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Preface

Aircraft design is a multidisciplinary topic with many applications and
can’t possibly be fully covered in one text. Aircraft configurations are
changing rapidly, particularly with recent advances in electric power
systems and automated controls. Thus, this text primarily focuses on
fundamental physics, as opposed to handbook or statistical methods. The
last three chapters provide an introduction to rocket design.
A few sections are more advanced, or involve lengthier derivations, and
these are put in the end in an Appendix. These chapters are not necessary
to understand the main text, but are provided as a reference for the
interested reader. Words in italics denote important terminology.
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Nomenclature

Aircraft Nomenclature
()∞ freestream

()r root

()t tip

()ac aerodynamic center

()c g center of gravity

()re f reference quantity

()sl sea level

α angle of attack

α0 zero lift angle of attack

β sideslip angle

Ûm mass flow rate

η efficiency

η spanwise lift centroid location
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Γ circulation

γ flight path angle

Λ sweep

λ taper ratio

µ dynamic viscosity

µ rolling coefficient of friction

Ω rotation rate (rad/s)

Φ bank angle

φ dihedral

ρ density

σ stress

τ shear stress

θ twist

A axial force

a speed of sound

AR aspect ratio

b span

c chord

CD drag coefficient

cd 2D drag coefficient

CD c compressibility drag coefficient

CD i induced drag coefficient

CD p parasitic drag coefficient

C f skin friction coefficient
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CL lift coefficient

cl 2D lift coefficient

CLmax maximum lift coefficient

cl max 2D maximum lift coefficient

Cm pitching moment coefficient

cm 2D pitching moment coefficient

CP power coefficient

Cp pressure coefficient

CQ torque coefficient

CT thrust coefficient

CY side force coefficient

cmac mean aerodynamic chord

Cn yawing moment coefficient

Croll rolling moment coefficient

D drag

D propeller diameter

D′ drag per unit span

Dc compressibility drag

Di induced drag

Dp parasitic drag

e Oswald efficiency factor

eb battery specific energy

einv inviscid span efficiency

EAS equivalent air speed
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f r fineness ratio

g acceleration of gravity

h altitude

h f fuel enthalpy

i current

J advance ratio

k form factor

Kv motor velocity constant

L lift

L′ lift per unit span

M Mach number

M pitching moment

M′ pitching moment per unit span

Mb bending moment

mb battery mass

m f fuel mass

Mbr root bending moment

Mcc crest critical Mach number

Mdd drag divergence Mach number

mTO total takeoff mass

N normal force

n load factor

n rotation rate (rev/s)

P power
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p roll rate

p pressure

Q torque

q pitch rate

R range

r yaw rate

R/C rate of climb

Rt turning radius

Re Reynolds number

S wing area

Sexp exposed area

Sgross gross area

Sre f reference area

Swet wetted area

s f c specific fuel consumption

T thrust

t thickness

T temperature

t/c thickness-to-chord ratio

TAS true air speed

V velocity

v voltage

VC design cruise speed

VD design dive speed
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Vs stall speed

W weight

w downwash

Y side force

Rocket Nomenclature
()∞ freestream

()b burnout

()c after combustion

()e earth

()e exit

()t throat

()sl sea level

Ûm f propellant mass flow rate

ε nozzle expansion ratio

γ ratio of specific heats

µ GM, gravitational constant

ρ density

θ flight angle

θ0 orbit phase shift

A area

a semimajor axis of ellipse

C effective exit velocity

Cp specific heat at constant pressure
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Cv specific heat at constant volume

D drag

e orbit eccentricity

e specific internal energy

G universal gravitation constant

g acceleration of gravity

h altitude

h angular momentum per unit mass

h specific enthalpy

hT total enthalpy

Isp specific impulse

L∗ characteristic mixing length

M Mach number

m mass

mp propellant mass

ms structural mass

Mw molecular weight

mpa yload payload mass

MR mass ratio (initial/final)

p pressure

q heat added

r radius

Re radius of the earth

Ru universal gas constant
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s specific entropy

T kinetic energy

T temperature

T thrust

tb burn time

U potential energy

v specific volume

Ve exit velocity
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CHAPTER1

Atmosphere

Aircraft, rockets, and spacecraft operate in or pass through the earth’s
atmosphere. Thus, we need to understand how atmospheric properties
vary, at least with altitude. Primarily we are interested in pressure,
density, and temperature, as well as what is meant by altitude. For the
lower portion of the atmosphere, where aircraft operate, we will examine a
“standard atmosphere” that is widely used as a first model. We will also
mention, though not discuss, a couple more detailed models for other use
cases.

