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ABSTRACT 
 

 

GENOMEWIDE EVALUATION OF CIS-ELEMENTS AND COGNATE TRANSCRIPTION 

FACTORS IN NICOTIANA ATTENUATA PREDICTS 27 UNIQUE TRANSCRIPTION 

FACTOR-BINDING SITE PAIRS 
 

 

Ashton R. Omdahl 

Department of Biology 

Bachelor of Science 

 

 

Nicotiana attenuata has been widely studied for its ecological plant-herbivore 

relationships and response to environmental stress. The jasmonate signaling pathway 

regulated by jasmonate ZIM-domiain (JAZ) repressor proteins that modulate defense 

response levels has been of particular focus in this research. While our understanding of 

the genes associated with defense response and their regulation continues to expand, the 

transcriptional regulation of these genes is largely uncharacterized. In an effort to provide 

insight into these relationships, we performed genomewide analysis of transcript level 

data in order to predict transcription factors (TFs), their respective binding sites (TFBS), 

and the genes they regulate. We identified 27 unique TF-TFBS pairs and 507 genes 

containing cis-elements associated with these TFs. We also identified gene sets enriched 

for chloroplast structure and function, ribosomal structure and function, cell membrane 

components, and ATP binding gene ontology. Our motif enrichment and co-expression 

analysis results suggest that JAZb may be regulated by TFs MYC2a and MYC2b and that 

TF WRKY3 may be part of a self-regulation loop. 
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Introduction 
Nicotiana attenuata, commonly known as the wild coyote tobacco, is a model 

plant that has been studied for its ecological plant-herbivore relationships. Found in the 

arid deserts of southern Utah, its ability to efficiently manage limited resources and 

maintain defensive measures against herbivores are of great interest. Many defense-

related genes and transcription factors (TFs) are already characterized for N. attenuata.1,2 

However, the transcriptional regulation of many of these defense genes remain largely 

unknown, despite being well-documented in other plant species including Arabidopsis 

thaliana3–5. For instance, plant jasmonates (JAs), are essential to most defense responses 

and play important roles in various stages of development.  The JA signaling pathway is 

regulated by jasmonate ZIM-domain (JAZ) repressor proteins, which target JA-

responsive transcription factors6. In A. thaliana, a known target of these JAZ proteins is 

MYC2, a transcription factor known to regulate the JA-induced response7. Expression of 

JAZ genes is also directly regulated by the MYC2 transcription factor, creating a negative 

feedback loop that affords a fine-tuned level of regulation in this response system.6 The 

exact nature of such JAZ protein transcriptional regulation in N. attenuata continues to be 

a topic of research. 

 In an effort to characterize the transcriptional regulation of N. attenuata defense 

response to herbivory and the signaling pathways involved (including the regulation of 

JA signaling), we constructed a bioinformatics pipeline to predict transcription factors 

(TFs), their transcription factor binding sites (TFBSs), and the associated genes they 

regulate. Following the model described by Yu et al.8 for the maize genome, we 

performed a gene co-expression analysis on 62 sets of transcript level data and formed  

1304 gene subsets, each associated with a known transcriptional regulator. We then 

analyzed subset gene promoters for motif enrichment and tested motifs for evolutionary 

conservation. Using these motifs to query online databases of known TF-TFBS pairs, we 

identified TFs in related plant species that bind to similar motifs. We then used these TFs 

to select homologous TFs in N. attenuata and form predicted TF-TFBS associations. To 

screen TF-TFBS candidates, we checked predicted TFBSs against motifs identified in a 

TF’s subset and selected top matches for a final database of TFs-TFBS pairs (see Figure 

1). Our finalized pipeline predicted 27 TF-TFBS pairs, each associated with a set of co-

expressed genes from which we infer regulatory relationships for experimental testing. 

Our results predicted TFs involved in the regulation of JAZb and JAZd, as well as a 

TFBS for the JA-responsive TF WRKY3. 
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Figure 1: Summary of putative transcription factor and transcription factor binding site prediction 

pipeline. Analysis begins with transcript measurement data--21 samples of RNA-seq data and 41 samples 

of microarray data from various tissue and treatment samples--to generate a co-expression network based 

on highest connectivity genes via the Weighted Correlation Network Analysis (WGCNA) package9. This 

generated 31 co-expression gene sets based on the RNA-seq data and 33 from the microarray datasets; 

these we further clustered into subsets centered on transcriptionally relevant genes. We then identified 

overrepresented motifs in the 1kb and 2kb regions upstream of subset genes transcription start sites using 

the HOMER10 software suite. Motifs appearing in at least 20% of gene subset promoter regions were 

checked for conservation against orthologous genes in S. lycopersicum and searched in plant transcription 

factor binding site (TFBS) databases. We used transcription factors (TFs) associated with the searched 

motif database hits as search queries in a BLASTP search to find homologous proteins in N. attenuata. We 

screened predicted TF-TFBS pairs by comparing motifs found in gene subsets associated with predicted 

TFs with the predicted TFBS and kept only TFBSs that best matched TF subset motifs. Data sets or outputs 

are italicized, while procedures are written in bold. 

Results 
Our pipeline identified 27 TF-TFBS pairs, each associated with a set of co-

expressed genes as potential regulated candidates for a total of 1164 unique genes with 

predicted transcription factor binding on 507 of these genes. Among these, we identified 

gene subsets associated with chloroplast structure and function, ribosomal structure and 

function, cell membrane components, and ATP binding.  While experimental validation 

of our immediate results has yet to be performed, we observe that several of our TF-

TFBS and regulatory predictions align with results from past experiments and regulatory 

patterns observed in related species.  

Transcript level results 
As described in the Methods section, we based our analysis on 21 samples of 

RNA-seq data and 41 microarray experiment datasets from various experimental 

conditions and tissue types (see Methods or the Nicotiana Attenuata Data Hub11 for a 
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more complete description of the experimental conditions). Using the Weighted 

Correlation Network Analysis (WGCNA) R package,9 we selected the 10,000 genes with 

the highest network connectivity separately for the RNA-seq data and microarray data 

results. Visual plots of Gini correlation for the 25 highest connectivity genes from both 

datasets are given in Figure 2.  

