each of the triathlon components are the same—that is, if

the standard deviations of finishing times in swimming, cycling, and running are

equal. For example, the overall finishing time to for an arbitrary triathlete in an

arbitrary triathlon can be written

to = ts + tb + tr

where to is the triathlete’s finishing time for the entire triathlon and ts, tb, and tr

are the triathlete’s finishing times for swimming, cycling, and running respectively.

Adding and subtracting the mean overall finishing time µo for all triathletes in

the triathlon gives

to = µo + ts + tb + tr − µs − µb − µr (4.1)

where µo = µs + µb + µr and µs, µb, and µr are the mean finishing times in swim-

ming, cycling, and running for all triathletes the triathlon. In the fair triathlon,

the standard deviations in each of the three events are equal. We represent this

standard deviation by σ. Then rearranging the terms and multiplying by one (σ
σ
)

gives

to = µo +
σ

σ
(ts − µs + tb − µb + tr − µr) (4.2)

to = µo + σ

(
ts − µs

σ
+

tb − µb

σ
+

tr − µr

σ

)

to = µo + σ (Zs + Zb + Zr) . (4.3)

Thus, if a triathlete finishes one standard deviation faster than the mean
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time in any of the triathlon components, equation 4.3 becomes one of

to = µo + σ (−1 + 0 + 0)

to = µo + σ (0 − 1 + 0)

to = µo + σ (0 + 0 − 1)

and the improvement in the overall time is the same (−σ) in each case.

If the standard deviations in each event are not the same, it is not possible

to distribute a common standard deviation in equation (4.2) to obtain equation

(4.3). However, rearranging and multiplying the terms on the right of equation

(4.1) by one gives

to = µo +
σs

σs

(ts − µs) +
σb

σb

(tb − µb) +
σr

σr

(tr − µr)

to = µo + σs

(
ts − µs

σs

)
+ σb

(
tb − µb

σb

)
+ σr

(
tr − µr

σr

)

to = µo + σs (Zs) + σb (Zb) + σr (Zr) (4.4)

If the standard deviations are not the same in each triathlon component, then the

components with the largest standard deviations have the largest influence on the

overall triathlon time. For example, the data set described in Section 4.3 estimates

the standard deviation in each of the race components of the an Ironman to be 8

minutes for the swim, 23 minutes for the bike, 23 minutes for the run. So, in a

Half Ironman triathlon, if a triathlete finishes one standard deviation better than

the mean in the swim, the overall time improves by only eight minutes. However,
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if the triathlete improves by one standard deviation in the bike or the run, the

overall time improves by about 23 minutes.

To correct for the difference in the standard deviations of triathlon compo-

nents, triathlon finishing times are modeled as a function of distance. This model

is fit three different times—one for swim times, one for bike times, and one for run

times. The three models are then used to find the distances of each event that

equate the standard deviations.

4.3 Data Description

The data are a collection of finishing times from 55 different triathlons

found on several different internet sites. The data set contains triathlons from 1996

to 2003. Table 4.1 contains information on the length of each triathlon component,

the number of triathlons, and the number triathletes for each triathlon type in

the data set. By far, the most numerous triathlons in the data set are the three

standard distance triathlons—Olympic, Half Ironman, and Ironman. However,

the shorter-distance sprint triathlons and the longer-distance double and triple

Ironman triathlons allow prediction of standard deviations at shorter or longer

distances when constructing the fair triathlon.

4.4 The Model

This section describes the model used to fit the triathlon finishing times.

Each event in a triathlon is modeled independently; therefore, the model described
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Table 4.1: Types of triathlons in the dataset and their respective distances in
miles for the swim, bike, and run. “Number” is the number of triathlons of that
type in the data set. “Triathletes” is the number of triathletes in the data set who
recorded a finishing time in that type of triathlon.

Type Swim Bike Run Number Triathletes

Sprint 1 0.249 10.00 3.00 1 269
Sprint 2 0.310 11.80 3.10 2 1,246
Sprint 3 0.500 20.00 6.20 2 60
Sprint 4 0.466 12.40 3.10 1 50
Sprint 5 0.249 9.32 3.10 1 116
Olympic 0.930 24.86 6.21 13 5,686
Half Ironman 1.200 56.00 13.10 10 5,168
Ironman 2.400 112.00 26.20 15 13,427
Double Ironman 4.800 224.00 52.40 5 53
Triple Ironman 7.200 336.00 78.60 5 30
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in this section is used to fit the data three different times—once to the swim times,

once to the bike times, and once to the run times.

4.4.1 Sampling Density Model

The sampling density in any model is the population density from which the

observations in the data are drawn. Thus, the sampling density should “match”

the data in terms of its general shape and its parameters. The shape of the

distribution is discussed in section 4.4.1.1, and the parameters of the distribution—

which must be modeled according to distance—are discussed in sections 4.4.1.2

and 4.4.1.3.

4.4.1.1 General Shape

The shape of the sampling density should approximately match the shape of

the data. Figure 4.1 is a plot of finishing times for swimming, cycling, and running

from three different triathlon types—the Olympic, Half Ironman, and Ironman.

As Figure 4.1 shows, finishing times in all three events and across triathlons of

different lengths are clearly nonnormal. In all cases, the data are right skewed

and, in some cases, have fairly thick tails. Thus, the sampling density for the

model must also be skewed and have flexibility in its tail thickness.

The three-parameter lognormal distribution satisfies both concerns. The

lognormal distribution is right skewed, and the three-parameter lognormal distri-

bution has an extra parameter α (sometimes called the “peakedness parameter,”
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Figure 4.1: Histograms of the finishing times for each of the three events in the
Olympic, Half Ironman, and Ironman triathlons in the data set. Each histogram
is fit with a density smoother to highlight the shape of the data.
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see Gajewski, Sedwick, and Antonelli (2004)) that allows for greater thickness

in the tails of the distribution. This peakedness parameter makes the three-

parameter lognormal distribution a superior choice to the two-parameter lognor-

mal distribution. The two-parameter lognormal distribution lacks the flexibility

to simultaneously increase the density in both tails while keeping the same gen-

eral shape. Simply changing the parameter σ2 in the two-parameter lognormal

distribution results in an extremely skewed distribution that clearly does not fit

the triathlon data.

Figure 4.2 is a plot of three lognormal distributions. Each distribution in

the figure has E[X] = 40; but each distribution has a different value of the peaked-

ness parameter α. The three-parameter lognormal distribution with peakedness of

zero is simply the two-parameter lognormal distribution. The figure shows that,

as the peakedness parameter increases, more of the density shifts into the tails of

the distribution.

The density of the three-parameter lognormal is

f(x) =
1√

2πσ2(x + α)
e−

1
2σ2 [ln(x+α)−µ]2 (4.5)

where parameter α in (4.5) is the peakedness parameter, µ is the mean of the

distribution of ln(X + α), and σ2 is the variance of the distribution of ln(X + α).

The expected value and the variance of the three-parameter lognormal distribution
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Figure 4.2: The three parameter lognormal distribution with three different values
for the peakedness parameter α and E[X] = 40.
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are

E(X) = eµ+σ2/2 − α (4.6)

V (X) = e2µ+σ2

(eσ2 − 1) (4.7)

The square root of equation (4.7) is ultimately used for constructing the fair

triathlon. With the model for µ discussed in Section 4.4.1.2, equation (4.7) be-

comes a function of distance and can then be used to find distances in each event

that give the same standard deviation.

4.4.1.2 Central Moment Formulation

If X follows a lognormal distribution, then the parameter µ in the log-

normal density is the mean of ln(X). If X follows a three-parameter lognormal

distribution, then the parameter µ is the mean of ln(X + α), where α is the

peakedness parameter. Thus, any model for µ should closely fit the logarithm of

the data. Figure 4.3 shows plots of the log of finishing times for the three triathlon

events versus distance. The plots show a definite nonlinear trend in the means

for swimming, cycling, and running. Thus, any model for µ should reflect the

nonlinear relationship between the log of finishing time and distance.

Schnute (1981) presents a general class of growth models that are appealing

for nonlinear models. A special case of these growth models is used for modeling

µ. This model is

µ = τ1 + (τ2 − τ1)
1 − e−β(d−δ1)

1 − e−β(δ2−δ1)
, (4.8)
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Figure 4.3: Plots of the logarithm of event times versus distance. Scales on the x
and y axes are different for each plot.

where τ1 is the log of the sum of the peakedness parameter α and the time it takes

to complete an event (either swim, cycle, or run) of distance δ1, τ2 is the log of the

sum of the peakedness parameter α and the time it takes to complete an event of

distance δ2, β is the growth rate of finishing times according to distance, and d is

the actual distance of the event.

The model in equation (4.8) is particularly nice for Bayesian modeling

because of the interpretability of the parameters—τ1 and τ2. The parameters τ1

and τ2 are the log of the sum of αand finishing times for distances of δ1 and δ2.

This interpretability makes specifying prior distributions more manageable.

Although not as easily interpretable as τ1 and τ2, the parameter β has

some nice properties that useful in prior elicitation. Larger values of β give longer

finishing times for shorter distances than smaller values of β. So, for example, the

growth rate for swim times as a function of distance should be much larger than

the growth rate for cycling times.

Also, the value of β determines the shape of the growth curve. Positive
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values of β result in growth curves that are concave down. Negative values of β

result in growth curves that are concave up. Therefore, beliefs about the shape of

the growth in finishing times can be incorporated into the prior distributions for

β.

4.4.1.3 Higher Order Moment Formulations

If X follows a three-parameter lognormal distribution, the parameter σ2 is

the variance of ln(X + α). Thus, any model for σ2 must approximate the spread

of the log of the data. In Figure 4.3, the spread of the log finishing times at

each distance is approximately equal. Therefore, σ2 is modeled as constant for all

distances within an event (swimming, cycling, or running).

4.4.1.4 The Likelihood

The likelihood is now determined by equations (4.5) and (4.8). The likeli-

hood is

f(x|µ, α, σ2) =
1

(x + α)
√

2πσ2
e−

1
2σ2 (log(x+α)−µ)2 (4.9)

where, as mentioned previously, x is the finishing time, α is the peakedness pa-

rameter, σ2 is the variance of ln(X + α), and µ is a function of the distance d of

the event according to the growth curve τ1 + (τ2 − τ1)
1−e−β(d−δ1)

1−e−β(δ2−δ1) . The quantities

δ1 and δ2 are not parameters but are constants that are chosen to be the distances

that correspond respectively to parameters τ1 and τ2. In each triathlon compo-

nent δ1 and δ2 are the distances corresponding to an Olympic triathlon and an
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Ironman triathlon, respectively. For example, in the swim component, δ1 = 0.93

and δ2 = 2.4.

4.4.2 Prior Distribution Model

The likelihood from equation (4.9) contains five parameters, thus a prior

distributions must be specified for τ1, τ2, β, α, and σ2for the three different events

in a triathlon. The choices for the distributional form of each prior distribution

are explained in this section. The choices for the parameter values for the prior

distributions are also discussed.

The parameters τ1 and τ2 are defined as the natural log of the sum of α and

finishing times for particular events of distances δ1 and δ2. Theoretically, τ1 and τ2

can be negative for certain values of finishing times and α (i.e. if the finishing time

and α sum to a number between zero and one). However, in each of the triathlon

components, the values of δ1 and δ2 correspond to the Olympic triathlon distances

and the Ironman triathlon distances, respectively. Times for competitors at these

distances always exceed one minute. Therefore, the quantities τ1 and τ2 are always

positive quantities. The gamma distribution is defined for positive real numbers,

and the gamma distribution is also flexible in its shape—it can be symmetric or

skewed. Therefore, we use gamma prior distributions for τ1 and τ2 in each event.

The peakedness parameter α and σ2 in the three-parameter lognormal dis-

tribution are both defined as a positive quantities. Again, the gamma distribution

is defined for positive real numbers and offers flexibility in its shape. Thus, as
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with τ1 and τ2 we use gamma prior distributions for α and σ2.

The parameter β represents the “growth rate” of finishing times. Theoreti-

cally, β can be either positive or negative, which suggests using a prior distribution

defined on the entire real line. Also, a priori, there is no reason to believe that

β is more likely take on larger values than smaller values (or smaller values than

larger values), which suggests using a symmetric prior distribution. Because of

these considerations, a normal prior distribution is used for β.

The prior distributions for each parameter are

π(τ1) ∝ τ1
aτ1−1e−τ1bτ1

π(τ2) ∝ τ2
aτ2−1e−τ2bτ2

π(β) ∝ e−
(β−m)2

2s2

π(σ2) ∝ (σ2)aσ−1e−σ2bσ

π(α) ∝ αaα−1e−αbα

where the values for the prior parameters are listed in Table 4.2.

The values in Table 4.2 were chosen using moment matching. In other

words, values for the mean and standard deviation of the prior distribution were

chosen first. Then the mean and standard deviation were used to solve for the

actual parameters of the prior distributions.

Values for the prior distribution of τ1 were chosen based on beliefs about

an average triathlete. Because τ1 is the log of the sum of α and the time it

takes to finish a race of distance δ1, we chose our prior for τ1 based on the log of
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Table 4.2: Table of parameter values for prior distributions for all three portions
of a triathlon.

