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abstract

Exploring Improvements to the Convergence of Reconstructing Historical Destructive 
Earthquakes

Kameron Lightheart
Department of Mathematics, BYU

Master of Science

Determining risk to human populations due to natural disasters has been a topic of in-
terest in the STEM fields for centuries. Earthquakes and the tsunamis they cause are of 
particular interest due to their repetition cycles. These cycles can last hundreds of years 
but we have only had modern measuring instruments for the last century or so which makes 
analysis difficult. In this document, we explore ways to improve upon an existing method for 
reconstructing earthquakes from historical accounts of tsunamis. This method was designed 
and implemented by Jared P Whitehead’s research group over the last 5 years. The issue 
of this method that we address is the relatively slow convergence. One reason for this slow 
convergence is caused by the random walk proposal step in the Markov Chain Monte Carlo 
(MCMC) sampling.

We explore ways of constructing an approximate gradient of the model in order to ap-
ply a more robust MCMC Method called MALA that uses a gradient combined with some 
randomness to propose new samples. The types of approximate gradients we explore were a 
heuristic gradient, a data driven gradient and a gradient of a surrogate model. We chose to 
use the gradient of a simplified tsunami formula for our implementation. Our MALA algo-
rithm under performed the previous random walk method which we believe implies that the 
simplified tsunami model didn’t give sufficient information to guide the proposed samples 
in the optimal direction. Further experimentation would be needed to confirm this and we 
are confident that there are other ways we can improve our convergence as specified in the 
future work section.

Our method is built into the existing Python package tsunamibayes. It is available, open-
source, on GitHub: https://github.com/jwp37/tsunamibayes.

Keywords: earthquake, tsunami, BYU, applied, math, MCMC, MALA
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Chapter 1. Introduction

Among the many challenges we face in this world, perhaps one of the most heartbreaking

is when natural disasters strike. What makes matters even worse is when we don’t see it

coming. That is why our tsunami research team at BYU has set out to contribute to the

effort of modeling and prediction of a subset of these natural disasters, particularly tsunamis.

Tsunamis are mainly caused by any one of four things: earthquakes, landslides/seamount

collapse, lava entering the sea or meteorite impacts [1]. It is worth noting that there are rare

occurrences that have unknown causes. Our main focus has been on tsunamis caused by

earthquakes, but we are also planning on looking into some of these other causes, particularly

seaside land collapse since it is the second most common cause whereas lava and meteorite

impact are much more rare.

There are many geographic locations in this world that are in danger of tsunamis, but

the one that we have centered our work around is Indonesia. Indonesia is the most tec-

tonically active region on earth, and it has a highly dense population. Unfortunately this

is a setup for mass casualties and destruction when large events strike [2]. This was made

evident when the 2004 earthquake hit off the coast of Sumatra, causing a massive tsunami

that devastated many neighboring islands and shorelines. This event in particular spurred

an enormous research effort and has become the basis of many geological theories and im-

proved understanding due to the well documented reports and seismic data generated from

precise instruments. Unfortunately, we haven’t always had these seismic measuring tools.

There were some primitive instruments, but nothing capable of producing data essential

to the modeling and prediction of earthquakes necessary to make informed decisions about

preventative measures [3]. To that end, we have pursued a method of determining key char-

acteristics and details about tsunamis and the earthquakes that caused them for events that

occurred previous to the invention of precise measuring instruments.

The first event we focused on was the 1852 Banda Arc earthquake due to a large amount
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of historical writings that give basic details, like how long the tsunami took to arrive after the

earthquake hit, how high the waves reached, and how far inland the waves reached [4]. This

data is given in very imprecise ways, which makes it very difficult to determine the magnitude

of the earthquake or other details about it. Using Bayesian inference, our research group

came up with and implemented an algorithm that made valuable discoveries about this

event [5, 6].

The bare bones of the algorithm include Bayesian inference, the Metropolis-Hastings

Markov Chain Monte Carlo (MCMC) method [14, 15], the Okada Model [16] and the

Geoclaw tsunami simulation package [10, 11, 12, 13]. More details on these will be given

in the next chapter. While our group was successful in discovering the nature and details

of this event within a measure of error, unfortunately it was quite costly computationally.

The reason it was so expensive has to do with the random walk implementation of MCMC

that was used. Essentially to find the desired set of parameters, a random guess is taken,

evaluated against historical details and either accepted or rejected depending on if the guess

was an improvement to the previous guess. Normally using a random walk to propose each

new set of parameters isn’t a problem when used to run a MCMC algorithm, but in our case

for each iteration we needed to run a quite expensive simulation (Geoclaw) to simulate a

tsunami based on the input parameters which is then compared to the historical accounts we

gathered. This led to months of running chains before we could confidently determine that

the algorithm converged to a solution. This is not ideal since we want to apply our same

method to other tsunamis that occurred at different times and in different places throughout

history.