A 

 

B 

 

 

C D 
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Figure 2: Correlation plots of the highest connectivity genes in N. attenuata based on microarray data 

(A, C) and RNA-seq data (B,D). We identified the top 25 genes using the softConnectivity function of the 

WGCNA R package for each dataset (RNA-seq, microarray) separately. The selected genes were then 

hierarchical clustered by Gini correlation coefficient (GCC) to reflect connectivity patterns within the top 

genes. GCC is coded for by color, with red representing positive correlation and blue negative correlation 

between gene transcript levels. A and B) Top 21 genes based on GCC calculated from microarray data. 4 

of the initial 25 genes identified did not appear in the RNA-seq dataset and so were omitted from both 

plots. A is based on transcript level correlations from micro-array results; B is based on RNA-seq results. C 

and D) Top 25 genes based on GCC calculated from RNA-seq data. C shows transcript level correlations 

based on microarray data; D shows the same from the RNA-seq datasets. The clear disparity in expression 

patterns between the datasets reflect the different experimental conditions of the varied datasets.  

The clear heterogeneity in gene correlation between the microarray and RNA-seq 

datasets (Figure 2A compared to 2B, and 2C compared to 2D) reflects the diverse nature 

of the experimental conditions and tissue types from which the datasets were drawn. This 

is highlighted by the fact that the 25 most connected genes identified by each data type 

had no genes in common between them. This suggests we have a broad and diverse 

sampling of genes for a robust downstream co-expression analysis. In accordance with 

these differences, we treated RNA-seq and microarray-based results separately 

throughout each step of the prediction pipeline. 

Gene co-expression analysis 
To identify groups of genes with similar expression profiles and potentially 

similar pathways of regulation, we performed gene co-expression analysis also using the 

WGCNA9 package (see Methods section). Clustering resulted in 31 gene sets (also called 

modules) for the RNA-seq data, and 33 for the microarray-based set, with an average of 

312.5 and 294.1 genes per gene set, respectively. Each gene set was assigned an arbitrary 

color by the package (Figure 3) for easy reference. 

We then created smaller gene subsets within gene sets by selecting set genes most 

correlated to predicted transcriptional regulators, for a total of total of 623 RNA-seq-

based and 681 microarray-based subsets. The distribution of these subsets was not 

necessarily proportional to the number of genes in each set, such that the initial size of a 

gene set was not reflected in final database results (Figure 3). 
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Figure 3: WGCNA gene set sizes (A, C) and distribution of subsets (B,D) for RNA-seq (A, B) and 

microarray (C, D) data. Subsets were selected based on highest Gini correlation coefficient surrounding 

predicted transcriptionally relevant genes12 within a gene set. Colored bars indicate groups in the top 5 

largest gene set or subset categories. A) The number of genes in each WGCNA set (from RNA-seq results). 

The turquoise gene set is the largest with 999 genes, while the smallest had only 34 genes. The average 

number of genes per set was 312.5 B) Number of gene subsets in each WGCNA set (from RNA-seq 

analysis). Note that while the turquoise module contains the greatest number of subsets (95), the second-

largest blue set does not contain the second-most number of subsets. C) The gene count in WGCNA gene 

sets (from microarray results). Turquoise was the largest with 946 genes, while the smallest had only 54. 

The average gene set size was 294.1. D)  Subset counts across gene sets (from microarray results).  

 To determine the biological relevance of our clustering technique, we examined 

the distribution of Gene Ontology (GO) terms among the gene sets and subsets. We 

observed that at least 5 of the RNA-seq based gene sets and 6 of the microarray-derived 

gene sets had non-random distribution of GO term assignments, as pictured in Figure 4 

below (p < 0.001). Of particular interest was the overlap of GO enrichment across the 

sets identified by microarray and RNA-seq data; we found gene sets non-randomly 

associated with chloroplast structure, ribosomal structure and function, heme binding, 

membrane components, and ATP binding from both sources. 

A: RNA-seq gene sets 

 

B: RNA-seq gene subset distribution 

 

C: Microarray gene sets 

 

D: Microarray gene subset distribution 
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Figure 4: Gene sets enriched with GO terms. In the 11 GO-enriched gene sets identified by our co-

expression analysis, we observed a high degree of overlap in annotation groups, suggesting that 

independent co-expression analysis on RNA-seq and microarray-based data created functionally similar 

gene groupings. MA refers to results from microarray analysis, RS from RNA-seq analysis. All 

enrichments have p < 0.001, unless otherwise noted. Colors indicate WGCNA assigned set color. (* p = 

0.001)  

Likewise, when we performed the same GO enrichment analysis procedure on the 27 gene 

subsets yielding top TF-TFBS candidate pairs, we observed 10 subsets which were statistically 

enriched for structurally or functionally-related GO terms (see Table 1). These groupings suggest 

that our step of sub-setting gene sets by GCC provides greater functional granularity then 

considering WGCNA gene sets alone. 
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Core Subset Gene GO ID GO Description 

WRKY9 

 (NIATv7_g03410) 

GO:0005576 extracellular region 

GO:0046872 metal ion binding 

WRKY 

(NIATv7_g12711)  GO:0006355 regulation of transcription, DNA-templated 

MYB-DIVARICATA 

(NIATv7_g17075)  

GO:0009535 chloroplast thylakoid membrane 

GO:0006098 pentose-phosphate shunt 

GO:0006364 rRNA processing 

GO:0010207 photosystem II assembly 

GO:0019252 starch biosynthetic process 

GO:0009941 chloroplast envelope 

GO:0019288 

isopentenyl diphosphate biosynthetic process, 

methylerythritol 4-phosphate pathway 

GO:0000023 maltose metabolic process 

GO:0010027 thylakoid membrane organization 

GO:0015995 chlorophyll biosynthetic process 

GO:0009570 chloroplast stroma 

GO:0009773 photosynthetic electron transport in photosystem I 

GO:0043085 positive regulation of catalytic activity 

GO:0009902 chloroplast relocation 

GO:0010218 response to far red light 

GO:0016117 carotenoid biosynthetic process 

WRKY 

(NIATv7_g21131) GO:0005509 calcium ion binding 

WRKY65 

 (NIATv7_g27755)  

GO:0046872* metal ion binding 

GO:0005576 extracellular region 

WRKY61 

(NIATv7_g29978) 