Prior Parameter Swim Cycle Run

aτ1 1156.0 529.0 430.0
bτ1 340.0 115.0 104.0
aτ2 900.0 1600.0 529.0
bτ2 200.0 267.0 92.0
aα 4.0 4.0 4.0
bα 0.2 0.2 0.2
aσ 9.0 1.7 4.0
bσ 300.0 130.0 200.0
mβ 0.6 0.1 0.05
s2

β 0.04 0.25 2.25×10−4

Table 4.3: Table of means and standard deviations for prior distributions of each
parameter in the model. Distances δ1 and δ2 (in miles) are also listed for the
parameters τ1 and τ2.

Swim Bike Run
Prior Parameter Mean Std Dev Mean Std Dev Mean Std Dev

δ1= 0.93 δ1= 24.86 δ1= 6.21
τ1 3.4 0.1 4.6 0.2 4.15 0.2

δ2= 2.4 δ2= 112.0 δ2= 26.2
τ2 4.5 0.15 4.6 0.2 5.75 0.25
α 20.0 10.0 20.0 10.0 20.0 10.0
σ2 0.03 0.01 0.013 0.01 0.02 0.01
β 0.60 0.20 0.02 0.01 0.03 0.015
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the time we believed it would take an average triathlete to swim, bike, or run a

distance of δ1, where values for δ1 for each component are the Olympic triathlon

distances—0.93 mile swim, 24.86 mile bike, and a 6.21 mile run. By taking the log

of various plausible values for finishing times, we obtained an approximate mean

and variance for the prior distributions of τ1 in each of the triathlon components.

For example, based on our prior knowledge, we felt an average triathlete might take

as little as 20 minutes or as long as 40 minutes to swim 1500 meters in an Olympic

triathlon. Taking the log of 20 and 40 minutes suggests a prior distribution for τ1

with a mean of 3.4 and a standard deviation of 0.01. The mean and the variance

for the distributions of τ1 in the cycling and running events were obtained in a

similar fashion, and parameters for the gamma prior distributions were solved

using these means and standard deviations. Values for the parameters in the prior

distributions for τ2 were chosen similarly.

The parameter σ2 is the variance of the distribution of ln(X+α), which can

be thought of more simply as the variance of ln(X). The parameter values for the

prior distributions of σ2 are based on beliefs about the maximum and minimum

time it would take a triathlete to swim, bike, or run a specified distance. The

distances used for this were 1 mile for the swim, 25 miles for the bike, and 6 miles

for the run (which are the approximate distances of an Olympic triathlon). By

using the range of the log of the proposed maximum finishing times and the log of

the proposed minimum finishing times, we were able to obtain an estimates of the

variance of ln(X) in each triathlon component by dividing the range by six and
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squaring the result. For example, in the swim event, an extremely fast swimmer

might swim a mile in 15 minutes, and an extremely slow swimmer might take as

long as 55 minutes. Or, alternatively, a fast swimmer might take 25 minutes to

swim a mile, and a slow swimmer might take 45 minutes to swim a mile. Based on

the difference between the log of 15 and the log of 55 divided by 6 and the difference

between the log of 25 and the log of 35 divided by six, the prior distribution for

σ2 in the swim event was centered at 0.03 with a standard deviation of 0.01.

The parameter β is the “growth” rate of the finishing times. To choose

a prior distribution for β in each of the three triathlon components, we calcu-

lated predicted finishing times for several different values of β at two different

distances. We looked at the change in the finishing time between the two dis-

tances to determine what values of β gave reasonable changes in finishing times

for the corresponding change in distance. For example, Table 4.4 contains pre-

dicted finishing times for a 1.0 mile and a 1.5 mile swim. These finishing times

were computed using equation (4.8) with the means of the prior distributions for

τ1 and τ2 and several values of β. For β = 0.1, the increase in time between a 1.0

mile swim and a 1.5 mile swim is 15 minutes. This implies that the average triath-

lete would finish the third half mile of a 1.5 mile swim at a pace slightly faster

than the pace of the first half mile. For β = 1.3, the increase in time between

a 1.0 mile swim and 1.5 mile swim is 25 minutes. This implies that the average

triathlete would finish the third half mile of a 1.5 mile race at a pace nearly twice

as slow as the pace of the first half mile. Both of the above scenarios are unlikely;
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Table 4.4: Possible values for β and their corresponding finishing times for a swim
of 1.0 mile and 1.5 miles. The means of the prior distributions for τ1 and τ2 were
used in equation(4.4.1.3) along with the values of β in the table to calculate the
predicted finishing times.

β Finish Time for 1 mile Finish Time for 1.5 miles Difference

0.1 32 47 15
0.3 32 49 17
0.5 32 51 18
0.7 33 53 20
0.9 33 55 22
1.1 33 57 24
1.3 34 59 25

thus, a normal prior distribution with a mean of 0.6 and a standard deviation of

0.2 was chosen for β in the swim model. This prior distribution places most of

the density over the more plausible intermediary values of β.

A priori, we knew very little about the parameter α. However, we believed

the parameter to be nonzero in each event. We chose a value for α (based on

several plots of the three-parameter lognormal distribution—see Figure 4.2) to

be the mean of the prior distributions for α and chose a large variance for each

distribution. A priori, we had no reason to believe that the peakedness parameter

in each event should be different from the peakedness parameter in another event.

Thus, the prior distribution for α in each event has a mean of 20 and a variance

of 100.

4.5 Results

The joint posterior distribution for all parameters in the model is in-

tractable. Therefore, a MCMC approach was used to draw samples from the
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posterior distribution. Specifically, Gibbs sampling (Geman and Geman (1984))

was used to with nested Metropolis-Hastings algorithms(Metropolis, Rosenbluth,

Rosenbluth, Teller, and Teller (1953) and Hastings (1970)) to generate draws

from the posterior distributions of each parameter. We used the gibbsit software

(Raferty and Lewis (1996)) to check for convergence. After thinning the chains

for each parameter, the gibbsit output indicated that our chains had converged.

Table 4.5 contains a summary of the posterior distributions for each param-

eter in each model. As expected, the posterior mean for β in the swim is greater

than the posterior mean for β in the run, and the posterior mean for β in the run

is greater than the posterior mean for β in the bike. Also, the posterior distribu-

tions for the other parameters yielded sensible results according to their parameter

interpretations. For instance, the posterior mean for τ1 in the swim component is

3.381. Exponentiating this result and subtracting the posterior mean for α gives

a finishing time of 26 minutes. This finishing time is a reasonable finishing time

for a swim distance of 30 minutes.

Figure 4.4 is a plot that checks the fit of the model in each triathlon com-

ponent. As mentioned in Section 4.4, in a three-parameter lognormal distribution,

ln(X + α) is distributed normally with mean µ and variance σ2. The model for

triathlon finishing times models µ with equation (4.8). Figure 4.4, then, is a plot

of the log of the sum of the posterior mean of α and the finishing times in each

component. The line on the plot is equation (4.8) with the posterior means for

each of the parameters—τ1, τ2, β. The figure shows that our model for the mean

55



Table 4.5: Posterior means, posterior standard deviations, and credible intervals
for each parameter in the model for each triathlon component.

Swim
Parameter Mean Std. Dev. 2.5% LCL 97.5% UCL

τ1 3.381 0.029 3.325 3.440
τ2 4.463 0.019 4.424 4.501
β 0.561 0.028 0.508 0.616
σ2 0.039 0.004 0.032 0.047
α 3.204 0.758 1.802 4.792

Cycle
τ1 4.731 0.051 4.624 4.830
τ2 6.083 0.013 6.056 6.108
β 0.008 0.0004 0.007 0.009
σ2 0.011 0.001 0.009 0.014
α 46.231 5.451 35.322 57.077

Run
τ1 3.833 0.035 3.772 3.906
τ2 5.778 0.024 5.731 5.825
β 0.048 0.002 0.044 0.052
σ2 0.046 0.004 0.038 0.054
α 3.256 1.375 1.030 6.327
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seems reasonable in all three triathlon events.

However, Figure 4.5 provides another graphical model check. As mentioned

in Section 4.4.1.2, the distribution of ln(X + α) is normal in a three-parameter

lognormal distribution. Thus Figure 4.5 contains normal probability plots for the

residuals in our model. Because the ln(X+α) is follows a normal distribution when

X is distributed as a three-parameter lognormal random variable, the residuals

are calculated as

ln(X + α̂) − µ̂, (4.10)

where α̂ is the posterior mean for α, µ̂ = τ1 + (τ̂2 − τ̂1)
1−e−β̂(d−δ1)

1−e−β̂(δ2−δ1)
, and τ̂1, τ̂2, and

β̂ are the posterior means for τ1, τ2, and β. With the exception of a few outliers,

the plots in Figure 4.5 show no major departures from normality.

4.6 The Fair Triathlon

The standard deviation of the three-parameter lognormal distribution is

√
e2µ+σ2(eσ2 − 1). (4.11)

Notice that equation (4.11) is a function of the parameter µ. In the model for

each triathlon component, the parameter µ is modeled as a function of distance.

Thus, in the triathlon model, the standard deviation is a function of the distance.

Substituting equation (4.8) for µ into equation (4.11) gives√
e
2

[
τ1+(τ2−τ1) 1−e−β(d−δ1)

1−e−β(δ2−δ1)

]
+σ2

(eσ2 − 1). (4.12)
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Figure 4.4: Plots of the log of the sum of the posterior mean of αplus the finishing
time for each triathlon component. The line on the plot is equation (4.8) with the
posterior means of τ1, τ2, and β.
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Figure 4.5: Normal probability plots of the residuals for each event. The residuals
were calculated as the difference between the log of the sum of finishing time and
the posterior mean for alpha and the predicted value for µ at a given distance.

59



Table 4.6: Table of fair triathlon distances (in miles). Each triathlon is based on
a run distance of 10, 15, 20, or 25 kilometers. Also listed are the ratios of the bike
distances to the swim distances and the run distances to the swim distances.

Base Run Distance Swim Bike Run Bike/Swim Run/Swim

10k 1.5 18.0 6.2 11.8 4.1
15k 2.2 38.9 9.3 17.6 4.2
20k 2.9 46.6 12.4 19.3 4.0
25k 4.1 61.5 15.5 17.8 3.4

Thus equation (4.12) can be used along with parameter estimates (posterior means)

to find the distances in each triathlon component that give the same standard de-

viation.

Table 4.6 contains several fair triathlons of different lengths. Each triathlon

uses the run triathlon component as the base distance. In other words, the

triathlons were computed by using a run distance to solve for the standard de-

viation. Then, the distances for the swim and cycle components were solved for

that particular standard deviation. The run distances in Table 4.6 correspond to

distances of 10, 15, 20, 25, and 30 kilometers.

The first triathlon in Table 4.6 uses the same running distance as the

current Olympic Triathlon and, therefore, can be thought of as the fair Olympic

triathlon. The swim distance is approximately 60% longer and the bike distance is

about 28% shorter in the fair version of the Olympic triathlon than in the current

Olympic triathlon.

If a distance of 13.1 miles (the current run distance for the Half Ironman

triathlon)is used as the base run distance, then the swim and bike distances as-

sociated with a run distance of 13.1 miles are 3.4 and 64.8 miles respectively. As
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with the Olympic triathlon, the fair distance for the swim in a Half Ironman is

183% longer and the bike distance is about 16% longer than the current distances

for the swim and the bike in the Half Ironman.

If a distance of 26.2 miles (the current run distance for an Ironman triathlon)

is used as the base run distance, then the model calculates a swim distance much

longer than the longest swim distance in the data set. This distance is extremely

unreliable because of the lack of data at the longer distances. However, Table

4.6 also lists the ratios of the bike distances to the swim distances and the run

distances to swim distances for the triathlons in the table. These ratios suggest an

approximate rule of thumb for constructing the fair triathlon. This rule of thumb

is the ratio 1:17:4 of swim to bike to run. If the rule of thumb is used, then a fair

Ironman triathlon is a 6.6 mile swim, a 111.4 mile bike, and a 26.2 mile run. Once

again, the swim distance is 175% longer than the swim distance in the current

Ironman. However, the bike distance is the same.

The difficulty in calculating the fair Ironman underscores possible unreli-

ability in constructing a fair triathlon with the current data. The only data on

swimming distances longer than the 2.4 mile swim in the Ironman come from

Double and Triple Ironman triathlons. For obvious reasons, not many triathletes

compete in Double and Triple Ironman triathlons, which makes obtaining large

amounts of data at these distances impossible. And those triathletes who do par-

ticipate in Double and Triple triathlons cannot be considered “typical” triathletes

by any means. Thus predictions for fair triathlons that require swim distances
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longer than the current distances in the data set are unreliable, and predictions

for swim distances longer than 2.4 miles may be influenced by the types of triath-

letes that choose to compete in Double and Triple Ironman triathlons.

However, despite the lack of data at longer swim distances, the data clearly

show that the swimming portion of the triathlon is underweighted. Our model

gives a longer distance for the swim portion of the triathlon, which will clearly

improve the fairness of the triathlon regardless of the problems with the data.