This is where derivative based MCMC methods come into play. The idea is that if

we can determine a gradient of the tsunami simulation, instead of randomly guessing at

each step, we can step in the right direction each time resulting in a drastic improvement

in convergence time. Unfortunately, the simulation package that we use (Geoclaw) can

not be used to determine such a gradient. Luckily these derivative based MCMC methods
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can use an approximation of that gradient and still reap the convergence improvements.

On a higher level this is because stepping in roughly the right direction is better than

randomly guessing. Some of these derivative based methods are Preconditioned Crank-

Nicolson (pCN), Metropolis-Adjusted Langevin (MALA), and Hamiltonian or Hybrid Monte

Carlo (HMC) [7, 8, 9]. In this thesis we focus on the MALA method, but future work can

pursue other methods as well.

Chapter 2. Overview of Previous Work

2.1 Background

In this section we aim to cover the necessary background topics needed to understand the

algorithm, as well as introduce the notation we will use. The main topics of interest here are

Bayesian statistics, a forward model, a likelihood distribution and the MCMC algorithm.

Bayesian statistics is one of the main branches of statistics opposite frequentist’s theory.

Frequentists interpret random variables to not represent a truly random process, but instead

to represent a true set of probabilities that can be found via lengthy experimentation. This

approach follows the idea that this true set of probabilities exists and with enough samples the

experimental results will approach the true probabilities. The focus is on the probability of

given data based on a fixed parameter P (data|parameter). The Bayesian approach measures

this too, but also asks the question of the probability of a given parameter based on a fixed

data set P (parameter|data).

The foundation of Bayesian statistics relies on Bayes theorem which relates these two

probabilities in this way:

p(x|θ) = p(θ|x)p(x)
p(θ)

(2.1)

Using the law of total probability and assuming we have continuous random variables we

can extend this to:
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p(x|θ) = p(θ|x)p(x)∫
p(θ|x)p(x)dx

(2.2)

This formula can also be interpreted in the context of an inversion problem where we

have an unknown distribution that we can approximate by starting with an initial guess we

call the prior distribution that is represented by p(x), and a likelihood function which is

represented by p(θ|x). The integral in the denominator is known as a normalizing constant

that scales the prior times the likelihood. Finally when we compute the right side of the

equation the result is called the posterior distribution. Successively computing this formula

in an iterative fashion while updating the sample x is the bare-bones of MCMC.

2.2 MCMC

In many situations even though we can compute the prior and likelihoods of a given sample,

the normalizing constant is expensive or impossible to compute or even estimate. Luckily

there are ways to sample from the posterior without needing to compute it. Some of the

most famous of these sampling methods are called Markov chain Monte Carl (MCMC)

methods. We focus on the Metropolis-Hastings algorithm, originally developed by Nicholas

Metropolis [14], and extended by W.K. Hastings [15].

A Markov chain is defined to be a sequence of random variables X1,X2,... where any

given state Xn only depends on the previous state Xn−1 this property is stated as:

P (Xn+1|Xn = xn, ..., X1 = x1) = P (xn+1|Xn = xn) (2.3)

A stationary distribution π(x) of a Markov chain is a probability distribution for that Markov

chain that remains unchanged as time progresses. In other words, as time goes to infinity,

it is a distribution of how long the chain will spend at each state.

Let K(x, y) be the probability density formula to transition from one state to another.

This is called the Markov kernel. We can compute the probability of the next state using
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this kernel in the following way:

P (Xn+1|Xn = x) =

∫
K(x, y)dy + r(x)χ(x) (2.4)

where x is the current state, r(x) is the probability of remaining at the state x, and y is the

integrating variable that represents the next state.

Another important definition which combines the stationary distribution and the tran-

sition kernel is called detailed balance. Detailed balance ensures that the Markov chain is

reversible with respect to the stationary distribution. It holds when the following equation

is true:

π(y)K(y, x) = π(x)K(x, y) (2.5)

The algorithm for Metropolis-Hastings MCMC is

Algorithm 1 Metropolis Hastings MCMC

1: Initialize: x0
2: for i=0,... do
3: Propose p ∼ q(xi)

4: Set α = min(1, π(p)q(p,xi)
π(xi)q(xi,p)

)

5: Draw p ∼ U(0, 1)
6: if p < α then
7: Set xi+1 = p
8: else
9: Set xi+1 = xi

Our problem requires a Bayesian inversion implementation of MCMC where we have a

prior, likelihood and forward model as the three main components. The main difference is

in how we decide whether or not to accept a given proposal sample. We use a predetermined

likelihood function to help make this decision. The likelihood in our case is a function that

computes how closely a set of outputs (wave height, arrival time, inundation distance) match

the historical accounts we have. The forward model is a function that takes in the Okada

parameters as input (latitude, longitude, magnitude, delta log-length, delta log-width, depth

offset) and outputs wave height, arrival time and inundation. This is implemented using the

5



Geoclaw tsunami simulation model we mentioned before [10, 11, 12, 13]. Finally the prior

encapsulates both general knowledge of earthquakes/tsunamis as well as knowledge about

the specific region around the Banda Arc. We will define the distributions and parameters

chosen for the prior and likelihood in the MALA implementation of the MCMC section.