GO:0005576 extracellular region 

GO:0046872 metal ion binding 

GO:0020037 heme binding 

GO:0004601 peroxidase activity 

GO:0006979 response to oxidative stress 

GO:0042744 hydrogen peroxide catabolic process 

GO:0098869 cellular oxidant detoxification 

GATA12 

(NIATv7_g34810)  GO:0003735 structural constituent of ribosome 

TRAF 

(NIATv7_g40277) 

GO:0016021* integral component of membrane 

GO:0005524 ATP binding 

GO:0006468 protein phosphorylation 

GO:0004672 protein kinase activity 

GO:0004674 protein serine/threonine kinase activity 

GO:0006612 protein targeting to membrane 

GO:0010363 regulation of plant-type hypersensitive response 

bHLH 

(NIATv7_g41243) GO:0005576 extracellular region 

MYC2a† 

(NIATv7_g16429) 

GO:0004672 protein kinase activity 

GO:0005524 ATP binding 

GO:0006468 protein phosphorylation 

GO:0009738 abscisic acid-activated signaling pathway 

GO:0035556 intracellular signal transduction 
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For instance, the gene subset centered on the MYB/DIVARICARTA transcription factor 

(NIATv7_g17075) came from the black RNA-seq gene set enriched for GO terms 

relating to chloroplast structure and function. Our subset was additionally enriched with 

genes (p < 0.001) relating to photosystem I, response to far-red light, and chloroplast 

relocation. Likewise, the MYC2a microarray subset came from the magenta microarray 

gene set enriched for genes with ATP binding functionality but was additionally enriched 

for protein kinase activity. Interestingly, it has been shown that MYC2 phosphorylation is 

“required for MYC2 regulation of gene transcription,” with the proposal that 

phosphorylation marks MYC2 as “spent” for proteolysis, thereby allowing other MYC2 

molecules to interact with gene promoter regions and stimulate further transcription13. 

WRKY3, JAZa, and JAZf gene subsets had no meaningful GO term enrichment (p > 

0.001 or appearing in less than 5% of all genes).  

Motif enrichment analysis 
Over the course of our analysis, we identified 7528 unique motifs that passed our 

selection threshold (p ≤ 1 × 10-5, appearing in at least 20% of all subset promoters) with a 

statistically significant conservation score (p ≤ 0.001). 4038 unique motifs came from the 

microarray data, and 3672 from the RNA-seq data. Of these, only 980 motifs matched 

with a TF in our database lookup step. This large number of motifs with no match 

constitute a valuable space for further investigation into potentially novel cis-regulatory 

elements in N. attenuata in the future. 

Motif analysis on the WRKY3 microarray subset identified a highly conserved 

W-box-like motif (GTTGAC) in both the 1kb and 2kb regions upstream of transcription 

start sites (TSS) in close to half of all subset genes (Figure 5). Interestingly, this binding 

site was identified in the promoter region of the WRKY3 (NIATv7_g07696) gene at 833 

and 193 base pairs upstream of the TSS as well. WRKY3 is a known transcription factor 

associated with plant stress response in the jasmonic acid pathway that appears to be 

upregulated in response to plant wounding.2 Members of the WRKY family are known to 

bind to W-box motifs, and in many cases even contain W-boxes in their own promoters. 

In fact, the homolog of WRKY3 in Oryza sativa WRKY70 has been shown to bind to a 

W-box its own promoter region as a potential regulatory factor.14 Our results suggest a 

similar mechanism may be taking place in N. attenuata. For a list of WRKY3-subset 

genes containing the W-box motif see Supplementary Tables 2 and 3. 

 

Table 1: Ten of 27 gene subsets yielding TF-TFBS pairs are enriched for GO terms. Enriched 

subsets are listed by their central TF. Colors of rows indicate original source gene set a subset came 

from. Only GO terms enriched in at least 10% of the submodule genes, with p < 0.001, are listed, unless 

otherwise indicated. (*p = 0.001). †MYC2a enrichment from the MYC2a microarray subset is also 

included as a point of interest but did not yield a final TF-TFBS pair. 
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Figure 5: Top putative binding motifs and their distributions for the WRKY3 microarray gene set. A 

and C) Both motifs contain a conserved W-box motif associated with WRKY transcription factor binding. 

A was identified in the 1kb promoter analysis, with a conservation score of 0.529, and appears in 44% of 

promoter sequences. C was identified in the 2kb promoter analysis, with a conservation score of 0.583 and 

appearing in 58% of promoter sequences. B) Histogram of distribution of binding site A across the 1000kb 

promoter by distance from transcription start site (TSS). 57% of the binding sites appear in the 350 bps 

closest to the TSS, with the largest number between 150-200bp from the TSS.  D) Histogram of distribution 

of binding site B across the 2000kb promoter by distance from the gene’s transcription start site. 58% of 

binding sites appear in the 1100 bp closest to the TSS, with the highest number between 250-350 bps. 

In the gene subset centered on JAZb, we identified conserved G-box-like motifs 

as the most highly conserved and highest frequency motifs in subset gene promoters 

(Figure 6). MYC2, a known regulator of JAZ family proteins, has been shown to bind to 

G-box motifs such as those we identified. Interestingly, analysis on promoters regions of 

JAZ genes in A. thaliana are enriched with the same motif pattern identified as a top 

motif candidate in this module (ACACGTGT)7. While our analysis didn’t identify this 

exact motif in the promoter region of the JAZb gene, the motif CACGT appears with 

some frequency in the JAZb promoter and may interact with MYC2. 

We also identified a motif containing the G-box (TCCACGTG) enriched for in 

promoters of the JAZd gene subset (from microarray data), appearing in 35% of promoter 

regions. Our analysis located this motif in the promoter region of the JAZd gene (Figure 

6D). 

 

 

A 

 

B 

 
C 

 

D 
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A 

 

B 

 
C

 

D 

 
 

Figure 6: G-box motifs enriched in JAZb (A,B,C) and JAZd (D) gene subset promoters. All 4 motifs 

contain a conserved G-box motif (CACGTG). MYC2, which binds to G-box motifs, is a known regulator 

of JAZ repressor transcription, suggesting a potential regulatory relationship.  A and B were identified in 

the 1000 kb promoter analysis of the microarray subset, with conservation scores of 0.5, and 0.6, 

respectively. C was identified in the 1000 kb promoter analysis from the RNA-seq subset with a 

conservation score of 0.61 and appearing in 46% of 2kb promoter sequences. D came from the 1000kb 

promoter analysis of the JAZd microarray subset, with a conservation score of 0.41 and appearing in 35% 

of promoters. 