In summary, the major triathlons of today are severely imbalanced in the

relative importance they place on each event. Strong swimmers are at a disadvan-

tage, not because of any lack of athleticism, but because of the improper relative

event distances of the major triathlons. We have presented a model for the fin-

ishing times in each event of a triathlon, and we have used this model to create

the fair triathlon. Based on the results of our model, we suggest a simple ratio

for constructing fair triathlons—1:17:4 for swim to bike to run. Only by using fair

triathlons can we ever hope to answer John Collins’ question, “Who are the better

athletes?”
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Chapter 5

Further Research and Contributions to Statistical Practice

This chapter discusses possible problems in the current model for triathlon

finishing times and suggests possible areas for further research. The first section

begins with a discussion of a hierarchical model for triathlon finishing times. The

next section discusses possible research in the covariance structure of triathlon

finishing times, and the last section discusses deficiencies in the data.

5.1 A Hierarchical Model

The model in Chapter 3 makes the implicit assumption of no differences

among different triathlons of the same distance (other than chance variation).

The parameter µ is modeled as a function of distance but is not allowed to vary

from one triathlon to another. The parameters σ2 and α are also not allowed to

vary from one triathlon to another. Given that each triathlon is competed in a

different part of the world and under different weather, water, and road conditions,

the assumption that there are no differences among triathlons of the same distance

seems tenuous.
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A hierarchical model can easily model differences between triathlons. This

model is listed as follows. Let yij be the finishing time in a triathlon component

for the jth triathlete in the ith triathlon. Now let yij follow a three-parameter log-

normal distribution with parameters θi, σ2
i , and αi. Thus, each of the parameters

in the three-parameter lognormal distribution are allowed to vary from triathlon

to triathlon. Now let σ2
i follow a gamma distribution with parameters γσ and ξσ

and αi follow a gamma distribution with parameters γα and ξα, where γσ2 , ξσ2 ,

γα, and ξα all follow independent gamma distributions. Let θi follow a normal

distribution with mean µ and variance σ2
µ, where µ = τ1 + (τ2 − τ1)

1−e−β(d−δ1)

1−e−β(δ2−δ1) .

Finally, let τ1, τ2, and β follow the distributions specified in Chapter 3.

With this hierarchical model, each triathlon is allowed to have its own

parameters θ and σ2, and its own peakedness parameter α. This additional flexi-

bility allows the model to account for differences in triathlons that are due to the

different locations and/or different weather conditions, etc., of each triathlon.

5.2 Covariance Structure

Another implicit assumption in the model described in Chapter 3 is inde-

pendence of triathlon components. Modeling each component separately implies

that knowing the finishing time of a triathlete in one component of a triathlon

gives no information about where the triathlete finished in another component

of the event. This is not a very realistic assumption. A more realistic model

should take into account that triathletes who finish with good times in one of the
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components are likely the finish with good times in the other components, and

triathletes who finish with poor times are likely to finish with poor times in the

other triathlon components.

5.3 Sparsity of Data

Another complication in modeling triathlon finishing times was already

mentioned in Chapter 4—the lack of data at swimming distances longer than 2.4

miles. All triathlons in competition today have a swim distance that is too short

for the triathlon to be fair. The only data available on triathlons with swim

distances longer than 2.4 miles is from Double and Triple Ironman triathlons. Not

surprisingly, very few triathletes participate in these events. This lack of data

could make inference at longer swim distances unreliable.

However, if the triathlon community embraces the idea of a fair triathlon,

more triathlons will be organized with relatively longer swim distances. When

this happens, more data will be available at longer swim distances, which will

make the estimates for longer fair triathlons (i.e. a triathlon with a swim distance

longer than 2.4 miles) more reliable.

5.4 Contributions to Statistical Practice

One of the main focuses of statistical research is to produce novel ways to

model data that are appropriate for a given data set. The model for triathlon

finishing times uses two statistical techniques that are unique in the statistical
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literature. The first is the use of a nonlinear function to model the parameter µ

in a lognormal distribution. This model was fit using a Bayesian paradigm that

incorporated prior information about model parameters. The fair triathlon could

be constructed because the nonlinear function for µ accurately captured trends

over different distances seen in the data and because the standard deviation in a

lognormal distribution is a function of µ.

The second technique is the idea of balancing the relative importance of

related physical phenomena by equating their uncertainty. In the triathlon model,

the physical phenomena are the individual events in a triathlon and the uncertainty

is represented by the standard deviations in each event. The triathlon model

provides a way to create the fair triathlon by equating the standard deviations in

each triathlon component.
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Appendix A

Data Sources

The internet sources for all triathlons in the data set are listed in Table

A.1.

67



Table A.1: Internet sources for the triathlons in the dataset.

Triathlon Internet Site
2001 Ironman World Championship www.ironmanlive.com

1999 Blackwater Triathlon www.coolrunning.com

1997 Boulderpeak Triathlon www.boulderpeak.com

1998 Boulderpeak Triathlon www.boulderpeak.com

1999 Boulderpeak Triathlon www.boulderpeak.com

2001 Ironman Japan www.ironmanlive.com

2002 Ironman Japan www.ironmanlive.com

2003 Ironman Brazil www.ironmanlive.com

2001 Ironman California www.ironmanlive.com

2002 Half Ironman California www.ironmanlive.com

1996 Ironman Hawaii www.bigbowls.com

2001 Ironman Florida www.ironmanflorida.com

1997 Keauhou Kona Half Ironman www.keauhoutriathlon.com

1998 Keauhou Kona Half Ironman www.keauhoutriathlon.com

1997 Keauhou Kona Olympic Triathlon www.keauhoutriathlon.com

1998 Keauhou Kona Olympic Triathlon www.keauhoutriathlon.com

1999 Keauhou Kona Olympic Triathlon www.keauhoutriathlon.com

1999 Age Groups Triathlon www.tricalifornia.com

1999 Ironman Part www.geocities.com

2002 Ironman Lanzarote www.ironmalive.com

1999 College Olympic Triathlon www.tricalifornia.com

1999 High School Olympic Triathlon www.tricalifornia.com

2002 Ironman New Zealand www.ironmanlive.com

2001 Lake Placid Ironman www.ironmanusa.com

1997 Memphis in May Triathlon www.mimtri.org

1998 Memphis in May Triathlon www.mimtri.org

1998 Sri Chinmoy Sprint Triathlon www.sunsite.anu.edu.au

1999 Sri Chinmoy Sprint Triathlon www.sunsite.anu.edu.au

2001 Sri Chinmoy Sprint Triathlon www.sunsite.anu.edu.au

2003 Mansfield Short Course Triathlon www.onestepbeyond.org.uk

1999 Tupper Lake Sprint Triathlon www.tupperlakeinfo.com

2000 Tupper Lake Sprint Triathlon www.tupperlakeinfo.com

2003 Troon Sprint Triathlon www.ayrodynamic.uk.co

2002 Wed Dog Sprint Triathlon www.usat-se.org

1999 Odyssey Double Iron Triathlon www.angelfire.com

2000 Odyssey Double Iron Triathlon www.angelfire.com

2001 Odyssey Double Iron Triathlon www.angelfire.com

2002 Odyssey Double Iron Triathlon www.angelfire.com

2003 Odyssey Double Iron Triathlon www.angelfire.com

2000 Odyssey Triple Iron Triathlon www.angelfire.com

2001 Odyssey Triple Iron Triathlon www.angelfire.com

2002 Odyssey Triple Iron Triathlon www.angelfire.com

2003 Odyssey Triple Iron Triathlon www.angelfire.com

2001 Le Defi Mondial de l’Endurance www.angelfire.com
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Appendix B

Further Graphical Model Checks

This section contains several plots of the residuals that demonstrate the

fit of the model. Figure B.1 is a plot of the histograms of the residuals for the

swim, cycle, and run. The thick solid line on each plot is a normal density with

mean equal to the mean of the residuals and variance equal to the variance of the

residuals. The thin line on each plot is a density smooth of the residuals The plots

show that for the swim and the run the normal distribution is a particularly good

fit. Although the plot for the bike residuals does not fit a normal distribution as

well as the plots for the swim and the run residuals, the density smooth for the

bike is approximately symmetric and single peaked.

Figures B.2, B.3, B.4, B.5, B.6, and B.7 check the normality of the residuals

at each of the unique distances in the data set for each of the triathlon components.

Figures B.2 and B.3 show that the residuals are normally distributed for most

distances in the swim event. However, there are some outliers at the 7.2 mile

distance that might indicate a lack of normality at this distance. Figures B.4

and B.5 show no major departures from normality at any of the individual bike
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distances. Figures B.6 and B.7 show that, at most distances, the run residuals

are roughly normal. However, the plot for a distance of 6.2 miles contains four

outliers which could indicate a lack of normality. The plot at a run distance of

13.1 miles shows a bimodal pattern, which could also indicate nonnormality.
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Figure B.2: Histograms of the residuals at each unique swim distance in the data
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Figure B.3: Normal probability plots of the residuals at each unique swim distance
in the data set.

73



Bike Dist =  9.32

residuals

D
en

si
ty

−0.10 0.05 0.20

0
2

4
6

8

Bike Dist =  10

residuals

D
en

si
ty

−0.05 0.05 0.15

0
2

4
6

8
10

Bike Dist =  11.8

residuals

D
en

si
ty

−0.15 0.00 0.15

0
1

2
3

4
5

6
7

Bike Dist =  12.4

residuals

D
en

si
ty

−0.10 0.05 0.20

0
2

4
6

8

Bike Dist =  20

residuals

D
en

si
ty

−0.15 0.00 0.15

0
1

2
3

4
5

Bike Dist =  24.86

residuals

D
en

si
ty

−0.2 0.0 0.2 0.4

0.
0

1.
0

2.
0

3.
0

Bike Dist =  56

residuals

D
en

si
ty

−0.2 0.0 0.2

0
1

2
3

4
5

Bike Dist =  112

residuals

D
en

si
ty

−0.2 0.0 0.2

0.
0

1.
0

2.
0

3.
0

Bike Dist =  224

residuals

D
en

si
ty

−0.3 0.0 0.2 0.4

0.
0

1.
0

2.
0

Bike Dist =  336

residuals

D
en

si
ty

−0.3 0.0 0.2 0.4

0
1

2
3

Figure B.4: Histograms of the residuals at each unique bike distance in the data
set. The thick line on the plot is a normal density with mean equal to the sample
mean of the residuals and variance equal to the sample variance of the residuals
at that distance. The thin line is a density smooth of the data.
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Figure B.5: Normal probability plots of the residuals at each unique bike distance
in the data set.
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Figure B.6: Histograms of the residuals at each unique run distance in the data
set. The thick line on the plot is a normal density with mean equal to the sample
mean of the residuals and variance equal to the sample variance at that distance.
The thin line is a density smooth of the data.
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Figure B.7: Normal probability plots of the residuals at each unique run distance
in the data set.
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Appendix C

Code: Posterior Simulation

This section contains the Gibbs sampling C-code used to generate simula-

tions from the posterior distributions of the parameters.

C.1 Swim Code

#include <stdio.h>

// For all standard print functions, file i/o, etc...

#include <string.h>

// For tokenizing and otherwise manipulating strings

#include <stdlib.h>

// For converting a string into a double precision number,

// and allocating memory

#include <fstream.h>

// For easier file i/o

#include <math.h>

// pow and exp functions

#include <gsl/gsl_rng.h>

// For random number generators

#include <gsl/gsl_randist.h>

// Random Gaussian Numbers

#include <time.h>

typedef struct data {

double swimtime;

double biketime;

double runtime;

double bdist;
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double rdist;

double sdist;

} Data;

// Parameter values for priors

#define A_TAU1 1156.0

#define B_TAU1 340.0

#define A_TAU2 900.0

#define B_TAU2 200.0

#define A_ALPHA 4.0

#define B_ALPHA 0.2

#define A_SIG_SQ 9.0

#define B_SIG_SQ 300.0

#define M_BETA 0.06

#define S2_BETA 0.04

#define DELTA1 0.93

#define DELTA2 2.40

unsigned long REPS = 0;

double sumit(Data*,double,double,double,double);

double lccTau1(Data*,double,double,double,double,double);

double lccTau2(Data*,double,double,double,double,double);

double lccBeta(Data*,double,double,double,double,double);

double lccSigmaSq(Data*,double,double,double,double,double);

double lccAlpha(Data*,double,double,double,double,double);

double sigCandTau1 = 1.0,

sigCandTau2 = 1.0,

sigCandBeta = 1.0,

sigCandSigSq = 1.0,

sigCandAlpha = 1.0;

// Counts how many rows have been read in

int numData = 0;

int main(int argc, char **argv)

{

// Used for reading one token at a time.

char *token;

// Allocate enough memory to hold all the data
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Data *triData = (Data*)malloc(sizeof(Data)*26106);

// Get filename from argument list given on commandline.

char *dataFilePath = argv[1];

// The second parameter will be the output file name.

char *outputFilename = argv[2];

// Create a buffer to read file

char buffer[1024];

char* filebuffer;

// Create an object that READS a file

ifstream fileD;

fileD.open(dataFilePath);