2.3 Previous Findings

After years of building and adjusting the implementation of this algorithm, we began running

chains to gather samples in hopes of converging to a solution. We started several chains along

the Banda Arc as the epicenter of the earthquake, and with varying starting magnitudes to

try to get an idea of where to focus our efforts. We made some interesting discoveries and

re-sampled at the parameters that the chain were approaching.

One interesting finding was that all the chains that we started along the southern half

of the arc never made their way North, even though the samples in the North had a higher

likelihood. For this reason, we decided to re-sample in the North. The magnitude was clearly

tending toward 8.8, so we re-sampled there too. After a total of 168,000 samples collected,

we felt confident that our algorithm had converged. This is validated by the Gelman-Rubin

diagnostic which settled just below 1.1 as shown in Figure 2.1.

Figure 2.1: Gelman-Rubin Diagnostic Plot of Original Random Walk Chains
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The region of convergence settled around latitude -4.5, longitude 131.8, magnitude 8.8.

The latitude and longitude results were as expected based on discussions with geologists,

but the magnitude ended up being higher than expected. This gave us confidence that our

setup could extend to other historical events that we can discover new facts about.

Chapter 3. Construction of an Approximate

Gradient

3.1 Heuristic Gradient

Within the realm of earthquakes and tsunamis there are some logical inferences we can make

that can be useful for approximating our gradient. The simplest such inference might be

the arrival time of a tsunami wave since we would expect that time to decrease the closer

the epicenter of the earthquake is to the observation point. Thus we start with a simple

equation of:

A(x1, y1, x2, y2) =
d((x1, y1), (x2, y2))

z
(3.1)

where x1, y1 are the latitude and longitude of the epicenter and x2, y2 are the latitude and

longitude of the shoreline of interest, d is euclidean distance, z is the wave velocity, and A

represents the arrival time. For wave velocity we can either choose a constant from domain

knowledge, or have it be a function of other model parameters like magnitude, etc.

This should work since the units on distance are a length such as meters, and wave velocity

will have units of meters per second. Thus as long as our wave velocity is reasonable, this will

yield a first order approximation. We did consider the fact that some of the gauge locations

are inside of bays or have pieces of land between them and the epicenter. To account for

this, we could have introduced another geographic point between the gauge and epicenter,

and measure the distance as point-wise from one point to another. Another option would

be to draw a smooth contour in a path similar to what we might expect a tsunami wave to

take. Both are improvements that could be pursued, but we expect that other assumptions

7



below will indroduce just as much error, and so we opted to take the simplest route.

Another consideration is to have arrival time be a function of magnitude, i.e. the higher

the magnitude, the shorter the arrival time. This one is more complicated though, because

it would require some sort of scaling to make sure any magnitude below 10 has an above

0 arrival time. This could be done by applying domain knowledge about how fast tsunami

waves are based on an earthquake’s magnitude, and reusing the formula above, but making

it a function of magnitude only, with a fixed epicenter, and the magnitude would determine

the wave velocity. In fact, combining these 2 ideas might be the best approach as we could

then take a gradient with respect to latitude, longitude and magnitude with reference to the

wave arrival time.

3.2 Linear Fit to Data

Due to our background in machine learning, and the large amount of data we had already

collected, we hoped that there could be something done with the data from previously run

models, in order to imitate the complex and expensive Geoclaw simulations. Since we had

hundreds of thousands of data points from previous random walk MCMC runs, we started

there. The simplest approach would be a linear fit to the data, so that is what we started

with. The idea was to graph different input parameters against wave height and arrival time,

and try to find if there are any parameters that have a good linear fit. If they aren’t linear,

then other simple curves could be used like an exponential, logarithmic or polynomial fit.

The idea is that if any parameters have a differentiable curve that approximates them well,

we can use that fitting function in the gradient approximation.

We plotted all the input parameters against the output parameters and did linear re-

gression plots for each of them. Most of the plots were clearly not linear and by narrowing

down to the plots with the highest R-Squared coefficients Figure 3.1 shows the top 6 fits.

The latitude vs Pulu Ai height, latitude vs Banda Neira height and magnitude vs Pulu Ai

height look the best out of these, but they still aren’t by any means linear. In fact most of

8



the plots were too spread out to be approximated by any simple curve let alone a linear fit.

Therefore we can conclude that a curve fit won’t help with any of our parameters and we

can move on to other possibilities.

Figure 3.1: Best linear fit Okada parameters vs observation plots

3.3 Data driven Gradient

The next step after curve fitting was to try training some machine learning models on the

data. The models that best fit the format and behavior of the data were stochastic gradient

descent regressor, Deep Neural multi-layer perceptron regressor, support vector regressor,

K-nearest neighbors regressor, and the random forest regressor. As Table 3.1 shows, the
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results were pretty scattered, but the random forest regressor did the best job impersonating

the forward model. The problem is that there isn’t a good way to compute a gradient on a

random forest which is fundamentally built on non-differentiable functions.