Database lookup and BLASTp search  
 From motifs used to search the PlantPan2.0 and CIS-BP databases, we identified 

573 unique transcription factor candidates in N. attenuata. The top three most predicted 

transcription factors were all predicted to be members of the WRKY family, highlighting 

its central role in plant defense regulation. 

Final results 
Following the filtering and back-validation procedure described in the Methods 

section, we produced a list of 27 unique transcription factor – binding site pairs, including 

members of 10 distinct transcription factor families. 46% of these pairs come from the 

WRKY family. 
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Figure 7: Predicted TF-TFBS pairs have high correlation with regulating gene sets. Predicted TFs are 

listed on the left with their family and gene names, grouped by motif similarity. Notice that the WRKY TFs 

group together due to similarities in binding motifs. Motif charts are aligned beside predicted TFs, and the 

heatmap on the far right shows the Relative Correlation Score (RCS) of the TF gene with the genes in the 

subset they were associated with as a predicted regulatory element. Note that the bHLH TF 

(NIATv7_g39427) has a negative RCS (-0.56), suggesting this element may be part of a repressive 

regulator loop. 

As Figure 7 highlights, most of these transcription factors have high Relative 

Correlation Scores (RCSs) with the gene sets with which they are associated (see also 

Supplementary Table 1; RCS is a measure of correlation between the GCC scores of 

transcription factors and submodule genes, given on a scale of -1 to 1). Remarkably, 15 

of the transcription factors identified were those around which their gene set centered, 

suggesting that co-expression analysis and subset selection had some power to identify 

units of transcriptionally regulated genes. 2/3 of the predicted TF binding sites came from 

1kb upstream promoter regions, indicating that transcriptional binding patterns may be 

more easily inferable in this region. 
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Of particular interest among these motifs is the pattern identified for WRKY3 

binding. The original WRKY3 gene set (NIATv7_g07696) from microarray data in 

isolation identified CTGTTGAC as a candidate binding motif. However, after back-

validating and selecting for best matching motifs with this transcription factor, our final 

predicted binding site is GTCAACGT, its reverse complement. This final binding site 

more closely resembled motif database hits yielding this TF-TFBS pair, where this motif 

pattern (GTCAA) was listed as the forward sequence. See Supplementary Tables 2 and 3 

for a list of all WRKY3 subset genes containing these binding sites. 

Inferring regulatory relationships in JAZ and WRKY associated gene subsets 
 In an effort to determine the ability of our pipeline to infer regulatory 

relationships between proposed transcription factors and their associated gene subsets, we 

examined the gene subsets created in association with JAZb, JAZg, and WRKY3. Our 

observations demonstrate the limitations of our pipeline in predicting such relationships. 

While not assigned specific TFBS by our final filtering steps, both MYC2a and 

MYC2b were identified as top transcription factor candidates for the JAZb gene subset 

(Supplementary Table 4; RCS = 0.79 and 0.65 respectively). In Nicotiana tabacum, these 

basic helix-loop-helix (bHLH) transcription factors form nuclear complexes with the 

NtJAZ1 repressor15. Given the strong evidence of transcriptional feedback regulation 

between JAZ genes and MYC2 transcription factors7, these findings suggest a similar 

mechanism may be taking place for the JAZb repressor and its co-expressed genes in N. 

attenuata. 

Both JAZd and JAZg were also associated with gene subsets in our final analysis. 

While MYC2 was not identified as a regulatory transcription factor candidate in either 

case, both JAZb and JAZd predicted bHLH62 (NIATv7_11555, the same family of TFs 

as MYC2) as a possible regulating TF. Interestingly, transcription factors predicted in 

association with the JAZg module largely came from the WRKY family and included 

WRKY3. This finding highlights that many families of transcription factors are involved 

in plant defense response and that these TFs may be co-induced and even interacting, as 

has been observed in N. attenuata and other plant species.1 

The gene subsets (from microarray and RNA-seq data) associated with WRKY3 

contained 13 genes in common and both predicted WRKY3 as a transcription factor. 

Both submodules also contained the mitogen-activated kinase 3 gene. MPKs operate as 

part of signaling pathways responding to external stress in plants, in which MPK kinases 

phosphorylate along a signal cascade, activating other MPKs which act on substrate 

proteins include transcription factors. In Arabdiopsis, for instance, perception of bacterial 

flagellin triggers an MPK pathway which activates WRKY family TFs, positively 

regulating defense gene expression. In Arabidopsis, MPK3 was shown to phosphorylate 

AtWRKY46 as part of AtWRKY46 degradation regulation.5 Our association of MPK3 

with the WRKY3 gene opens the possibility that a related mechanism may be taking 

place in N. attenuata and warrants further investigation. In both the RNA-seq and 

microarray gene subsets, the G-box binding site associated with WRKY3 was identified 
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in the MPK3 promoter region, suggesting the possibility that WKRY3 may also 

transcriptionally regulate MPK3. 

Discussion and future work 
While the examples described previously provide us some confidence of our 

pipeline’s ability to predict putative TF-TFBS pairs, we ultimately need to perform 

experimentation to validate our findings. The variation we observe in our gene subset 

predictions highlight the need for strong knowledge of plant regulatory and response 

systems to accompany data-based predictions. In particular, inferring the regulatory 

relationships of genes and TFs is more challenging and requires more targeted 

experimentation. As the previous examples highlight, our analysis provides the potential 

to inform hypothesis formation regarding regulatory relationships between TFs and genes 

but cannot be extended beyond this without additional experimentation. For this reason, 

over the coming weeks, I hope to focus on testing these predictions by sampling gene 

expression in a WRKY3-silenced line of N. attenuata to validate submodule genes 

regulated by WRKY3 (such as MPK3), as well as quantitative PCR analysis of JAZb 

transcripts in MYC2-silenced plants to validate our prediction of MYC2 regulation of 

JAZb. 