// fileD.open("f:/master’s project/deleteme2.csv");

if(!fileD)

printf("Could not open file.");

//read in entire csv file:

// get length of file:

fileD.seekg (0, ios::end);

int length = fileD.tellg();

//set length greater by one to make last bytes NULL

length++;

fileD.seekg (0, ios::beg);

// allocate memory:

filebuffer = new char [length];

// make the whole filebuffer NULLs

memset(filebuffer, ’\0’, length);

// read data as a block:

fileD.read (filebuffer,length);

fileD.close();

/**********************************************/

/****** Read in the Candidate Sigma File ******/

/**********************************************/
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// Read in candidate sigma file

ifstream candidateFile;

candidateFile.open("candidate.txt");

while(!candidateFile.eof())

{

candidateFile.getline(buffer, 1024, ’\n’);

token = strtok(buffer, "=");

if( (token != NULL) && (strcmp(token, "sigCandTau1") == 0) )

{

sigCandTau1 = strtod( strtok(NULL, "="), NULL );

}

if( (token != NULL) && (strcmp(token, "sigCandTau2") == 0) )

{

sigCandTau2 = strtod( strtok(NULL, "="), NULL );

}

if( (token != NULL) && (strcmp(token, "sigCandBeta") == 0) )

{

sigCandBeta = strtod( strtok(NULL, "="), NULL );

}

if( (token != NULL) && (strcmp(token, "sigCandSigSq") == 0) )

{

sigCandSigSq = strtod( strtok(NULL, "="), NULL );

}

if( (token != NULL) && (strcmp(token, "sigCandAlpha") == 0) )

{

sigCandAlpha = strtod( strtok(NULL, "="), NULL );

}

if( (token != NULL) && (strcmp(token, "REPS") == 0) )

{

REPS = strtol( strtok(NULL, "="), NULL, 10);

}

}

printf("Using the following values for candidate sigmas:\n");

printf("sigCandTau1: %f\n
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sigCandTau2: %f\n

sigCandBeta: %f\n

sigCandAlpha: %f\n

sigCandSigSq: %f\nREPS: %ld\n\n",

sigCandTau1,

sigCandTau2,

sigCandBeta,

sigCandSigSq,

sigCandAlpha,

REPS);

/***********************************/

/****** Read in the Data File ******/

/***********************************/

//Print Header (7 tokens long)

token = strtok(filebuffer, ",");

printf("Stripping headers -----\n");

for(int cnt = 0; cnt < 6; cnt++)

{

token = strtok(NULL, ", \n");

printf("%s ", token);

}

printf("\n");

token = strtok(NULL, ", \n");

while(token != NULL)

{

// swimtime

triData[numData].swimtime = strtod(token, NULL);

// biketime

token = strtok(NULL, ", \n");

triData[numData].biketime = strtod(token, NULL);

// runtime

token = strtok(NULL, ", \n");

triData[numData].runtime = strtod(token, NULL);

// sdist
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token = strtok(NULL, ", \n");

triData[numData].sdist = strtod(token, NULL);

// bdist

token = strtok(NULL, ", \n");

triData[numData].bdist = strtod(token, NULL);

// rdist

token = strtok(NULL, ", \n");

triData[numData].rdist = strtod(token, NULL);

// throw away describe (ignore it)

token = strtok(NULL, ", \n");

// Increment the number of datalines read.

numData++;

//Get next token on next line

token = strtok(NULL, ", \n");

}

printf("Data read in: %ld\n",numData);

unsigned long i; // Loop counter

// Lookin’ at the data

printf("First ten observations:\n");

for(i = 0; i < 10; i++)

{

printf("%f , %f ,%f\n",

triData[i].swimtime,

triData[i].biketime,

triData[i].runtime);

}

int c = getchar();

printf("\nLast ten observations:\n");

int j;

for(j = (numData-10);j < numData; j++)

{

printf("%f , %f , %f\n",

triData[j].swimtime,
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triData[j].biketime,

triData[j].runtime);

}

c = getchar();

// Done lookin’ at the data

unsigned long startTime = time(NULL);

double *tau1;

tau1 = new double[REPS];

double *tau2;

tau2 = new double[REPS];

double *beta;

beta = new double[REPS];

double *sigmaSq;

sigmaSq = new double[REPS];

double *alpha;

alpha = new double[REPS];

// Starting Values

tau1[0] = 3.524;

tau2[0] = 4.353;

beta[0] = 0.296;

sigmaSq[0] = 0.027;

alpha[0] = 10.429;

double candidate = 0.0;

// Initialize Random Number Generator

gsl_rng *runif = gsl_rng_alloc(gsl_rng_mt19937);

for(i = 1; i < REPS; i++)

{

if(!(i%250))

{ printf("[%ld of %ld] %f%% done. Time: %ld secs.\n",

i,

REPS,

(double)i/(double)REPS*100.0,

time(NULL) - startTime);

}

// Update TAU1

tau1[i] = tau1[i-1];
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candidate = tau1[i-1] + gsl_ran_gaussian(runif,sigCandTau1);

if( candidate > 0.0 )

{

double temp =

lccTau1( triData,

candidate,

tau2[i-1],

beta[i-1],

sigmaSq[i-1],

alpha[i-1]) -

lccTau1( triData,

tau1[i-1],

tau2[i-1],

beta[i-1],

sigmaSq[i-1],

alpha[i-1]);

double u = gsl_rng_uniform(runif);

if( log(u) < temp )

{

tau1[i] = candidate;

}

}

// Update TAU2

tau2[i] = tau2[i-1];

candidate = tau2[i-1] + gsl_ran_gaussian(runif,sigCandTau2);

if( candidate > 0.0 )

{

double temp =

lccTau2( triData,

tau1[i],

candidate,

beta[i-1],

sigmaSq[i-1],

alpha[i-1]) -

lccTau2( triData,

tau1[i],

tau2[i-1],

beta[i-1],

sigmaSq[i-1],

alpha[i-1]);

double u = gsl_rng_uniform(runif);

if( log(u) < temp )
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{

tau2[i] = candidate;

}

}

// Update BETA

beta[i] = beta[i-1];

candidate = beta[i-1] + gsl_ran_gaussian(runif,sigCandBeta);

double temp =

lccBeta( triData,

tau1[i],

tau2[i],

candidate,

sigmaSq[i-1],

alpha[i-1]) -

lccBeta( triData,

tau1[i],

tau2[i],

beta[i-1],

sigmaSq[i-1],

alpha[i-1]);

double u = gsl_rng_uniform(runif);

if( log(u) < temp )

{

beta[i] = candidate;

}

// Update SIGMASQ

sigmaSq[i] = sigmaSq[i-1];

candidate = sigmaSq[i-1] + gsl_ran_gaussian(runif,sigCandSigSq);

if( candidate > 0.0 )

{

double temp =

lccSigmaSq( triData,

tau1[i],

tau2[i],

beta[i],

candidate,

alpha[i-1]) -

lccSigmaSq( triData,

tau1[i],

tau2[i],
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beta[i],

sigmaSq[i-1],

alpha[i-1]);

double u = gsl_rng_uniform(runif);// = runiform

if( log(u) < temp )

{

sigmaSq[i] = candidate;

}

}

// Update ALPHA

alpha[i] = alpha[i-1];

candidate = alpha[i-1] + gsl_ran_gaussian(runif,sigCandAlpha);

if( candidate > 0.0 )

{

double temp =

lccAlpha( triData,

tau1[i],

tau2[i],

beta[i],

sigmaSq[i],

candidate) -

lccAlpha( triData,

tau1[i],

tau2[i],

beta[i],

sigmaSq[i],

alpha[i-1]);

double u = gsl_rng_uniform(runif);// = runiform

if( log(u) < temp )

{

alpha[i] = candidate;

}

}

}

unsigned long endTime = time(NULL);

printf("** Elapsed time: %ld\n", endTime - startTime);

// Write out the parameters to a CSV (comma sep) file. 4 columns.

ofstream params;

params.open(outputFilename);
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params << "Tau1,Tau2,Beta,SigmaSq,Alpha" << endl;

for(i = 0; i < REPS; i++)

{

params << tau1[i] << ","

<< tau2[i] << ","

<< beta[i] << ","

<< sigmaSq[i] <<","

<< alpha[i] << endl;

}

params.close();

return 0;

}

double sumit(Data *list,

double tau1,

double tau2,

double beta,

double alpha)

{

double sum = 0.0;

double inner = 0.0;

double multiplier, eBetaDelta1, eMBeta;

multiplier = (tau2 - tau1) /

(1 - exp( -beta*(DELTA2 - DELTA1) ) );

eBetaDelta1 = exp( beta * DELTA1 );

eMBeta = exp(-beta);

for(int i = 0; i < numData; i++)

{

inner =

log(list[i].swimtime + alpha) -

(tau1 +

multiplier * ( 1.0 - eBetaDelta1 * pow(eMBeta, list[i].sdist) ) );

inner = inner*inner;

sum += inner;

}

return sum;

}
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double lccTau1(Data *list,

double tau1,

double tau2,

double beta,

double sigmaSq,

double alpha)

{

double result = 0.0;

result = (A_TAU1 - 1) * log(tau1) -

tau1 * B_TAU1 -

sumit(list, tau1, tau2, beta, alpha) / (2.0 * sigmaSq);

return result;

}

double lccTau2(Data *list,

double tau1,

double tau2,

double beta,

double sigmaSq,

double alpha)

{

double result = 0.0;

result = (A_TAU2 - 1) * log(tau2) -

tau2 * B_TAU2 -

sumit(list, tau1, tau2, beta, alpha) / (2.0 * sigmaSq);

return result;

}

double lccBeta(Data *list,

double tau1,

double tau2,

double beta,

double sigmaSq,

double alpha)

{

double result = 0.0;

result = -(beta - M_BETA) * (beta - M_BETA) / (2*S2_BETA) -
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sumit(list, tau1, tau2, beta, alpha) /(2 * sigmaSq);

return result;

}

double lccSigmaSq(Data *list,

double tau1,

double tau2,

double beta,

double sigmaSq,

double alpha)

{

double result = 0.0;

result = (A_SIG_SQ - numData/2 - 1) * log(sigmaSq) -

sigmaSq * B_SIG_SQ -

sumit(list, tau1, tau2, beta, alpha) / (2.0 * sigmaSq);

return result;

}

double lccAlpha(Data *list,

double tau1,

double tau2,

double beta,

double sigmaSq,

double alpha)

{

double result = 0.0;

double sum = 0.0;

double temp = 0.0;

for(int i = 0; i < numData; i++)

{

temp = log( list[i].swimtime + alpha );

sum += temp;

}

result = -sum -

sumit(list, tau1, tau2, beta, alpha) / (2.0 * sigmaSq) -

alpha * B_ALPHA + (A_ALPHA - 1) * log(alpha) ;

return result;

}

90



C.2 Bike Code

#include <stdio.h>

// For all standard print functions, file i/o, etc...

#include <string.h>

// For tokenizing and otherwise manipulating strings

#include <stdlib.h>

// For converting a string into a double precision number,

// and allocating memory

#include <fstream.h>

// For easier file i/o

#include <math.h>

// pow and exp functions

#include <gsl/gsl_rng.h>

// For random number generators

#include <gsl/gsl_randist.h>

// Random Gaussian Numbers

#include <time.h>

typedef struct data {

double swimtime;

double biketime;

double runtime;

double bdist;

double rdist;

double sdist;

} Data;

// Parameter values for priors

#define A_TAU1 529.0

#define B_TAU1 115.0

#define A_TAU2 1600.0

#define B_TAU2 266.7

#define A_ALPHA 4.0

#define B_ALPHA 0.2

#define A_SIG_SQ 1.69

#define B_SIG_SQ 130.0

#define M_BETA 0.02

#define S2_BETA 0.0001

#define DELTA1 24.86

#define DELTA2 112.0
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unsigned long REPS = 0;

double sumit(Data*,double,double,double,double);

double lccTau1(Data*,double,double,double,double,double);

double lccTau2(Data*,double,double,double,double,double);

double lccBeta(Data*,double,double,double,double,double);

double lccSigmaSq(Data*,double,double,double,double,double);

double lccAlpha(Data*,double,double,double,double,double);

double sigCandTau1 = 1.0,

sigCandTau2 = 1.0,

sigCandBeta = 1.0,

sigCandSigSq = 1.0,

sigCandAlpha = 1.0;

// Counts how many rows have been read in

int numData = 0;

int main(int argc, char **argv)

{

// Used for reading one token at a time.

char *token;

// Allocate enough memory to hold all the data

Data *triData = (Data*)malloc(sizeof(Data)*26106);

// Get filename from argument list given on commandline.

char *dataFilePath = argv[1];

// The second parameter will be the output file name.

char *outputFilename = argv[2];

// Create a buffer for entire file.

char buffer[1024];

char* filebuffer;

// Create an object that READS a file

ifstream fileD;

fileD.open(dataFilePath);

if(!fileD)

printf("Could not open file.");

//read in entire csv file:
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// get length of file:

fileD.seekg (0, ios::end);

int length = fileD.tellg();

//set length greater by one to make last bytes NULL

length++;

fileD.seekg (0, ios::beg);