Model Type Score (−∞, 1] MSE Train Time

Random Forest 0.92 0.05 13.8 s
K-Nearest Neighbors 0.58 0.24 0.04 s
MLP Neural Network 0.38 0.27 10.8 s
Suport Vector Machine -0.33 0.42 13.5 s

Stochastic Gradient Descent -∞ ∞ 0.97 s

Table 3.1: Data driven forward model replacement results

3.4 Simplified Formula

One idea to overcoming the dilemma of not being able to take a gradient of the forward

model is to replace it with a simplified formula that takes the same parameters and gives

the same result, just with much less accuracy. This idea came to us because we were in

discussions with Steve Ward who has done previous research and published papers that put

together such a formula [17]. The nice thing about derivative based MCMC methods is

that we only need to approximate the derivative, so as long as such a formula gives us more

valuable information than a random guess, it will be an improvement over random walk.

The formula taken from Steve Ward’s research that we used is the shoaled tsunami

amplitude AS(R) (essentially wave height) at a shore location R distance away from the

epicenter of an earthquake which is given by

AS(R) = A0PSL (3.2)

where A0 is the initial tsunami amplitude, P is the propagation loss and SL is the shoaling

correction. The computation of these three forms is quite involved, but the only non-constant

variables used are magnitude M; the ocean depth at the source H0; the distance from the

epicenter R; and the mean ocean depth H̄.
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Let’s start breaking this down by first approximating A0 or the initial tsunami height by

the formula:

A0 =
α∇u(M)

cosh
[

4πH0

W (M)+L(M)

] (3.3)

where α is the fraction of earthquake slip that transforms into tsunami-making uplift calcu-

lated using θ = fault dip and φ = fault rake angles given in degrees. It is given by:

α =

(
1− θ

180

)
sin(θ)|sin(φ)| (3.4)

∇u(M) is the fault slip which is a function of magnitude M, W(M) and L(M) are the fault

width and length respectively which are also functions of M.

Next we define propagation loss which is the wave decay that tsunamis face as they travel

due to geometrical spreading and frequency dispersion. It is a function of R, L(M) and H̄

given by

P =

(
1 +

2R

L(M)

)−ψ

(3.5)

where ψ = 0.5 + 0.575e−0.0175
L(M)

H̄ .

Finally SL is the shoaling correction which reduces to Green’s Law:

SL =

(
H0

H̄

) 1
4

(3.6)

Combining 3.3, 3.5 and 3.6 together gives our combined simplified wave height equation to

be:

As(R) = A0PSL =
α∇u(M)

cosh
[

4πH0

W (M)+L(M)

] (1 + 2R

L(M)

)−ψ [
H0

H

] 1
4

(3.7)

This is great, but the input parameters to the Okada model [16] we use in our algorithm

are slightly different, so let’s talk about how to go between the two. As a reminder, the

parameters used in our model are latitude and longitude of the epicenter, change in log

length and log width and the depth offset of the fault. From this point forward we will use

the variables l1, l2,m, dll, dlw, do for latitude, longitude, magnitude, delta log-length, delta

log-width and depth offset respectively. Equation (3.8) gives a breakdown of each of the

variables from the simplified formula using these 5 parameters. Haversine is the well known
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formula for computing the distance between two points on a sphere (the earth in this case),

dip map is a mesh grid that maps from latitude and longitude to the dip angle of the

fault [19], and µ is a scaling factor we set to 4e10. For simplicity we set the height variables

H and H̄ as H = 1 and H̄ = 2, 000 while H0 is looked up using another mesh grid of data

we have called the depth map [19].

R = Haversine(l1, l2)

θ = dip map(l1, l2), φ = 90

∇u(m) = 101.5∗m+9.05−log(µ∗L(m)∗W (m))

W (m) = 100.2992∗m+2.60873+dlw

L(m) = 100.52339∗m+1.09744+dll

(3.8)

Thus the simplified tsunami formula can be written as a function of l1, l2, m, dll, dlw and do

(depth offset isn’t explicitly used, and is not important enough to involve, thus we ignore it

when taking derivatives and instead will update it using a random walk, more on that later).

Now that we have a simplified tsunami equation defined, we proceed to compute the

gradient of it analytically. This is so that we can compute a direction to go at each step of

our Markov chain, rather than stepping in a random direction. While it is possible to take

these derivatives by hand, the faster approach was to use symbolic programming to build the

equation and take subsequent derivatives. Further details will be covered after we introduce

MALA.

Chapter 4. MALA

The first derivative based MCMC algorithm we implemented was the Metropolis-adjusted

Langevin Algorithm (MALA) [9]. This algorithm uses the same basic structure and steps

presented in the MCMC section of the background chapter above, except for the proposal

and accept-reject are implemented using Langevin dynamics. Langevin dynamics involve

modeling molecular systems using simplified mathematical models that account for omitted
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degrees of freedom through stochastic differential equations. They can be used for MCMC

because they involve both a gradient flow toward higher probability in a given region and a

random walk portion which together gives the convergence properties needed.