Considering the overall complexity of transcriptional regulation in plant species, 

identification of only 27 TF-TFBS pairs seems to be lower than expected. Indeed, Yu et 

al.’s 8 similar analysis on the maize genome yielded well over a100 new TF-TFBS pairs. 

We explain this difference in part by the many variable cutoffs and thresholds associated 

with these analysis, in addition to the more granular subsetting approach we adopted. We 

note, however, that the 27 pairs reported here represent only high confidence associations 

and not all likely associations suggested by our analysis. The large amount of data 

generated associating bindings sites, transcription factors, and gene lists is a fertile 

ground for further investigation and prediction of regulatory pathways in N. attenuata 

research. However, before such conclusions can be made, these top candidates should be 

experimentally validated. 

Once validation has taken place, this data will be condensed for posting on the 

online Nicotiana attenuata Data Hub (http://nadh.ice.mpg.de/NaDH/). 

Methods 

Gene co-expression analysis 
We first performed gene co-expression analysis on two large mRNA transcript 

datasets available for N. attenuata by the Mac Planck Institute for Chemical Ecology 

(MPI-ICE). When we started analysis in June 2016, this included 21 samples of RNA-seq 

data as well as 41 microarray experiments. The RNA-seq experiment samples came from 

plants in the 30th generation of an inbred line of a 1996 collection of native plants from 

Washington, Utah,15 and spanned 11 different plant tissue types (ovary, nectary, anther, 

stigma, flower bud, corolla, root, leaf, stem, pedicel and flower). Samples were under 

http://nadh.ice.mpg.de/NaDH/
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different biotic and abiotic stress treatments with different sampling schemes; a more 

complete description of experimental conditions and raw reads for each are available in 

the NCBI database accession number PRJNA317743, as well as the online Nicotiana 

attenuata Data Hub.11 RNA was isolated using TRIZOL® (Thermo Fisher Scientific), 

and RNA-seq libraries were sequenced on an Illumina 2000 HiSeq platform with pair-end 

sequencing. Sequence reads were trimmed using Adapter Removal (v1.1) and then 

aligned to N. attenuata genome using TopHat2 (v2.1.0)16. Transcripts per million (TPM) 

was calculated using RSEM v1.2.20; a complete description of bioinformatic procedures 

is provided by Xu et al.15 in the online Supplementary Information Appendix (section 

2.5). Microarray samples were prepared on the Agilent platform GPL13527 and included 

wild type samples from leaves, roots and flowers. These samples were treated with either 

oral secretion from M. sexta, wounding, or no treatment, and were measured at various 

timepoints, including 3 and 6-hour intervals following treatment. Microarray probes were 

annotated based on gene predictions; a more complete description is provided by 

Brockmöller et al.11 (see Additional file 1 in source 11). 

We performed log2 transformation on both the RNA-seq and microarray data 

before further analysis. We then performed hierarchical clustering to identify and remove 

gene clusters that were extreme outliers based on visual examination. Top connectivity 

genes for each cluster were identified based on expression count results using the 

WGCNA9 package softConnectivity function; we selected the 10,000 genes with the 

highest connectivity values. In the WGCNA package, connectivity acts as a measure of 

“how correlated a gene is with all other network genes,” given as “the sum of connection 

strengths with the other network genes.”9 Following a methodology similar to that 

outlined in the online WGCNA tutorials,17,18 we created an adjacency matrix for the 

10,000 selected genes based on a Gini correlation coefficient (GCC) similarity matrix. 

Ma and Wang19 demonstrated that the GCC outperforms commonly used correlation 

statistics (including Spearman and Pearson) in predicting regulatory relationships in 

transcriptome analysis in plants, and so we used it for our analysis. We used the GCC 

matrix to calculate a topological overlap distance matrix, which we hierarchically 

clustered. Afterwards, we performed tree cutting using the cutreeDynamic function 

included in the WGCNA package, selecting a deepSplit parameter of 3 to produce 

roughly 30 gene sets for each dataset and arbitrary minimum gene set sizes of 30 (RNA-

seq) and 50 (microarray) genes. This resulted in 31 gene sets for the RNA-seq data, and 

33 microarray-based gene sets, with an average of 312.5 and 294.1 genes per gene set, 

respectively. This process also assigned each gene a scaled intramodular connectivity 

score from 0 to 1 as a measurement of “gene set membership.”  

Subset creation 

Gene sets were further divided by forming ‘subsets’ centered around 

transcriptionally relevant genes (within a gene set). Transcriptionally relevant genes were 

designated as either transcription factors or transcriptional regulators based on gene 

domain identification using the iTAK tool12. This produced a list 2509 transcriptionally 

relevant ‘core’ genes (2112 transcription factors and 397 transcriptional regulators) 
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around which subsets were centered. A subset was created if the ‘core’ gene: 1) had 

received a gene set assignment and 2) had an intramodular connectivity score > 0.5.  

Subsets were formed by selecting the top 10% genes most positively correlated (by GCC) 

with the ‘core’ subset gene within the given gene set. All subsets were required to have 

an arbitrary minimum of 30 genes for the RNA-seq based results or 50 for the 

microarray-based results. This resulted in a total of 623 RNA-seq-based and 681 

microarray-based subsets. 

Gene ontology enrichment analysis 

To investigate the biological distribution of subsets and gene sets formed, we 

performed Gene Ontology (GO) enrichment analysis using a simple randomized gene 

permutation method. For any given module or subset, a group of genes was selected 

(from the group of 10,000 genes analyzed) at random equal in number to the size of the 

gene set. Using GO assignments made on the blast2GO platform20 (default settings), the 

frequency of GO assignments appearing in a randomly created gene set were counted. 

This random sampling was performed 1000 times for each gene set and subset. The GO 

term assignment counts associated with actual gene sets/subsets were then assigned a p-

value based on the frequency of a GO term count equaling or exceeding the GO term’s 

frequency in the random permutation tests. 

Motif analysis 
For each subset, we performed motif analysis on candidate promoter regions both 

1kb and 2kb upstream of gene TSSs, searching for motifs of both 8 and 10 bp lengths. 