// allocate memory:

filebuffer = new char [length];

// make the whole filebuffer NULLs

memset(filebuffer, ’\0’, length);

// read data as a block:

fileD.read (filebuffer,length);

fileD.close();

/**********************************************/

/****** Read in the Candidate Sigma File ******/

/**********************************************/

// Read in candidate sigma file

ifstream candidateFile;

candidateFile.open("candidate.txt");

while(!candidateFile.eof())

{

candidateFile.getline(buffer, 1024, ’\n’);

token = strtok(buffer, "=");

if( (token != NULL) && (strcmp(token, "sigCandTau1") == 0) )

{

sigCandTau1 = strtod( strtok(NULL, "="), NULL );

}

if( (token != NULL) && (strcmp(token, "sigCandTau2") == 0) )

{

sigCandTau2 = strtod( strtok(NULL, "="), NULL );

}

if( (token != NULL) && (strcmp(token, "sigCandBeta") == 0) )
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{

sigCandBeta = strtod( strtok(NULL, "="), NULL );

}

if( (token != NULL) && (strcmp(token, "sigCandSigSq") == 0) )

{

sigCandSigSq = strtod( strtok(NULL, "="), NULL );

}

if( (token != NULL) && (strcmp(token, "sigCandAlpha") == 0) )

{

sigCandAlpha = strtod( strtok(NULL, "="), NULL );

}

if( (token != NULL) && (strcmp(token, "REPS") == 0) )

{

REPS = strtol( strtok(NULL, "="), NULL, 10);

}

}

printf("Using the following values for candidate sigmas:\n");

printf("sigCandTau1: %f\n

sigCandTau2: %f\n

sigCandBeta: %f\n

sigCandAlpha: %f\n

sigCandSigSq: %f\n

REPS: %ld\n\n",

sigCandTau1,

sigCandTau2,

sigCandBeta,

sigCandSigSq,

sigCandAlpha,

REPS);

/***********************************/

/****** Read in the Data File ******/

/***********************************/

//Print Header (7 tokens long)

token = strtok(filebuffer, ",");

printf("Stripping headers -----\n");
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for(int cnt = 0; cnt < 6; cnt++)

{

token = strtok(NULL, ", \n");

printf("%s ", token);

}

printf("\n");

token = strtok(NULL, ", \n");

while(token != NULL)

{

// swimtime

triData[numData].swimtime = strtod(token, NULL);

// biketime

token = strtok(NULL, ", \n");

triData[numData].biketime = strtod(token, NULL);

// runtime

token = strtok(NULL, ", \n");

triData[numData].runtime = strtod(token, NULL);

// sdist

token = strtok(NULL, ", \n");

triData[numData].sdist = strtod(token, NULL);

// bdist

token = strtok(NULL, ", \n");

triData[numData].bdist = strtod(token, NULL);

// rdist

token = strtok(NULL, ", \n");

triData[numData].rdist = strtod(token, NULL);

// throw away describe (ignore it)

token = strtok(NULL, ", \n");

// Increment the number of datalines read.

numData++;

//Get next token on next line
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token = strtok(NULL, ", \n");

}

printf("Data read in: %ld\n",numData);

unsigned long i; // Loop counter

// Lookin’ at the data

printf("First ten observations:\n");

for(i = 0; i < 10; i++)

{

printf("%f , %f , %f\n",

triData[i].swimtime,

triData[i].biketime,

triData[i].runtime);

}

int c = getchar();

printf("\nLast ten observations:\n");

int j;

for(j = (numData-10);j < numData; j++)

{

printf("%f , %f , %f\n",

triData[j].swimtime,

triData[j].biketime,

triData[j].runtime);

}

c = getchar();

// Done lookin’ at the data

unsigned long startTime = time(NULL);

double *tau1;

tau1 = new double[REPS];

double *tau2;

tau2 = new double[REPS];

double *beta;

beta = new double[REPS];

double *sigmaSq;

sigmaSq = new double[REPS];

double *alpha;

alpha = new double[REPS];
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// Starting Values

tau1[0] = 4.472;

tau2[0] = 6.069;

beta[0] = 0.00979;

sigmaSq[0] = 0.0208;

alpha[0] = 22.105;

double candidate = 0.0;

// Initialize Random Number Generator

gsl_rng *runif = gsl_rng_alloc(gsl_rng_mt19937);

for(i = 1; i < REPS; i++)

{

if(!(i%250))

{ printf("[%ld of %ld] %f%% done. Time: %ld secs.\n",

i,

REPS,

(double)i/(double)REPS*100.0,

time(NULL) - startTime); }

// Update TAU1

tau1[i] = tau1[i-1];

candidate = tau1[i-1] + gsl_ran_gaussian(runif,sigCandTau1);

if( candidate > 0.0 )

{

double temp =

lccTau1(triData,

candidate,

tau2[i-1],

beta[i-1],

sigmaSq[i-1],

alpha[i-1])-

lccTau1(triData,

tau1[i-1],

tau2[i-1],

beta[i-1],

sigmaSq[i-1],

alpha[i-1]);

double u = gsl_rng_uniform(runif);

97



if( log(u) < temp )

{

tau1[i] = candidate;

}

}

// Update TAU2

tau2[i] = tau2[i-1];

candidate = tau2[i-1] + gsl_ran_gaussian(runif,sigCandTau2);

if( candidate > 0.0 )

{

double temp =

lccTau2(triData,

tau1[i],

candidate,

beta[i-1],

sigmaSq[i-1],

alpha[i-1]) -

lccTau2(triData,

tau1[i],

tau2[i-1],

beta[i-1],

sigmaSq[i-1],

alpha[i-1]);

double u = gsl_rng_uniform(runif);

if( log(u) < temp )

{

tau2[i] = candidate;

}

}

// Update BETA

beta[i] = beta[i-1];

candidate = beta[i-1] + gsl_ran_gaussian(runif,sigCandBeta);

double temp =

lccBeta(triData,

tau1[i],

tau2[i],

candidate,
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sigmaSq[i-1],

alpha[i-1]) -

lccBeta(triData,

tau1[i],

tau2[i],

beta[i-1],

sigmaSq[i-1],

alpha[i-1]);

double u = gsl_rng_uniform(runif);

if( log(u) < temp )

{

beta[i] = candidate;

}

// Update SIGMASQ

sigmaSq[i] = sigmaSq[i-1];

candidate = sigmaSq[i-1] + gsl_ran_gaussian(runif,sigCandSigSq);

if( candidate > 0.0 )

{

double temp =

lccSigmaSq( triData,

tau1[i],

tau2[i],

beta[i],

candidate,

alpha[i-1]) -

lccSigmaSq( triData,

tau1[i],

tau2[i],

beta[i],

sigmaSq[i-1],

alpha[i-1]);

double u = gsl_rng_uniform(runif);// = runiform

if( log(u) < temp )

{

sigmaSq[i] = candidate;

}

}

// Update ALPHA

alpha[i] = alpha[i-1];

candidate = alpha[i-1] + gsl_ran_gaussian(runif,sigCandAlpha);

if( candidate > 0.0 )
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{

double temp =

lccAlpha( triData,

tau1[i],

tau2[i],

beta[i],

sigmaSq[i],

candidate) -

lccAlpha( triData,

tau1[i],

tau2[i],

beta[i],

sigmaSq[i],

alpha[i-1]);

double u = gsl_rng_uniform(runif);// = runiform

if( log(u) < temp )

{

alpha[i] = candidate;

}

}

}

unsigned long endTime = time(NULL);

printf("** Elapsed time: %ld\n", endTime - startTime);

// Write out the parameters to a CSV (comma sep) file. 4 columns.

ofstream params;

params.open(outputFilename);

params << "Tau1,Tau2,Beta,SigmaSq,Alpha" << endl;

for(i = 0; i < REPS; i++)

{

params << tau1[i] << ","

<< tau2[i] << ","

<< beta[i] << ","

<< sigmaSq[i] <<","

<< alpha[i] << endl;

}

params.close();

return 0;
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}

double sumit( Data *list,

double tau1,

double tau2,

double beta,

double alpha)

{

double sum = 0.0;

double inner = 0.0;

double multiplier, eBetaDelta1, eMBeta;

multiplier = (tau2 - tau1) / (1 - exp( -beta*(DELTA2 - DELTA1) ) );

eBetaDelta1 = exp( beta * DELTA1 );

eMBeta = exp(-beta);

for(int i = 0; i < numData; i++)

{

inner = log(list[i].biketime + alpha) -

(tau1 + multiplier * ( 1.0 -

eBetaDelta1 * pow(eMBeta, list[i].bdist) ) );

inner = inner*inner;

sum += inner;

}

return sum;

}

double lccTau1( Data *list,

double tau1,

double tau2,

double beta,

double sigmaSq,

double alpha)

{

double result = 0.0;

result =

(A_TAU1 - 1) * log(tau1) - tau1 * B_TAU1 -

sumit(list, tau1, tau2, beta, alpha) / (2.0 * sigmaSq);

return result;
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}

double lccTau2( Data *list,

double tau1,

double tau2,

double beta,

double sigmaSq,

double alpha)

{

double result = 0.0;

result = (A_TAU2 - 1) * log(tau2) - tau2 * B_TAU2 -

sumit(list, tau1, tau2, beta, alpha) / (2.0 * sigmaSq);

return result;

}

double lccBeta( Data *list,

double tau1,

double tau2,

double beta,

double sigmaSq,

double alpha)

{

double result = 0.0;

result = -(beta - M_BETA) * (beta - M_BETA) / (2*S2_BETA) -

sumit(list, tau1, tau2, beta, alpha) /(2 * sigmaSq);

return result;

}

double lccSigmaSq(Data *list,

double tau1,

double tau2,

double beta,

double sigmaSq,

double alpha)

{

double result = 0.0;

result =

(A_SIG_SQ - numData/2 - 1) * log(sigmaSq) - sigmaSq * B_SIG_SQ -
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sumit(list, tau1, tau2, beta, alpha) / (2.0 * sigmaSq);

return result;

}

double lccAlpha(Data *list,

double tau1,

double tau2,

double beta,

double sigmaSq,

double alpha)

{

double result = 0.0;

double sum = 0.0;

double temp = 0.0;

for(int i = 0; i < numData; i++)

{

temp = log( list[i].biketime + alpha );

sum += temp;

}

result =

-sum - sumit(list, tau1, tau2, beta, alpha) / (2.0 * sigmaSq) -

alpha * B_ALPHA + (A_ALPHA - 1) * log(alpha) ;

return result;

}

C.3 Run Code

#include <stdio.h>

// For all standard print functions, file i/o, etc...

#include <string.h>

// For tokenizing and otherwise manipulating strings

#include <stdlib.h>

// For converting a string into a double precision number,

// and allocating memory

#include <fstream.h>

// For easier file i/o

#include <math.h>

// pow and exp functions

#include <gsl/gsl_rng.h>

// For random number generators

#include <gsl/gsl_randist.h>

// Random Gaussian Numbers
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#include <time.h>

typedef struct data {

double swimtime;

double biketime;

double runtime;

double bdist;

double rdist;

double sdist;

} Data;

#define A_TAU1 1156.0

#define B_TAU1 340.0

#define A_TAU2 430.5625

#define B_TAU2 103.75

#define A_ALPHA 4.0

#define B_ALPHA 0.2

#define A_SIG_SQ 4.0

#define B_SIG_SQ 200.0

#define M_BETA 0.03

#define S2_BETA 0.000225

#define DELTA1 6.21

#define DELTA2 26.2

unsigned long REPS = 0;

double sumit(Data*,double,double,double,double);

double lccTau1(Data*,double,double,double,double,double);

double lccTau2(Data*,double,double,double,double,double);

double lccBeta(Data*,double,double,double,double,double);

double lccSigmaSq(Data*,double,double,double,double,double);

double lccAlpha(Data*,double,double,double,double,double);

double sigCandTau1 = 1.0, sigCandTau2 = 1.0,

sigCandBeta = 1.0, sigCandSigSq = 1.0, sigCandAlpha = 1.0;

// Counts how many rows have been read in

int numData = 0;

int main(int argc, char **argv)

{
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// Used for reading one token at a time.

char *token;

// Allocate enough memory to hold all the data

Data *triData = (Data*)malloc(sizeof(Data)*26106);

// Get filename from argument list given on commandline.

char *dataFilePath = argv[1];

// The second parameter will be the output file name.

char *outputFilename = argv[2];

// Create a buffer to read entire file

char buffer[1024];

char* filebuffer;

// Create an object that READS a file

ifstream fileD;

fileD.open(dataFilePath);

if(!fileD)

printf("Could not open file.");

//read in entire csv file:

// get length of file:

fileD.seekg (0, ios::end);

int length = fileD.tellg();

//set length greater by one to make last bytes NULL

length++;

fileD.seekg (0, ios::beg);

// allocate memory:

filebuffer = new char [length];

// make the whole filebuffer NULLs

memset(filebuffer, ’\0’, length);

// read data as a block:

fileD.read (filebuffer,length);

fileD.close();

// Read in candidate sigma file

ifstream candidateFile;

candidateFile.open("candidate.txt");
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while(!candidateFile.eof())