In random walk MCMC the proposal step uses a sum of the negative log-likelihood and

the negative log-prior. We are going to define this function as U(q) where q is the current

sample. The new proposal is:

q̃ = q − 1

2
δ2∇U(q) + δν (4.1)

where ν is drawn from the unit normal distribution, δ << 0 is the step size which is typically

small and ∇ is the gradient operator. This gives us our proposal q̃ which is then passed into

the new acceptance probability formula which as required by detailed balance is given by:

α(q, q̃) := 1 ∧ exp(−U(q̃)− 1

2δ2
|q − q̃ +

δ2

2
∇U(q̃)|2 + U(q) +

1

2δ2
|q̃ − q +

δ2

2
∇U(q)|2). (4.2)

Using this proposal and acceptance probability, it has been proven that we obtain a reversible

Markov kernel and thus the MCMC algorithm will converge.

The reason this method is useful to us is because we only have an approximation of the

gradient, but since there is a random term involved in Langevin dynamics, along with the

ability of the algorithm to reject samples that worsen the probability distribution, even with

a exact opposite value for the gradient, the chain will still work its way toward the correct

solution over time.

4.1 MALA Applied to our Tsunami Problem

As stated in the previous section, we have that U(q) is the sum of the log-likelihood and

the log-prior. In the context of our problem the likelihood equation for a given sample q is

determined by a set of wave height distributions that were constructed with the help of the

colleagues in Geology. These height distributions vary for each observation location so we

will outline those here:
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Gauge Location Distribution Mean Standard Deviation Shape Parameter (df)

Amahai Normal 3.5 1.0 N/A

Ambon Normal 1.8 0.4 N/A

Ameth Normal 3.0 1.0 N/A

Banda Neira Normal 6.5 1.5 N/A

Buru Chi-square 0.5 1.5 1.01

Hulaliu Chi-square 0.5 2.0 1.01

Kulur Normal 3.0 1.0 N/A

Pulu Ai Normal 3.0 0.8 N/A

Saparua Normal 5.0 1.0 N/A

Table 4.1: Wave height prior distributions by gauge location

where the Normal and Chi distributions are defined as:

N(µ, σ) =
1

σ
√
2π
e

1
2(

h−µ
σ )

2

(4.3)

Chi(µ, σ, df) =
1

2
df
2 Γ

(
df
2

) (h− µ

σ

) df
2
−1

e
−h
2 (4.4)

and where h is the wave height at the shoreline.

Next we substitute our simplified tsunami wave height equation in for h to create a

composite function since AS(M) defined above is equivalent to wave height. Thus given an

input of latitude, longitude, magnitude, delta log-length, delta log-width and depth offset,

these equations with given parameters per gauge give the probability (or likelihood) that

those 5 parameters could have caused the wave that hit that particular gauge location. The

combination of them gives us a picture of how likely a set of 5 parameters could have caused

the 1852 tsunami.

Now for the prior, we again use domain knowledge with the help of colleagues in Geology

to come up with prior distributions for latitude, longitude, magnitude, delta log-length, delta

log-width and depth offset. These are essentially educated guesses of what reasonable values
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for each should be. Here is a table of the prior distributions.

Parameter Distribution Mean Standard Deviation Shape

Depth Truncated Normal µd = 30000 σd = 5000 N/A
Magnitude Truncated Exponential µm = 6.5 σm = 1.0 bm = 3.0
Delta-logl Normal µδlogl = 0.0 σδlogl = 0.188 N/A
Delta-logw Normal µδlogw = 0.0 σδlogl = 0.172 N/A
Depth-offset Normal µdo = 0.0 σdo = 5.0 N/A

Table 4.2: Okada model parameter prior distributions

Here the truncated normal is the normal distribution, but zero everywhere outside of a

given interval [c,d], We fix these values to be

c =
mindepth− µd

σd
, d =

maxdepth− µd
σd

(4.5)

where we fix mindepth=2500 and maxdepth=50000 and µd, σd are the mean and standard

deviation for depth given in the table above. The truncated exponential distribution is

truncexpon(m, bm, µm, σm) =
e

−(m−µm)
σm

1− e−bm
(4.6)

You might notice that depth is in place of latitude and longitude from our original 6

parameters. In order to compute the gradient in terms of latitude and longitude, we can use

this equation to relate depth to latitude and longitude:

depth = depth map(l1, l2) + 1000 ∗ do (4.7)

where depth-map is a grid of depths within a region taken from SLAB2 dataset, in this case

a grid that contains all the gauge locations, the region of plausible epicenters and a buffer

outside of all those. We aren’t able to compute an analytic derivative, so instead we use a

finite difference method for computing the derivatives with respect to latitude and longitude,

and analytically solve for the other parameters. We use the centered difference schemes

ddepth

dl1
(l1, l2) =

1

2 ∗ step
(depth map(lat+ step, l2)− depth map(lat− step, l2)) (4.8)

ddepth

dl2
(l1, l2) =

1

2 ∗ step
(depth map(l1, l2 + step)− depth map(l1, l2 − step)) (4.9)
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Now the combined prior is:

prior(l1, l2,m, dll, dlw, do) = latlon prior ∗m prior ∗ dll prior ∗ dlw prior ∗ do prior (4.10)