Genomic sequences were provided by the MPI-ICE and sequenced using both Illumina 

HiSeq2000 and PacBio technologies as described by Xu et al15. Promoter regions for all 

genes in a given subset were extracted and then passed to findMotifs.pl, a motif searching 

tool in the HOMER suite version 4.8.310. Promoter regions for all N. attenuata genes 

were used as background space in this analysis. Only motifs with enrichment p-value ≤ 1 

× 10-5 and appearing in at least 20% of all subset promoter sequences were considered in 

downstream analysis as putative cis-regulatory elements. Motif candidates were located 

within subset gene promoter regions using the HOMER scanMotifGenomeWide.pl tool 

with default parameters for later analysis. 

Motif conservation testing 
To assign each motif candidate a conservation score, we compared subset genes 

containing motif candidates to orthologous genes in S. lycopersicum. The MPI-ICE 

provided a one-to-one gene ortholog mapping for over 18,000 N. attenuata genes to 

genes in S. lycopersicum based on a BLAST reciprocal best-hits algorithm (see 

Supplementary Information Appendix, Source 15). Genes that both had ortholog 

assignments and contained a candidate motif hit were aligned to their S. lycopersicum 

ortholog using the YASS genomic similarity tool version 1.1421 with default parameters 

and -d 4 to provide the output in bed format. We then located intersections of the aligned 

region with known motif locations using the intersectBed tool from the BEDtools suite22 

version 2.25.0, with a required minimum overlap fraction of at least 90% of the motif 
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candidate with the aligned region to count as a ‘conserved’ hit (intersectBed -f 0.9; see 

Figure 8). The number of conserved hits (c) for a given motif (n) across all genes in a 

subset (s) were totaled and then divided by the total number of subset genes that both: 1) 

had ortholog gene assignments and 2) contained the motif in question (gn). This gave a 

conservation score for each motif in each subset (Smn) between 0 and 1, as shown below: 

 

                                               

 

Biologically, this score indicates how frequently a motif is conserved as a proportion of 

the total number of gene subset genes with orthologs in S. lycopersicum. For instance, a 

score of 0.5 would indicate that among 50 subset genes having orthologs, a given motif 

was considered “conserved” in 25 instances among all those genes.  

To approximate the likelihood of encountering such scores for a given subset 

motif by random chance, we repeated this alignment and calculation process using 

randomly assigned gene orthologs from S. lycopersicum in the alignment step. This was 

repeated 1000 times for each subset candidate motif to generate a sample distribution. We 

then assigned a p-value to each score (Smn) based on the frequency of a score ≥ Smn 

appearing in the sample distribution.  

 

Figure 8: Identifying conserved putative motifs to calculate conservation score. We assigned each 

binding motif candidate a conservation score between 0 and 1 and an associated significance score (p-

value) for later filtering steps. N. attenuata genes were first assigned a one-to-one gene ortholog in S. 

lycopersicum. Orthologs were then aligned using YASS; genes with no ortholog assignment were not 

included in analysis. We examined YASS aligned regions for intersection with motif candidate locations. 

Regions intersecting with at least 90% of the motif candidate were considered ‘conserved’ motifs. The total 

number of ‘conserved’ appearances of a motif in a given gene subset was divided by the number of genes 

that both contained the candidate motif and had an ortholog to calculate the conservation score. P-values 

were assigned to conservation scores by the frequency of conservation scores ≥ the assigned conservation 

score per 1000 permutations with random gene ortholog assignments. 

Smn = 
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Motif database search 
Using the identified candidate motifs as queries, we searched for transcription 

factors binding to similar binding sites in related plant species. For this search, we used 

two large online TF/TFBS databases, PlantPan223 and CIS-BP24 to identify TF-TFBS 

pairs. We downloaded both databases in August of 2016 and searched them specifically 

for cis-factors found in Arabidopsis thaliana, Cucumis sativus, Populus trichocarpa, and 

Oryza sativa. Data downloaded from PlantPan2 included 13079 unique TFs and 1149 

unique TFBS; CIS-BP included 135134 unique TFs and 6094 unique TFBS. We used the 

compareMotifs.pl tool from the HOMER10 suite v2.8.3 to compare subset motif 

candidates with known TFBSs in both libraries, requiring a minimum match threshold of 

0.7 and accepting similar search queries with up to 0.9 similarity (reduction threshold 

setting; -matchThresh 0.70 -reduceThresh 0.9 -cpu 2). All TFBS-TF matches were given 

a match score from 0-1, with 1 being a perfect match. 

BLASTp search 
The MPI-ICE provided results for an all-by-all BLASTp search from several 

plants, including A. thaliana, C. sativus, P. trichocarpa, and O. sativa, against N. 

attenuata. From these search results, we selected TFs in N. attenuata with e-values < 1 × 

10-10 when matched with corresponding TFs in the other plant species. These TFs became 

our putative TF candidates for further analysis. 

Back-validation and filtering of TF-TFBS Pairs 
To increase our confidence in predicted TF-TFBS pairs and eliminate multiple 

binding site assignments per TF, we compared the proposed TFBSs for a given TF to the 

motifs identified for that same TF’s own gene subset. Comparisons were made across 

datatypes (i.e. motifs identified from RNA-seq data were compared to TF subsets derived 

from both microarray and RNA-seq subsets, where they existed). Comparing data across 

all subsets, we kept only the predicted binding sites with the highest match score to 

subset motifs. Ties between motifs were broken first by motif conservation score and 

then by TF-motif association scores from database lookup (by TF).  Only TFs with a 

BLASTp percent identity of 60% or higher were kept. This resulted in 27 unique TF-

TFBS pairs. 

Additional metrics we used to discriminate between top TF candidates included 

BLASTp e-value, BLASTp percent identity similarity, and a Relative Correlation Score 

(RCS). We assigned RCS by first calculating the average Gini correlation coefficient for 

each of the genes in the dataset of 10,000 genes relative to all genes in a gene subset of 

interest (for a total of 10,000 averaged scores). We then calculated the Pearson 

correlation coefficient of these averaged scores and the Gini correlation scores of the 

candidate transcription factor to produce a final score between -1 and 1. 