{

candidateFile.getline(buffer, 1024, ’\n’);

token = strtok(buffer, "=");

if( (token != NULL) && (strcmp(token, "sigCandTau1") == 0) )

{

sigCandTau1 = strtod( strtok(NULL, "="), NULL );

}

if( (token != NULL) && (strcmp(token, "sigCandTau2") == 0) )

{

sigCandTau2 = strtod( strtok(NULL, "="), NULL );

}

if( (token != NULL) && (strcmp(token, "sigCandBeta") == 0) )

{

sigCandBeta = strtod( strtok(NULL, "="), NULL );

}

if( (token != NULL) && (strcmp(token, "sigCandSigSq") == 0) )

{

sigCandSigSq = strtod( strtok(NULL, "="), NULL );

}

if( (token != NULL) && (strcmp(token, "sigCandAlpha") == 0) )

{

sigCandAlpha = strtod( strtok(NULL, "="), NULL );

}

if( (token != NULL) && (strcmp(token, "REPS") == 0) )

{

REPS = strtol( strtok(NULL, "="), NULL, 10);

}

}

printf("Using the following values for candidate sigmas:\n");

printf("sigCandTau1: %f\n

sigCandTau2: %f\n

sigCandBeta: %f\n

sigCandAlpha: %f\n
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sigCandSigSq: %f\n

REPS: %ld\n\n",

sigCandTau1,

sigCandTau2,

sigCandBeta,

sigCandSigSq,

sigCandAlpha,

REPS);

//Print Header (7 tokens long)

token = strtok(filebuffer, ",");

printf("Stripping headers -----\n");

for(int cnt = 0; cnt < 6; cnt++)

{

token = strtok(NULL, ", \n");

printf("%s ", token);

}

printf("\n");

token = strtok(NULL, ", \n");

while(token != NULL)

{

// swimtime

triData[numData].swimtime = strtod(token, NULL);

// biketime

token = strtok(NULL, ", \n");

triData[numData].biketime = strtod(token, NULL);

// runtime

token = strtok(NULL, ", \n");

triData[numData].runtime = strtod(token, NULL);

// sdist

token = strtok(NULL, ", \n");

triData[numData].sdist = strtod(token, NULL);

// bdist

token = strtok(NULL, ", \n");
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triData[numData].bdist = strtod(token, NULL);

// rdist

token = strtok(NULL, ", \n");

triData[numData].rdist = strtod(token, NULL);

// throw away describe (ignore it)

token = strtok(NULL, ", \n");

// Increment the number of datalines read.

numData++;

//Get next token on next line

token = strtok(NULL, ", \n");

}

printf("Data read in: %ld\n",numData);

unsigned long i; // Loop counter

// Lookin’ at the data

printf("First ten observations:\n");

for(i = 0; i < 10; i++)

{

printf("%f , %f , %f\n",

triData[i].swimtime,

triData[i].biketime,

triData[i].runtime);

}

int c = getchar();

printf("\nLast ten observations:\n");

int j;

for(j = (numData-10);j < numData; j++)

{

printf("%f , %f , %f\n",

triData[j].swimtime,

triData[j].biketime,

triData[j].runtime);

}

c = getchar();

// Done lookin’ at the data
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unsigned long startTime = time(NULL);

double *tau1;

tau1 = new double[REPS];

double *tau2;

tau2 = new double[REPS];

double *beta;

beta = new double[REPS];

double *sigmaSq;

sigmaSq = new double[REPS];

double *alpha;

alpha = new double[REPS];

tau1[0] = 4.0;

tau2[0] = 5.0;

beta[0] = 0.068;

sigmaSq[0] = 0.036;

alpha[0] = 3.0;

double candidate = 0.0;

// Initialize Random Number Generator

gsl_rng *runif = gsl_rng_alloc(gsl_rng_mt19937);

for(i = 1; i < REPS; i++)

{

if(!(i%250))

{ printf("[%ld of %ld] %f%% done. Time: %ld secs.\n",

i,

REPS,

(double)i/(double)REPS*100.0,

time(NULL) - startTime); }

// Update TAU1

tau1[i] = tau1[i-1];

candidate = tau1[i-1] + gsl_ran_gaussian(runif,sigCandTau1);

if( candidate > 0.0 )

{

double temp =

lccTau1( triData,

candidate,
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tau2[i-1],

beta[i-1],

sigmaSq[i-1],

alpha[i-1]) -

lccTau1( triData,

tau1[i-1],

tau2[i-1],

beta[i-1],

sigmaSq[i-1],

alpha[i-1]);

double u = gsl_rng_uniform(runif);

if( log(u) < temp )

{

tau1[i] = candidate;

}

}

// Update TAU2

tau2[i] = tau2[i-1];

candidate = tau2[i-1] + gsl_ran_gaussian(runif,sigCandTau2);

if( candidate > 0.0 )

{

double temp =

lccTau2( triData,

tau1[i],

candidate,

beta[i-1],

sigmaSq[i-1],

alpha[i-1]) -

lccTau2( triData,

tau1[i],

tau2[i-1],

beta[i-1],

sigmaSq[i-1],

alpha[i-1]);

double u = gsl_rng_uniform(runif);

if( log(u) < temp )

{

tau2[i] = candidate;

}

}
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// Update BETA

beta[i] = beta[i-1];

candidate = beta[i-1] + gsl_ran_gaussian(runif,sigCandBeta);

double temp =

lccBeta( triData,

tau1[i],

tau2[i],

candidate,

sigmaSq[i-1],

alpha[i-1]) -

lccBeta( triData,

tau1[i],

tau2[i],

beta[i-1],

sigmaSq[i-1],

alpha[i-1]);

double u = gsl_rng_uniform(runif);

if( log(u) < temp )

{

beta[i] = candidate;

}

// Update SIGMASQ

sigmaSq[i] = sigmaSq[i-1];

candidate = sigmaSq[i-1] + gsl_ran_gaussian(runif,sigCandSigSq);

if( candidate > 0.0 )

{

double temp =

lccSigmaSq( triData,

tau1[i],

tau2[i],

beta[i],

candidate,

alpha[i-1]) -

lccSigmaSq( triData,

tau1[i],

tau2[i],

beta[i],

sigmaSq[i-1],
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alpha[i-1]);

double u = gsl_rng_uniform(runif);// = runiform

if( log(u) < temp )

{

sigmaSq[i] = candidate;

}

}

// Update ALPHA

alpha[i] = alpha[i-1];

candidate = alpha[i-1] + gsl_ran_gaussian(runif,sigCandAlpha);

if( candidate > 0.0 )

{

double temp =

lccAlpha( triData,

tau1[i],

tau2[i],

beta[i],

sigmaSq[i],

candidate) -

lccAlpha( triData,

tau1[i],

tau2[i],

beta[i],

sigmaSq[i],

alpha[i-1]);

double u = gsl_rng_uniform(runif);// = runiform

if( log(u) < temp )

{

alpha[i] = candidate;

}

}

}

unsigned long endTime = time(NULL);

printf("** Elapsed time: %ld\n", endTime - startTime);

// Write out the parameters to a CSV (comma sep) file. 4 columns.

ofstream params;

params.open(outputFilename);
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params << "Tau1,Tau2,Beta,SigmaSq,Alpha" << endl;

for(i = 0; i < REPS; i++)

{

params << tau1[i] << ","

<< tau2[i] << ","

<< beta[i] << ","

<< sigmaSq[i] <<","

<< alpha[i] << endl;

}

params.close();

return 0;

}

double sumit(Data *list,

double tau1,

double tau2,

double beta,

double alpha)

{

double sum = 0.0;

double inner = 0.0;

double multiplier, eBetaDelta1, eMBeta;

multiplier = (tau2 - tau1) /

(1 - exp( -beta*(DELTA2 - DELTA1) ) );

eBetaDelta1 = exp( beta * DELTA1 );

eMBeta = exp(-beta);

for(int i = 0; i < numData; i++)

{

inner = log(list[i].runtime + alpha) -

(tau1 + multiplier * ( 1.0 -

eBetaDelta1 * pow(eMBeta, list[i].rdist) ) );

inner = inner*inner;

sum += inner;

}

return sum;

}

double lccTau1(Data *list,
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double tau1,

double tau2,

double beta,

double sigmaSq,

double alpha)

{

double result = 0.0;

result = (A_TAU1 - 1) * log(tau1) - tau1 * B_TAU1 -

sumit(list, tau1, tau2, beta, alpha) / (2.0 * sigmaSq);

return result;

}

double lccTau2(Data *list,

double tau1,

double tau2,

double beta,

double sigmaSq,

double alpha)

{

double result = 0.0;

result = (A_TAU2 - 1) * log(tau2) - tau2 * B_TAU2 -

sumit(list, tau1, tau2, beta, alpha) / (2.0 * sigmaSq);

return result;

}

double lccBeta(Data *list,

double tau1,

double tau2,

double beta,

double sigmaSq,

double alpha)

{

double result = 0.0;

result = -(beta - M_BETA) * (beta - M_BETA) / (2*S2_BETA) -

sumit(list, tau1, tau2, beta, alpha) /(2 * sigmaSq);

return result;

}
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double lccSigmaSq(Data *list,

double tau1,

double tau2,

double beta,

double sigmaSq,

double alpha)

{

double result = 0.0;

result =

(A_SIG_SQ - numData/2 - 1) * log(sigmaSq) - sigmaSq * B_SIG_SQ -

sumit(list, tau1, tau2, beta, alpha) / (2.0 * sigmaSq);

return result;

}

double lccAlpha(Data *list,

double tau1,

double tau2,

double beta,

double sigmaSq,

double alpha)

{

double result = 0.0;

double sum = 0.0;

double temp = 0.0;

for(int i = 0; i < numData; i++)

{

temp = log( list[i].runtime + alpha );

sum += temp;

}

result =

-sum - sumit(list, tau1, tau2, beta, alpha) / (2.0 * sigmaSq) -

alpha * B_ALPHA + (A_ALPHA - 1) * log(alpha) ;

return result;

}
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Appendix D

Code: Model Summaries

This section contains the R Code used to make many of the tables and

graphs in this document.

D.1 Swim Code

This section contains R Code for mixing plots, posterior distributions,

gibbsit analysis, and model checking for the swim triathlon component.

rm(list=ls())

nonlin <-

function(x,tau1,tau2,beta,delta1=0.93,delta2=2.4)

{

tau1 + ( tau2 - tau1 ) * (1-exp(-beta*(x - delta1))) /

(1-exp(-beta*(delta2-delta1)))

}

pplnvar <- function(mu,sig2)

{

exp(2*mu)*( exp(sig2)*(exp(sig2)-1) )

}

##########################

#### Read in Raw Data ####

##########################

male.data <-

read.table("f:/master’s project/bigmale1.csv", sep=",", header=T)
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#male.data <-

read.table("f:/master’s project/rmale.csv", sep=",", header=T)

n <- nrow(male.data)

#######################################

#### Read in Posterior Simulations ####

#######################################

swim.output <-

read.table(file="c:/temp2/sout.txt",sep=",",header=T)

attach(swim.output)

##########################################

#### Read in Candidate Sigma Values ####

##########################################

cand.sigmas <- read.table(file="f:/ppswim/candidate.txt",sep="=")

total <- cand.sigmas[nrow(cand.sigmas),ncol(cand.sigmas)]

cand.sigmas <- cand.sigmas[1:ncol(swim.output),2]

start <- 10000

rubble <- (start+1):total

####################################

#### Compute "Stay" Percentages ####

####################################

count <- numeric(ncol(swim.output))

for(j in 1:ncol(swim.output))

{

temp1 <- swim.output[(start+1):total,j]

temp2 <- swim.output[start:(total-1),j]

stay <- temp1-temp2

stay <- as.numeric(stay != 0)

count[j] <- sum(stay)

}

pct.stay <- round(count/(total-start),d=3)*100

########################

#### Mixing Plots ####

########################

windows()

par(mfrow=c(3,2))

for(i in 1:ncol(swim.output))
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{

plot(swim.output[rubble,i],type="l",xlab="")

title(main=paste(names(swim.output)[i]," (Swim)"),

sub=

paste("Stay%= ",pct.stay[i]," | Cand.Sig = ",cand.sigmas[i]))

}

#############################

#### Just the Posteriors ####

#############################

tau1.ave <- mean(Tau1)

tau2.ave <- mean(Tau2)

beta.ave <- mean(Beta)

alpha.ave <- mean(Alpha)

sig2.ave <- mean(SigmaSq)

post.means <- c(tau1.ave,tau2.ave,beta.ave,sig2.ave,alpha.ave)

post.sd <- c(sd(Tau1),sd(Tau2),sd(Beta),sd(SigmaSq),sd(Alpha))

windows()

par(mfrow=c(3,2))

for ( i in 1:length(post.means) )

{

plot(density(swim.output[rubble,i]),

type="l",

lwd=3,

main="",

ylab="density",

xlab="")

title( main=paste(names(swim.output)[i]," (Swim)"),

sub=paste("Mean= ", round(post.means[i],d=3),

" | Std. Dev= ", round(post.sd[i],d=3)))