We are interested in the negative log-prior so we end up with:

−log(prior(l1, l2,m, dll, dlw, do)) =− log(depth prior(l1, l2))

− log(m prior)

− log(dll prior) (4.11)

− log(dlw prior)

− log(do prior)

Thus when we take the gradient of the negative log-prior, the derivatives distribute over

the subtraction and thus we can take the derivatives individually without worrying about

the product rule. Thus our gradient is:

−∇log(prior) =
[
dprior

dl1
,
dprior

dl2
,
dprior

dm
,
dprior

dδlog l
,
dprior

dδlog w
,
dprior

ddo

]
(4.12)

Conveniently all of our prior distributions involve an exponential, and since the logarithm

is the inverse of the exponential, the distributions simplify quite nicely and it can be easily

verified that the derivatives are:

dprior

dl1
(l1, l2, do) =

(µd − (depth map(l1, l2, step) + 1000 ∗ do)) ∗ ddepth
dl1

σd
(4.13)

dprior

dl2
(l1, l2, do) =

(µd − (depth map(l1, l2, step) + 1000 ∗ do)) ∗ ddepth
dl2

σd
(4.14)

dprior

dm
(m) = 1 (4.15)

dprior

dδlog l
=
δlog l

µ2
δlog l

(4.16)

dprior

dδlog w
=
δlog w

µ2
δlog w

(4.17)

dprior

ddo
=

(µd − (depth map(l1, l2, step) + 1000 ∗ do))
σdo

+
do
σdo

(4.18)
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With that, we now have all the pieces necessary to compute the gradient of U(q)

∇U(q) = −∇log(likelihood(q))−∇log(prior(q)) (4.19)

and we can now compute the proposal and acceptance probability for our MCMC algo-

rithm.

Chapter 5. Experimentation and Results

5.1 Initial MALA Tests and Delta Search

When it comes time to run MALA, the value of delta must be chosen between 0 and 1.

Delta is the step size of both the gradient and the random portion of the proposal. As with

many tunable parameters in various algorithms, there usually isn’t a predetermined way of

choosing delta. Most of the time the most efficient way of choosing those parameters is to

run experiments with different combinations and keep the ones that perform the best. That

is why we started several different chains with varying values of delta, and varying Okada

parameters. We choose 0.3, 0.1, 0.01, 0.001, 0.0001 as our values of delta and had 3 different

starting locations of the North-West, South and North-East areas of the Banda Arc. The

North-West and South locations were chosen to see if the gradient would help those chains

make their way over to the posterior distribution that we know is found in the North-East

area near -4.5 latitude, 131.5 longitude. The Southern region is of particular interest since

previous experiments never made their way North due to a local minimum of the negative

log-likelihood. The hope was that the gradient might help the chains jump their way out of

the local minimum and make their way towards the global minimum. The chains we started

near previously identified maximal posterior from the random walk were chosen to start

where the re-sampling had started during the random walk experiments. These 15 chains

were run for between 9,000 and 11,000 samples each, and some interesting results came from

them.

One important metric of any MCMC method is the acceptance rate of samples. For
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random walk, there is a general rule of 23% being the optimal acceptance ratio. For MALA,

the general consensus is that an acceptance rate closer to 50% is ideal, but this is really a

rule of thumb, and has not been rigorously justified. In the table below, we list the average

acceptance ratio for each of the 15 chains. It is worth noting that starting the alternate

locations at a magnitude of 8.0 was likely not ideal since that is well outside of the posterior

distribution found from previous work. This is adjusted in the second run of chains in the

next section.

Delta Latitude Longitude Magnitude Acceptance Ratio

0.0001 -4.4 131.8 8.5 0.202
0.0001 -3.85 130.9 8.0 0.198
0.0001 -7.75 130.0 8.0 0.417
0.001 -4.4 131.8 8.5 0.096
0.001 -3.85 130.9 8.0 0.705
0.001 -7.75 130.0 8.0 0.4
0.01 -4.4 131.8 8.5 0.248
0.01 -3.85 130.9 8.0 0.234
0.01 -7.75 130.0 8.0 0.43
0.1 -4.4 131.8 8.5 0.229
0.1 -3.85 130.9 8.0 0.048
0.1 -7.75 130.0 8.0 0.394
0.3 -4.4 131.8 8.5 0.03
0.3 -3.85 130.9 8.0 0.17
0.3 -7.75 130.0 8.0 0.15

Table 5.1: MALA delta parameter search results

The first observation is that the acceptance ratio varied wildly throughout these tests

ranging from 0.03 to 0.705. There were 2 values that were close to 0 and both of them were

with a larger delta of 0.1 and 0.3 which likely means those values of delta are too high and

lead to instability. When the step size is too large, proposals can jump into unlikely samples

repeatedly. An expected result is that the acceptance ratio of those samples starting in the

Northwest and South were greater than or equal to those of the Northeast. This is because

the Northeast location is already near the region of maximal posterior probability, so moving

around near there leads to small if any improvements in the log-likelihood. The concerning
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finding is that none of the delta values could consistently a get higher than 20% acceptance

rate. Based on these acceptance rates, along with some findings we’ll discuss in the next few

paragraphs led to us choosing 0.0001 as our delta value for our direct comparison to random

walk.