Code availability 
Scripts used to generate figures and perform pipeline analysis are posted on the author’s 

public GitHub repository (https://github.com/aomdahl/N_attenuata_TF_TFBS_pipeline). 
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Supplementary Resources 
Supplementary Table 1: Complete list of 27 predicted TF-TFBS 

Predicted TF TF family 
TF functional 

annotation 
Predicted TFBS 

TF-subset 

correlation 

TFBS 

frequency 

in subset 

promoters 

(%) 

TFBS 

Conservat

ion Score 

NIATv7_g05680 CAMTA 

calmodulin-binding 

transcription activator 

3-like 

AAACGCGT 0.87 30 0.53 

NIATv7_g31688 WRKY 

probable WRKY 

transcription factor 65 

isoform X1 

AAAGTCAA 0.68 44.16 0.41 

NIATv7_g11091 WRKY 
WRKY transcription 

factor 22-like 
AAGTTGAC 0.56 55.84 0.54 

NIATv7_g19992 
C2C2-

GATA 

GATA transcription 

factor 5-like 
AGATCTGT 0.97 28.36 0.69 

NIATv7_g40884 
AP2-

EREBP 

dehydration-responsive 

element-binding 2A-

like 

AGGCGGTG 0.96 26.67 0.29 

NIATv7_g19088 WRKY 
probable WRKY 

transcription factor 57 
AGTCAACG 0.98 36.84 0.71 

NIATv7_g16189 WRKY 
probable WRKY 

transcription factor 24 
ATGTCAAC 0.99 50.65 0.59 

NIATv7_g39427 bHLH 
transcription factor 

bHLH104 
CACGTGCC -0.56 35.56 0.43 

NIATv7_g11639 BES1 NA CACGTGTCAW 0.88 36 0.62 

NIATv7_g28241 WRKY 
probable WRKY 

transcription factor 7 
CGKTGACT 0.96 40.35 0.5 

NIATv7_g11525 WRKY 
probable WRKY 

transcription factor 11 
CGTTGACC 0.86 60 0.68 

NIATv7_g26487 WRKY 

probable WRKY 

transcription factor 65 

isoform X1 

CGTTGACT 0.98 41.82 0.45 

NIATv7_g17075 MYB 
transcription factor 

DIVARICATA 
CTCTTATCCW 0.99 21.21 0.5 

NIATv7_g12711 WRKY 
probable WRKY 

transcription factor 7 
GAATGTCAAC 0.99 23.08 0.33 
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NIATv7_g33798 bZIP 
G-box-binding factor 1-

like isoform X1 
GCCACGTA 0.80 44.44 0.61 

NIATv7_g42721 WRKY 
probable WRKY 

transcription factor 7 
GGTCAAAS 0.85 52 0.42 

NIATv7_g28985 MYB myb-related 308-like GGTTGGTGGG 0.65 22 0.4 

NIATv7_g20460 WRKY NA 
GTCAAAGKC

W 
0.84 30 0.67 

NIATv7_g21131 WRKY 
probable WRKY 

transcription factor 7 
GTCAACGC 0.99 28.07 0.38 

NIATv7_g07696 WRKY 
probable WRKY 

transcription factor 26 
GTCAACGT 0.98 56.67 0.57 

NIATv7_g30043 TCP 
transcription factor 

TCP23-like 
GTGCGYCC 0.63 42.68 0.25 

NIATv7_g33088 WRKY 
probable WRKY 

transcription factor 61 
GTTGACTT 0.97 38.96 0.48 

NIATv7_g29978 WRKY 
probable WRKY 

transcription factor 61 
TAGTCAAC 0.97 44.16 0.22 

NIATv7_g18001 ABI3VP1 

B3 domain-containing 

transcription factor 

ABI3-like 

TCTGCATGGA 0.99 20.45 0.43 

NIATv7_g34810 
C2C2-

GATA 

GATA transcription 

factor 12-like 
TTAGATCTGA 0.96 25.3 0.47 

NIATv7_g16616 bHLH 
transcription factor 

bHLH18-like 
TTGCACGT 0.75 35.06 0.33 

NIATv7_g03410 WRKY 
probable WRKY 

transcription factor 9 
WRGTCAGC 0.89 46.75 0.41 

 

Supplementary Table 2: WRKY3 gene subset genes with G-box binding motif from RNA-seq results 

(GTCAACGT) 

Gene ID Functional Annotation 

Binding site 

upstream from 

TSS (bp) Strand 

NIATv7_g01329 - 169 - 

NIATv7_g01329 - 98 - 

NIATv7_g02607 lysM domain receptor-like kinase 4 811 + 

NIATv7_g02607 lysM domain receptor-like kinase 4 523 + 

NIATv7_g02607 lysM domain receptor-like kinase 4 267 - 

NIATv7_g02779 probable receptor kinase At5g47070 isoform X2 105 + 

NIATv7_g06351 quinone-oxidoreductase homolog, chloroplastic 178 - 

NIATv7_g07696 NaWRKY3 116 + 

NIATv7_g10571 lysM domain receptor-like kinase 4 779 + 

NIATv7_g10571 lysM domain receptor-like kinase 4 263 + 

NIATv7_g15248 probable receptor kinase At5g39020 601 + 

NIATv7_g15285 mitogen-activated kinase 3 305 - 



22 

 

NIATv7_g18543 phospholipase D alpha 1-like 263 + 

NIATv7_g19262 probable WRKY transcription factor 40 629 - 

NIATv7_g19440 aspsartic protesase in guard cell 2-like 174 - 

NIATv7_g19804 

BRASSINOSTEROID INSENSITIVE 1-associated 

receptor kinase 1-like 868 + 

NIATv7_g23441 premnaspirodiene oxygenase-like 134 - 

NIATv7_g38552 subtilisin-like protease 985 + 

NIATv7_g38552 subtilisin-like protease 678 + 

NIATv7_g38951 isoflavone 2 -hydroxylase-like 599 + 

NIATv7_g38951  isoflavone 2 -hydroxylase-like 57 + 

NIATv7_g39472 probable phosphatase 2C 4 351 + 

NIATv7_g39472 probable phosphatase 2C 4 178 + 

NIATv7_g40325 anthocyanidin 3-O-glucosyltransferase 2-like 402 + 

 

Supplementary Table 3: WRKY3-subset genes with G-box binding motif from microarray results 

((C/G)TGTTGAC) 