}

#############################################

## Line Plot Using Means of the Parameters ##

#############################################

logstimea <- log(male.data$swimtime+alpha.ave)

swim.dists <- sort(unique(male.data$sdist))

mean.logstimesa <-

tapply(logstimea,as.factor(male.data$sdist),mean)
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windows()

par(mfrow=c(1,1))

xx <- seq(0,max(male.data$sdist),len=100)

plot(male.data$sdist, logstimea,

col="gray",

ylab="log(swimtime + alpha)",

xlab="distance")

points(swim.dists, mean.logstimesa, pch=13, cex=2)

lines(xx, nonlin(xx,tau1.ave, tau2.ave, beta.ave))

title(main="Swim")

#######################

#### Model Check ####

#######################

fits <- mean.logstimesa[match(male.data$sdist,swim.dists)]

resids <- logstimea - fits

par(mfrow=c(3,3))

for( i in 1:length(swim.dists) )

{

qqnorm(resids[male.data$sdist==swim.dists[i]],

main=paste("Distance = ",swim.dists[i]))

}

#######################

#### Gibbsit Stuff ####

#######################

for ( i in c(2,5,10,20,30) )

{

thin <- seq(60000,140000, by=i)

print(gibbsit(swim.output[thin,]))

}

D.2 Bike Code

This section contains R Code for mixing plots, posterior distributions,

gibbsit analysis, and model checking for the bike triathlon component.
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rm(list=ls())

nonlin <-

function(x,tau1,tau2,beta,delta1=24.86,delta2=112.0)

{

tau1 + ( tau2 - tau1 ) * (1-exp(-beta*(x - delta1))) /

(1-exp(-beta*(delta2-delta1)))

}

pplnvar <- function(mu,sig2)

{

exp(2*mu)*( exp(sig2)*(exp(sig2)-1) )

}

##########################

#### Read in Raw Data ####

##########################

#male.data <-

read.table("f:/master’s project/bigmale1.csv", sep=",", header=T)

male.data <-

read.table("f:/master’s project/rmale.csv", sep=",", header=T)

n <- nrow(male.data)

#######################################

#### Read in Posterior Simulations ####

#######################################

bike.output <-

read.table(file="c:/temp2/bout.txt",sep=",",header=T)

attach(bike.output)

##########################################

#### Read in Candidate Sigma Values ####

##########################################

cand.sigmas <-

read.table(file="f:/ppbike/candidate.txt",sep="=")

total <- cand.sigmas[nrow(cand.sigmas),ncol(cand.sigmas)]

cand.sigmas <- cand.sigmas[1:ncol(bike.output),2]

start <- 50000

rubble <- (start+1):total

####################################

#### Compute "Stay" Percentages ####

####################################
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count <- numeric(ncol(bike.output))

for(j in 1:ncol(bike.output))

{

temp1 <- bike.output[(start+1):total,j]

temp2 <- bike.output[start:(total-1),j]

stay <- temp1-temp2

stay <- as.numeric(stay == 0)

count[j] <- sum(stay)

}

pct.stay <- round(count/(total-start),d=3)*100

########################

#### Mixing Plots ####

########################

windows()

par(mfrow=c(3,2))

for(i in 1:ncol(bike.output))

{

plot(bike.output[rubble,i],type="l",xlab="")

title(main=paste(names(bike.output)[i], " (Bike)"),

sub=paste("Stay%= ",pct.stay[i]," | Cand.Sig = ",cand.sigmas[i]))

}

#############################

#### Just the Posteriors ####

#############################

tau1.ave <- mean(Tau1)

tau2.ave <- mean(Tau2)

beta.ave <- mean(Beta)

alpha.ave <- mean(Alpha)

sig2.ave <- mean(SigmaSq)

post.means <- c(tau1.ave,tau2.ave,beta.ave,sig2.ave,alpha.ave)

post.sd <- c(sd(Tau1),sd(Tau2),sd(Beta),sd(SigmaSq),sd(Alpha))

windows()

par(mfrow=c(3,2))

for ( i in 1:length(post.means) )

{

plot(density(bike.output[rubble,i]),

type="l",

lwd=3,
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main="",

ylab="density",

xlab="")

title( main=paste(names(bike.output)[i], " (Bike)"),

sub=paste("Mean= ", round(post.means[i],d=3),

" | Std. Dev= ", round(post.sd[i],d=3)))

}

#############################################

## Line Plot Using Means of the Parameters ##

#############################################

logbtimea <- log(male.data$biketime+alpha.ave)

bike.dists <- sort(unique(male.data$bdist))

mean.logbtimesa <-

tapply(logbtimea,as.factor(male.data$bdist),mean)

windows()

par(mfrow=c(1,1))

xx <- seq(0,max(male.data$bdist),len=100)

plot(male.data$bdist, logbtimea,

col="gray",

ylab="log(biketime + alpha)",

xlab="distance")

points(bike.dists, mean.logbtimesa, pch=13, cex=2)

lines(xx, nonlin(xx,tau1.ave, tau2.ave, beta.ave))

title(main="Bike")

#######################

#### Model Check ####

#######################

fits <- mean.logbtimesa[match(male.data$bdist,bike.dists)]

resids <- logbtimea - fits

par(mfrow=c(3,4))

for( i in 1:length(bike.dists) )

{

qqnorm(resids[male.data$bdist==bike.dists[i]],

main=paste("Distance = ",bike.dists[i]))

}
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#######################

#### Gibbsit Stuff ####

#######################

for ( i in c(2,5,10,20,30) )

{

thin <- seq(60000,140000, by=i)

print(gibbsit(bike.output[thin,]))

}

D.3 Run Code

This section contains R Code for mixing plots, posterior distributions,

gibbsit analysis, and model checking for the run triathlon component.

rm(list=ls())

nonlin <-

function(x,tau1,tau2,beta,delta1=6.21,delta2=26.2)

{

tau1 + ( tau2 - tau1 ) * (1-exp(-beta*(x - delta1))) /

(1-exp(-beta*(delta2-delta1)))

}

pplnvar <- function(mu,sig2)

{

exp(2*mu)*( exp(sig2)*(exp(sig2)-1) )

}

##########################

#### Read in Raw Data ####

##########################

#male.data <-

read.table("f:/master’s project/bigmale1.csv", sep=",", header=T)

male.data <-

read.table("f:/master’s project/rmale.csv", sep=",", header=T)

n <- nrow(male.data)

#######################################

#### Read in Posterior Simulations ####
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#######################################

run.output <-

read.table(file="c:/temp2/rout.txt",sep=",",header=T)

attach(run.output)

##########################################

#### Read in Candidate Sigma Values ####

##########################################

cand.sigmas <- read.table(file="f:/pprun/candidate.txt",sep="=")

total <- cand.sigmas[nrow(cand.sigmas),ncol(cand.sigmas)]

cand.sigmas <- cand.sigmas[1:ncol(run.output),2]

start <- 10000

rubble <- (start+1):total

####################################

#### Compute "Stay" Percentages ####

####################################

count <- numeric(ncol(run.output))

for(j in 1:ncol(run.output))

{

temp1 <- run.output[(start+1):total,j]

temp2 <- run.output[start:(total-1),j]

stay <- temp1-temp2

stay <- as.numeric(stay != 0)

count[j] <- sum(stay)

}

pct.stay <- round(count/(total-start),d=3)*100

########################

#### Mixing Plots ####

########################

windows()

par(mfrow=c(3,2))

for(i in 1:ncol(run.output))

{

plot(run.output[rubble,i],type="l",xlab="")

title(main=paste(main=names(run.output)[i]," (Run)"),

sub=paste("Stay%= ",pct.stay[i]," | Cand.Sig = ",cand.sigmas[i]))

}
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#############################

#### Just the Posteriors ####

#############################

tau1.ave <- mean(Tau1)

tau2.ave <- mean(Tau2)

beta.ave <- mean(Beta)

alpha.ave <- mean(Alpha)

sig2.ave <- mean(SigmaSq)

post.means <- c(tau1.ave,tau2.ave,beta.ave,sig2.ave,alpha.ave)

post.sd <- c(sd(Tau1),sd(Tau2),sd(Beta),sd(SigmaSq),sd(Alpha))

windows()

par(mfrow=c(3,2))

for ( i in 1:length(post.means) )

{

plot(density(run.output[rubble,i]),

type="l",

lwd=3,

main="",

ylab="density",

xlab="")

title( paste(main=names(run.output)[i]," (Run)"),

sub=paste("Mean= ", round(post.means[i],d=3),

" | Std. Dev= ", round(post.sd[i],d=3)))

}

#############################################

## Line Plot Using Means of the Parameters ##

#############################################

logrtimea <- log(male.data$runtime+alpha.ave)

run.dists <- sort(unique(male.data$rdist))

mean.logrtimesa <-

tapply(logrtimea,as.factor(male.data$rdist),mean)

windows()

par(mfrow=c(1,1))

xx <- seq(0,max(male.data$rdist))

plot(male.data$rdist, logrtimea,

col="gray",

ylab="log(runtime + alpha)",

xlab="distance")
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points(run.dists, mean.logrtimesa, pch=13, cex=2)

lines(xx, nonlin(xx,tau1.ave, tau2.ave, beta.ave))

title(main="Run")

#######################

#### Model Check ####

#######################

fits <- mean.logrtimesa[match(male.data$rdist,run.dists)]

resids <- logrtimea - fits

par(mfrow=c(3,3))

for( i in 1:length(run.dists) )

{

qqnorm(resids[male.data$rdist==run.dists[i]],

main=paste("Distance = ",run.dists[i]))

}

####################################

#### Plot of Variance(distance) ####

####################################

xx <- seq(0,3*26.2,len=100)

vars <-

pplnvar(nonlin(xx, tau1.ave, tau2.ave, beta.ave), sig2.ave)

sds <- sqrt(vars)

windows()

plot(xx,sds,type="l",lwd=3)

title(main="Run")

#######################

#### Gibbsit Stuff ####

#######################

for ( i in c(2,5,10,20,30) )

{

thin <- seq(60000,140000, by=i)

print(gibbsit(run.output[thin,]))

}
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D.4 Posterior Summaries

This section contains R code that generated the posterior summaries and

plots found in Chapter 4.

######################

##### Swim Stuff #####

######################

nonlin <- function(x,tau1,tau2,beta,delta1=0.93,delta2=2.4)

{

tau1 + ( tau2 - tau1 ) * (1-exp(-beta*(x - delta1))) /

(1-exp(-beta*(delta2-delta1)))

}

pplnvar <- function(mu,sig2)

{

exp(2*mu)*( exp(sig2)*(exp(sig2)-1) )

}

## Read in Raw Data ##

male.data <-

read.table("f:/master’s project/rmale.csv", sep=",", header=T)

## Read in Simulations ##

output <-

read.table("c:/temp2/sout.txt", sep=",", header=T)

attach(output)

num.sum <- 2

rubble <- 10000:nrow(output)

swim.stats <-

matrix(numeric(ncol(output)*num.sum), ncol=num.sum)

for( i in 1:ncol(output) )

{

swim.stats[i,1]<- mean(output[rubble,i])

swim.stats[i,2]<- sd(output[rubble,i])

}

swim.stats <-

data.frame(mean=swim.stats[,1], std.dev=swim.stats[,2])

swim.cr <- t(apply(output,2,quantile,prob=c(.025,.975)))
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tau1.ave <- mean(Tau1)

tau2.ave <- mean(Tau2)

beta.ave <- mean(Beta)

alpha.ave <- mean(Alpha)

swim.dists <- sort(unique(male.data$sdist))

logtimea <- log(male.data$swimtime+alpha.ave)

mean.logtimesa <- numeric(length(swim.dists))

for(i in 1:length(swim.dists))

{

mean.logtimesa[i] <-

mean(logtimea[male.data$sdist==swim.dists[i]], na.rm=TRUE)

}

windows()

par(mfrow=c(3,1))

xx <- seq(0,max(male.data$sdist),len=100)

plot(male.data$sdist, logtimea,

col="gray",

ylab="log(swimtime + alpha)",

xlab="distance")

points(swim.dists, mean.logtimesa, pch=13, cex=2)

lines(xx, nonlin(xx,tau1.ave, tau2.ave, beta.ave))

title(main="Swim")

######################

##### Bike Stuff #####

######################

nonlin <- function(x,tau1,tau2,beta,delta1=24.86,delta2=112.0)

{

tau1 + ( tau2 - tau1 ) * (1-exp(-beta*(x - delta1))) /

(1-exp(-beta*(delta2-delta1)))

}

pplnvar <- function(mu,sig2)

{

exp(2*mu)*( exp(sig2)*(exp(sig2)-1) )

}

## Read in the Raw Data ##

male.data <-

read.table("f:/master’s project/rmale.csv", sep=",", header=T)
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## Read in the Simulations ##

output <- read.table("c:/temp2/bout.txt", sep=",", header=T)

attach(output)

num.sum <- 2

rubble <- 10000:nrow(output)

bike.stats <- matrix(numeric(ncol(output)*num.sum), ncol=num.sum)

for( i in 1:ncol(output) ){

bike.stats[i,1]<- mean(output[rubble,i])

bike.stats[i,2]<- sd(output[rubble,i])