One important metric for convergence of MCMC chains is the Gelman-Rubin diagnos-

tic [18]. It was shown previously that our random walk method converged based on the

Gelman-Rubin diagnostic scores reaching below 1.1 for all of the parameters at around 8000

samples. Figure 5.1a shows a plot of the Gelman-Rubin scores for all the MALA chains of

this initial experiment. Although the values decrease for the first 8000 samples, they appear

to level out well above the desired score of 1.1. This is expected since the Southern chains

never made their way North to the maximum posterior probability region. Figure 5.1b shows

the same plot omitting the Southern, near-zero acceptance, and poorly behaved chains. Now

the chains appear to converge by around 6000 samples, other than the delta-log width which

for some reason takes until roughly 9000 samples to converge.
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Figure 5.1: Gelman-Rubin diagnostic test for delta parameter search chains

Next we consider the latitude, longitude and magnitude plots of the subset of chains

described in the previous paragraph. See Figure 5.2. We can see from where the chains

level out that they appear to converge to approximately latitude -4.5, longitude 131.6 and
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magnitude 8.8. This almost exactly matches up to our previous findings. This is good

news as it means that our implementation of MALA is at the very least comparable to

the random walk implementation in both the rate of convergence and the location of the

maximal posterior probability. We mentioned how we started some chains with a magnitude

of 8.0, which was probably a bad decision since the convergence zone centers tightly around

8.8 in magnitude, but notice that those chains were able to shoot up to near 8.8 within only

a few hundred samples. A similar result can be found in the longitude plot of the chains

that started in the northeast corridor. It took quite a bit longer with close to 2000-3000

samples to get to the maximum probability region, but notice how there were big jumps up

at around 1900 and 2200 samples. This could be an indication of the gradient helping to

point the proposals in the right direction and causing faster convergence. It will require more

experiments to determine how much the approximate gradient is actually helping compared

to random proposals.
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Figure 5.2: MALA experiment 1 latitude, longitude and magnitude graphs

5.2 MALA vs Random Walk Side-by-side Comparison

Now that we have established similar behavior, we hope to discover if approximate gradient

MALA can outperform random walk. To do this we designed an experiment to directly

compare the two algorithms. The setup of this experiment will consist of choosing some

starting epicenters and magnitudes on the edges of the maximum probability region and

then running chains for both algorithms simultaneously from the same starting parameters.

Starting near the maximum probability region should remove some of the erratic behavior

we saw with our first experiment. Since the only values of delta that didn’t have a near

zero acceptance rate were 0.0001 and 0.01, we decided to use the more conservative 0.0001
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value of delta for our direct comparison. This decision was based on our observation that

the bigger values of delta tended to have poor behaving chains in our first experiment.

(a) Epicenter locations

(b) Magnitude values

Figure 5.3: Starting parameters for MALA vs random walk direct comparison experiment

The red dots are the starting locations, and the heat map (latitude and longitude) and

histogram (magnitude) are from the previously computed data set via random walk.

The next step was to choose the starting epicenters and magnitudes. This was easy for

the magnitudes since the plot is 2d so we simply chose the tail ends of the distribution at

8.5 and 9.0 as shown in Figure 5.2. The process for choosing the epicenter starting points

was less scientific due to the shape of the convergence region as shown in Figure 5.3b. We

settled on 8 different epicenter points listed in Table 5.2 along with the two magnitude edge

cases which should give us enough variety and structure for a good comparison experiment.

For the remaining parameters of depth offset, delta-log length and width we left them at 0.0

for simplicity.

Latitude -4.9 -4.9 -4.55 -4.2 -3.9 -3.92 -4.2 -4.6 -4.5 -4.5

Longitude 132.0 131.65 131.4 131.1 131.1 131.5 131.8 132 131.8 131.8
Magnitude 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.5 9.0

Table 5.2: Starting parameters for MALA vs random walk direct comparison experiment
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Our first thought was to compare the Gelman-Rubin diagnostic between the two since

both algorithms were started in the exact same places. See Figure 5.4 The point at which all

the parameters crossed below 1.1 was roughly 16,000 for MALA and 13,000 for random walk.