Gene ID Functional Annotation 

Upstream from 

TSS (bp) Strand 

NIATv7_g02578 receptor 12 205 + 

NIATv7_g04487 PLANT CADMIUM RESISTANCE 2-like 192 + 

NIATv7_g04487 PLANT CADMIUM RESISTANCE 2-like 1225 - 

NIATv7_g06351 quinone-oxidoreductase homolog, chloroplastic 275 - 

NIATv7_g06351 quinone-oxidoreductase homolog, chloroplastic 363 + 

NIATv7_g06351 quinone-oxidoreductase homolog, chloroplastic 865 - 

NIATv7_g06491 

G-type lectin S-receptor-like serine threonine- kinase 

At1g11300 17 + 

NIATv7_g06491 

G-type lectin S-receptor-like serine threonine- kinase 

At1g11300 1280 + 

NIATv7_g07696 probable WRKY transcription factor 26 195 - 

NIATv7_g07696 probable WRKY transcription factor 26 845 + 

NIATv7_g10571 lysM domain receptor-like kinase 4 203 + 

NIATv7_g10571 lysM domain receptor-like kinase 4 271 - 

NIATv7_g10571 lysM domain receptor-like kinase 4 603 - 

NIATv7_g10671 U-box domain-containing 28-like 769 + 

NIATv7_g10851 U-box domain-containing 28-like 1402 + 

NIATv7_g12923 G-type lectin S-receptor-like serine threonine- kinase SD2-5 271 - 

NIATv7_g13625 MACPF domain-containing CAD1 331 - 

NIATv7_g13625 MACPF domain-containing CAD1 500 + 

NIATv7_g13806 YLS9-like 838 + 

NIATv7_g13806 YLS9-like 1853 + 

NIATv7_g15247 probable receptor kinase At1g67000 171 + 

NIATv7_g15247 probable receptor kinase At1g67000 1325 - 

NIATv7_g15285 mitogen-activated kinase 3 305 + 

NIATv7_g15285 mitogen-activated kinase 3 1589 + 

NIATv7_g15931 F-box At1g78280 601 - 
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NIATv7_g15931 F-box At1g78280 925 + 

NIATv7_g19262 probable WRKY transcription factor 40 1068 - 

NIATv7_g19262 probable WRKY transcription factor 40 1702 + 

NIATv7_g19440 ASPARTIC PROTEASE IN GUARD CELL 2-like 174 + 

NIATv7_g20186 MLO 6 314 - 

NIATv7_g20186 MLO 6 926 + 

NIATv7_g20770 BPS1, chloroplastic-like 341 + 

NIATv7_g20770 BPS1, chloroplastic-like 1194 + 

NIATv7_g20961 sigma factor binding 1, chloroplastic-like 1395 + 

NIATv7_g21618 probable phosphatase 2C 10 960 + 

NIATv7_g23176 hydroquinone glucosyltransferase-like 1632 + 

NIATv7_g23441 premnaspirodiene oxygenase-like 134 + 

NIATv7_g23441 premnaspirodiene oxygenase-like 170 - 

NIATv7_g23441 premnaspirodiene oxygenase-like 1700 + 

NIATv7_g23468 Calcineurin-like metallo-phosphoesterase superfamily isoform 1 686 + 

NIATv7_g23660 exocyst complex component EXO70B1 535 - 

NIATv7_g23660 exocyst complex component EXO70B1 577 - 

NIATv7_g24088 synaptotagmin-4 isoform X1 321 + 

NIATv7_g27413 

AP2 ERF and B3 domain-containing transcription factor 

RAV1-like 267 + 

NIATv7_g32512 aspartic ase 1 135 - 

NIATv7_g33395 phospholipid-transporting ATPase 1-like 640 + 

NIATv7_g33943 methylesterase 11, chloroplastic 174 - 

NIATv7_g34361 transmembrane 154 + 

NIATv7_g34361 transmembrane 239 - 

NIATv7_g34361 transmembrane 439 + 

NIATv7_g34361 transmembrane 587 - 

NIATv7_g34361 transmembrane 692 + 

NIATv7_g35369 NAC transcription factor 29-like 322 - 

NIATv7_g35369 NAC transcription factor 29-like 1134 + 

NIATv7_g35369 NAC transcription factor 29-like 1956 - 

NIATv7_g36048 FK506-binding 4-like 1554 + 

NIATv7_g36323 multiple C2 and transmembrane domain-containing 2-like 315 - 

NIATv7_g36323 multiple C2 and transmembrane domain-containing 2-like 719 + 

NIATv7_g36323 multiple C2 and transmembrane domain-containing 2-like 941 + 

NIATv7_g38552 subtilisin-like protease 678 - 

NIATv7_g38552 subtilisin-like protease 985 - 

NIATv7_g38552 subtilisin-like protease 1006 + 

NIATv7_g39620 transmembrane ascorbate ferrireductase 1 988 - 

NIATv7_g39620 transmembrane ascorbate ferrireductase 2 1395 + 

NIATv7_g39620 transmembrane ascorbate ferrireductase 3 1731 - 
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Supplementary Table 4: Top transcription factor candidates for JAZb microarray gene subset 

(including MYC2a and MYC2b) 

Gene  

BLASTp 

e-value 

BLASTp 

Percenty 

identity Functional annotation Predicted Binding Site RCS 

NIATv7_g23317 0 62.02 

transcription factor MYC2-like 

(MYC2b) CACGTGTC 0.646649304 

NIATv7_g42868 7.00E-60 72.73 transcription factor ICE1-like CACGTGTC 0.578483203 

NIATv7_g16429 5.00E-56 57.95 

transcription factor MYC2-like 

(MYC2a) CACGTGTC 0.787168699 

NIATv7_g15722 9.00E-52 58.1 basic leucine zipper 43-like GGCCACGTGT 0.74265316 

NIATv7_g31247 5.00E-36 70.48 

ABSCISIC ACID-INSENSITIVE 

5 5 GGCCACGTGT 0.57342476 

NIATv7_g32085 3.00E-26 78.26 

transcription factor SPATULA-

like TGCCACGTGT 0.586531843 

NIATv7_g13774 1.00E-22 61.33 

transcription factor SPATULA 

isoform X2 TGCCACGTGT 0.541747846 

NIATv7_g11555 4.00E-22 72.73 transcription factor bHLH62 TGCCACGTGT 0.854109812 

NIATv7_g02164 1.00E-21 72.73 transcription factor bHLH62-like TGCCACGTGT 0.636721259 
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