}

bike.stats <-

data.frame(mean=bike.stats[,1], std.dev=bike.stats[,2])

bike.cr <- t(apply(output,2,quantile,prob=c(.025,.975)))

tau1.ave <- mean(Tau1)

tau2.ave <- mean(Tau2)

beta.ave <- mean(Beta)

alpha.ave <- mean(Alpha)

bike.dists <- sort(unique(male.data$bdist))

logtimea <- log(male.data$biketime+alpha.ave)

mean.logtimesa <- numeric(length(bike.dists))

for(i in 1:length(bike.dists))

{

mean.logtimesa[i] <-

mean(logtimea[male.data$bdist==bike.dists[i]], na.rm=TRUE)

}

xx <- seq(0,max(male.data$bdist),len=100)

plot(male.data$bdist, logtimea,

col="gray",

ylab="log(biketime + alpha)",

xlab="distance")

points(bike.dists, mean.logtimesa, pch=13, cex=2)

lines(xx, nonlin(xx,tau1.ave, tau2.ave, beta.ave))

title(main="Bike")

#####################

##### Run Stuff #####

#####################

nonlin <- function(x,tau1,tau2,beta,delta1=6.21,delta2=26.2)
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{

tau1 + ( tau2 - tau1 ) * (1-exp(-beta*(x - delta1))) /

(1-exp(-beta*(delta2-delta1)))

}

pplnvar <- function(mu,sig2)

{

exp(2*mu)*( exp(sig2)*(exp(sig2)-1) )

}

## Read in the Raw Data ##

male.data <-

read.table("f:/master’s project/rmale.csv", sep=",", header=T)

## Read in the Simulations ##

output <- read.table("c:/temp2/rout.txt", sep=",", header=T)

attach(output)

num.sum <- 2

rubble <- 10000:nrow(output)

run.stats <-

matrix(numeric(ncol(output)*num.sum), ncol=num.sum)

for( i in 1:ncol(output) )

{

run.stats[i,1]<- mean(output[rubble,i])

run.stats[i,2]<- sd(output[rubble,i])

}

run.stats <-

data.frame(mean=run.stats[,1], std.dev=run.stats[,2])

run.cr <- t(apply(output,2,quantile,prob=c(.025,.975)))

tau1.ave <- mean(Tau1)

tau2.ave <- mean(Tau2)

beta.ave <- mean(Beta)

alpha.ave <- mean(Alpha)

run.dists <- sort(unique(male.data$rdist))

logtimea <- log(male.data$runtime+alpha.ave)

mean.logtimesa <- numeric(length(run.dists))

for(i in 1:length(run.dists))

{

mean.logtimesa[i] <-
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mean(logtimea[male.data$rdist==run.dists[i]], na.rm=TRUE)

}

xx <- seq(0,max(male.data$bdist),len=100)

plot(male.data$rdist, logtimea,

col="gray",

ylab="log(runtime + alpha)",

xlab="distance")

points(run.dists, mean.logtimesa, pch=13, cex=2)

lines(xx, nonlin(xx,tau1.ave, tau2.ave, beta.ave))

title(main="Run")

dev.copy2eps(file="f:/master’s project/project/mdlchk.eps")

dev.copy2eps(file="f:/master’s project/paper/mdlchk.eps")

summary.stats <- data.frame(swim.stats, bike.stats, run.stats)

summary.stats

cred.int <- data.frame(swim.cr,bike.cr,run.cr)

dev.copy2eps(file="f:/master’s project/project/mdlchk.eps")

dev.copy2eps(file="f:/master’s project/paper/mdlchk.eps")

D.5 The Fair Triathlon Code

This section contains the code that was used to compute the fair triathlons

found in Chapter 4.

rm(list=ls())

## Converts km to miles ##

km2mi <- function(k)

{

0.621371192 * k

}

## Converts miles to km ##

mi2km <- function(m)

{

1/0.621371192 * m

}

nonlin.swim <-

function(x,tau1,tau2,beta,delta1=0.93,delta2=2.4)
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{

tau1 + ( tau2 - tau1 ) * (1-exp(-beta*(x - delta1))) /

(1-exp(-beta*(delta2-delta1)))

}

nonlin.bike <-

function(x,tau1,tau2,beta,delta1=24.86,delta2=112.0)

{

tau1 + ( tau2 - tau1 ) * (1-exp(-beta*(x - delta1))) /

(1-exp(-beta*(delta2-delta1)))

}

nonlin.run <-

function(x,tau1,tau2,beta,delta1=6.21,delta2=26.2)

{

tau1 + ( tau2 - tau1 ) * (1-exp(-beta*(x - delta1))) /

(1-exp(-beta*(delta2-delta1)))

}

pplnvar <- function(mu,sig2)

{

exp(2*mu)*( exp(sig2)*(exp(sig2)-1) )

}

swim.output <-

read.table("c:/temp2/sout.txt", sep=",", header=T)

bike.output <-

read.table("c:/temp2/bout.txt", sep=",", header=T)

run.output <-

read.table("c:/temp2/rout.txt", sep=",", header=T)

rubble.swim <- 5000:nrow(swim.output)

rubble.bike <- 5000:nrow(bike.output)

rubble.run <- 5000:nrow(run.output)

tau1a.swim <- mean(swim.output$Tau1[rubble.swim])

tau2a.swim <- mean(swim.output$Tau2[rubble.swim])

betaa.swim <- mean(swim.output$Beta[rubble.swim])

sig2a.swim <- mean(swim.output$SigmaSq[rubble.swim])

alphaa.swim <- mean(swim.output$Alpha[rubble.swim])

tau1a.bike <- mean(bike.output$Tau1[rubble.bike])

tau2a.bike <- mean(bike.output$Tau2[rubble.bike])

betaa.bike <- mean(bike.output$Beta[rubble.bike])
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sig2a.bike <- mean(bike.output$SigmaSq[rubble.bike])

alphaa.bike <- mean(bike.output$Alpha[rubble.bike])

tau1a.run <- mean(run.output$Tau1[rubble.run])

tau2a.run <- mean(run.output$Tau2[rubble.run])

betaa.run <- mean(run.output$Beta[rubble.run])

sig2a.run <- mean(run.output$SigmaSq[rubble.run])

alphaa.run <- mean(run.output$Alpha[rubble.run])

windows()

xx <- seq(0.249,3*2.4,len=100)

vars.swim <-

pplnvar(nonlin.swim(xx, tau1a.swim, tau2a.swim, betaa.swim),

sig2a.swim)

sds.swim <- sqrt(vars.swim)

plot(sds.swim,xx,type="l",lwd=2,

ylim=c(0,90),

xlim=c(10,max(sds.swim)),

xlab="standard deviation",

ylab="distance" )

xx <- seq(9.32,3*112,len=100)

vars.bike <-

pplnvar(nonlin.bike(xx, tau1a.bike, tau2a.bike, betaa.bike),

sig2a.bike)

sds.bike <- sqrt(vars.bike)

lines(sds.bike,xx,type="l",lwd=2)

xx <- seq(3,3*26.2,len=100)

vars.run <-

pplnvar(nonlin.run(xx, tau1a.run, tau2a.run, betaa.run),

sig2a.run)

sds.run <- sqrt(vars.run)

lines(sds.run,xx,type="l",lwd=2)

## Function to find the swim distance given the Std.Dev.

get.swim.dist <-

function(s,tau1,tau2,beta,sig2,d1=0.93,d2=2.4,total.iter=1000)

{

cnt <- 1

upp <- 7.8
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low <- 0

span <- upp-low

delta <- 1

out <- NULL

trail <- numeric(total.iter)

while(delta>0.000001 & cnt<total.iter)

{

cand.dists <- seq(low, upp, len=1000)

std.devs <-

sqrt(pplnvar(

nonlin.swim(cand.dists, tau1, tau2, beta), sig2))

errors <- abs(std.devs-s)

span <- 0.9*span

best <- cand.dists[errors==min(errors)]

trail[cnt] <- best

upp <- best + span/2

low <- max(best - span/2,0)

cnt <- cnt + 1

delta <- min(errors)

}

out$std.dev <- std.devs[errors==min(errors)]

out$n.iter <- cnt-1

out$dist <- best

out$error <- min(errors)

out$trail <- trail[1:length(trail)-1]

out

}

## Function to find the bike distance given the Std Dev

get.bike.dist <-

function(s,tau1,tau2,beta,sig2,d1=24.86,d2=112,total.iter=1000)

{

cnt <- 1

upp <- 112

low <- 0

span <- upp-low

delta <- 1

out <- NULL

trail <- numeric(total.iter)

while(delta>0.000001 & cnt<total.iter)

{

cand.dists <- seq(low, upp, len=1000)

std.devs <-
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sqrt(pplnvar(nonlin.bike(cand.dists, tau1, tau2, beta),

sig2))

errors <- abs(std.devs-s)

span <- 0.9*span

best <- cand.dists[errors==min(errors)]

trail[cnt] <- best

upp <- best + span/2

low <- max(best - span/2,0)

cnt <- cnt + 1

delta <- min(errors)

}

out$std.dev <- std.devs[errors==min(errors)]

out$n.iter <- cnt-1

out$dist <- best

out$error <- min(errors)

out$trail <- trail[1:length(trail)-1]

out

}

get.run.dist <-

function(s,tau1,tau2,beta,sig2,d1=6.21,d2=26.2,total.iter=1000)

{

cnt <- 1

upp <- 26.2

low <- 0

span <- upp-low

delta <- 1

out <- NULL

trail <- numeric(total.iter)

while(delta>0.000001 & cnt<total.iter)

{

cand.dists <- seq(low, upp, len=1000)

std.devs <-

sqrt(pplnvar(nonlin.run(cand.dists, tau1, tau2, beta), sig2))

errors <- abs(std.devs-s)

span <- 0.9*span

best <- cand.dists[errors==min(errors)]

trail[cnt] <- best

upp <- best + span/2

low <- max(best - span/2,0)

cnt <- cnt + 1

delta <- min(errors)

}
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out$std.dev <- std.devs[errors==min(errors)]

out$n.iter <- cnt-1

out$dist <- best

out$error <- min(errors)

out$trail <- trail[1:length(trail)-1]

out

}

#### A Sampling of Fair Triathlons ####

kdist <- c(10,15,20,25)

new.dists <- km2mi(kdist)

fair.ones <- matrix(numeric(length(new.dists)*3), ncol=3)

for( i in 1:length(new.dists) )

{

fair.ones[i,3] <- new.dists[i]

std.dev <-

sqrt(pplnvar(

nonlin.run(new.dists[i], tau1a.run, tau2a.run, betaa.run),

sig2a.run))

swim.junk <-

get.swim.dist(std.dev,tau1a.swim,tau2a.swim,betaa.swim,sig2a.swim)

fair.ones[i,1] <- swim.junk$dist

bike.junk <-

get.bike.dist(std.dev,tau1a.bike,tau2a.bike,betaa.bike,sig2a.bike)

fair.ones[i,2] <- bike.junk$dist

}

ratios <-

matrix(numeric((ncol(fair.ones)-1)*nrow(fair.ones)),

nrow=nrow(fair.ones))

for(i in 1:nrow(ratios))

{

ratios[i,1]<-fair.ones[i,2]/fair.ones[i,1]

ratios[i,2]<-fair.ones[i,3]/fair.ones[i,1]

}

round(fair.ones, d=1)

round(ratios, d=1)

#### The Longest Fair Triathlon ####

max.s <-

sqrt(pplnvar(nonlin.swim(7.8,tau1a.swim,tau2a.swim,betaa.swim),

sig2a.swim))

get.bike.dist(max.s,

tau1a.bike,
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tau2a.bike,

betaa.bike,

sig2a.bike)$dist

get.run.dist(max.s,

tau1a.run,

tau2a.run,

betaa.run,

sig2a.run)$dist

#### The Fair Half Ironman ####

std.dev <-

sqrt(pplnvar(nonlin.run(13.1, tau1a.run, tau2a.run, betaa.run),

sig2a.run))

get.swim.dist(std.dev,

tau1a.swim,

tau2a.swim,

betaa.swim,

sig2a.swim)$dist

get.bike.dist(std.dev,

tau1a.bike,

tau2a.bike,

betaa.bike,

sig2a.bike)$dist

#### The Fair Full Ironman ####

std.dev <-

sqrt(pplnvar(nonlin.swim(2.4,tau1a.swim,tau2a.swim,betaa.swim),

sig2a.swim))

get.bike.dist(std.dev,

tau1a.bike,

tau2a.bike,

betaa.bike,

sig2a.bike)$dist

get.run.dist(std.dev,

tau1a.run,

tau2a.run,

betaa.run,

sig2a.run)$dist

#### The Fair Full Ironman 2 ####

std.dev <-

sqrt(pplnvar(nonlin.run(26.2,tau1a.run,tau2a.run,betaa.run),

sig2a.run))
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get.swim.dist(std.dev,

tau1a.swim,

tau2a.swim,

betaa.swim,

sig2a.swim)$dist

get.bike.dist(std.dev,

tau1a.bike,

tau2a.bike,

betaa.bike,

sig2a.bike)$dist
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