Using this metric alone, it would appear that random walk performed better than MALA. It

is interesting that the MALA graph appears to shoot down fast within the first 500 samples,

before then jumping back up and gradually going down whereas the random walk took until

5000 samples before hitting a steady decline. This could indicate that our implementation

of MALA does a better job of getting close to the posterior region, but struggles to converge

once it gets there whereas the random walk might take longer to wander near the posterior

region, but performs better once it gets close. Essentially, our approximate gradient works

well to get in the right neighborhood, but performs poorly for small changes/adjustments.
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Figure 5.4: Gelman-Rubin diagnostic plots for MALA vs random walk experiment

Another thing to note is that the average acceptance rate for all the MALA chains

was 21.8% while the random walk chains averaged 23.9%. This accounts for part of why

MALA took longer to converge since it took more samples for MALA to accept proposals on

average. This is also disappointing since we would typically like to see a higher acceptance

ratio with a gradient method of MCMC since it should propose samples that would improve

the likelihood. We think this means that our simplified tsunami formula isn’t giving good
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enough information for the gradient to help. In fact it is making things worse than randomly

proposing as we can see from Figure 5.5. The random walk chains stayed consistently above

MALA in acceptance ratio hovering above 25% until around 5,000 samples and then slowly

declining towards 23%. The MALA chains rather quickly dropped close to 22% and reached

20% by sample 3,000 and sat there until about 10,000 samples. The odd thing is how MALA

manages to increase in acceptance ratio slowly from 10,000 to 18,000 samples. Sadly it still

didn’t surpass random walk at the end and even if it did, the chains had converged before

this point so it wouldn’t matter in this comparison.
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Figure 5.5: Acceptance Ratio Plot of MALA vs Random Walk

The final plot we will discuss are the resulting distributions of samples for MALA and

random walk shown in Figure 5.6. These plots show that MALA and random walk found

very similar posterior distributions. Random walk appears to have lower variance when

compared to MALA in the latitude, longitude, magnitude and delta-log width parameters.

This might be because MALA found some local maxima as indicated by the small secondary

peak at around -3.7 latitude, the taller tail near 131.0 longitude and the peaks on either

24



tail end of the delta-log width. This could indicate that our implementation of MALA with

the set delta parameter we chose is more prone to getting stuck in local maximums than

the random walk implementation, or MALA may have identified alternative regions of the

parameter space that the random walk missed.
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Figure 5.6: Parameter Distribution Plots of MALA vs Random Walk
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Chapter 6. Conclusion and Future Work

6.1 Conclusion

We have explored many methods of approximating the gradient of our forward model in-

cluding curve fitting, data driven models, heuristic models and simplified tsunami formulas.

The curve fitting was clearly not viable since none of the mapping from input parameters to

end results had shapes that could be approximated by a curve. Data driven models seemed

promising, but not for a gradient method specifically since the best fit model wasn’t dif-

ferentiable. Heuristic models were either too simple that the gradient was meaningless, or

would require much more research and domain knowledge to construct. This all led us to

a simplified model that was built by an expert that we hoped would make a good stand in

for our forward model. We knew that this simplified tsunami formula would not be able

to replace the forward model entirely due to its oversimplifications, but our hope was that

the gradient of this surrogate model would be useful in pushing our proposals in the right

direction.

We chose to implement the MALA MCMC method since it was the easiest to implement,

and we weren’t even sure if our approximate gradient would be useful enough, so we didn’t

want to spend more time on a more complex gradient MCMC method. The goal of our

first experiment was to determine an optimal delta parameter to use to compare our MALA

method to previous random walk attempts. This first experiment brought some doubt since

the acceptance rates of our chains didn’t appear to correlate with a change in delta, which

we would expect in the same way that changing the step size in the random walk method

directly affected the acceptance rate. After choosing a value of delta our second experiment

was a direct comparison between MALA and random walk where we started each chain at

the same spots near the maximum posterior probability region. This experiment solidified

our hypothesis that something was wrong with either the MALA implementation or the

approximate gradient because MALA both took longer to converge, and had a consistently
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lower acceptance rate than the random walk chains. We conclude that the gradient simplified

formula does not give enough information to point our proposals in the right direction,

although it may give a good direction for burn-in i.e. sampling that starts from an initial

guess far from the maximum posterior region in the probability space.

6.2 Future Work

There is much more work that can be done from here. Further analysis needs to be done to

investigate why varying the delta parameter in the MALA algorithm didn’t seem to correlate

with the acceptance ratio. One huge improvement would come from rewriting the Geoclaw

tsunami simulation in a language that has automatic differentiation built in, that way an

exact gradient could be used which would greatly improve convergence. There are many

other MCMC methods that use a gradient other than MALA such as Hamiltonian Monte

Carlo (HMC), Preconditioned Crank-Nicolson (pCN) that could be implemented using the

same approximate gradient we have outlined, or an improved gradient. Other ideas include

using a MCMC method that doesn’t involve a gradient at all like Gibbs sampling, importance

sampling, etc.

Another idea to improve our algorithm, is to either replace Geoclaw entirely with a less

expensive formula or data driven model, or do an alternating approach where we switch

between using Geoclaw and a less expensive forward model at given intervals. That way

more samples can be pumped out in the same amount of time due to the less expensive

formula iterations, but the full Geoclaw simulation should still ensure that convergence is

reached eventually. It is unclear if this would be an improvement, so further investigation

would be necessary to implement and test this theory.
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