1.1 Layers

The earth’s atmosphere is not really composed of layers, but it is
convenient to characterize it that way. Figure 1.1 provides an overview of
the lower layers of the atmosphere and a typical temperature profile.
The troposphere extends from the surface of the earth to about 10–12 km
in altitude (varies with weather). About 80% of the mass of the
atmosphere is contained in this layer and almost all of the water vapor. It
is the layer where almost all weather occurs.
The next layer is the stratosphere, which extends roughly to 50 km. Most
of the ozone in the atmosphere exists in this layer. In this layer
temperature actually increases with altitude because the ozone absorbs
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Figure 1.1: Depiction of layers in our atmosphere, and a typical temperature
profile. Figure from Randy Russell, UCAR, public domain.

ultraviolet (UV) radiation from the sun (though it is still very cold!). This
temperature inversion makes this layer very stable and thus there is little
turbulence, clouds, or other weather effects. Most commercial aircraft fly
near the border between the troposphere and the stratosphere. A typically
cruising altitude for a commercial transport is somewhere between 10–13
km (approximately 33,000-42,000 ft).
Temperatures decrease again in the mesosphere, which extends to about
85 km. This is the coldest part of our atmosphere. There is not much
activity by aircraft or rockets in this area, other than sounding rockets (a
rocket designed to take measurements for research purposes).
The thermosphere again experiences a rise in temperature. In fact the
temperature can be as high as 2000◦ C! Why then would you still feel
freezing cold? Recall that temperature is a measure of the average kinetic
energy of the air molecules. But heat transfer depends also on the number
of particles. In this layer the air is so thin, or in other words the molecules
are spaced so far apart, that even though individual molecules have high
energy there are so few that very little heat is transferred. The height of
this layer varies considerably with solar energy and can range from 500 to
1,000 km in altitude. Some satellites exist in this layer.
The exosphere is the last layer and varying definitions have it extending to

17
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somewhere between 10,000 km to 190,000 km (halfway to the moon). The
air is so thin here that molecular collisions are rare. Most satellites operate
in this layer.

1.2 Altitude

We have used the word altitude several times already, but there are
actually multiple definitions of altitude that we need to be aware of. The
first two are straightforward while the next two will need further
explanation.

• Geometric Altitude: the geometric height from sea level.

• Absolute Altitude: the geometric height from the center of the earth.

• Pressure Altitude: corresponding altitude in the standard atmosphere
that has the same pressure as the current pressure.

• Geopotential Altitude: an equivalent altitude assuming constant
acceleration of gravity.

A device that measures altitude is called an altimeter. One way to measure
height above ground is to use a radar altimeter. These are common in
aircraft. They bounce radio waves off the ground and measure the return
time in order to calculate height above ground level (AGL). Note that this
is not the same as geometric altitude as the ground generally is not at sea
level.
The most widely used type of altimeter is a pressure altimeter, also known
as a barometric altimeter. Pressure altimeters are used in aircraft, and they
are included in many smart phones and fitness tracking devices. A
pressure altimeter takes a local reading of the pressure, then calculates the
altitude based on the pressure (we will see how this works shortly). This
calculation requires a model of the atmosphere, as it is not directly
measuring height. Estimating altitude using pressure and an atmospheric
model is what is meant by pressure altitude as it is not necessarily a true
altitude.
Because of the reliance on pressure, this approach is subject to inaccuracies
due to changes in air pressure that have nothing to do with altitude
change. For highly accurate altitude measurements, periodic calibration is
necessary. An aircraft must recalibrate before takeoff and make

18
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adjustments in flight based on measurements reported by air traffic
control. For casual-use with personal devices, calibration is usually less
necessary as time scales are smaller and often only relative changes are
needed. More sophisticated altimeters blend pressure readings with other
sensors (e.g., accelerometer, GPS) to provide a more accurate altitude
estimate.
Another way to measure altitude is by using the Global Positioning
System (GPS). Four or more satellite readings are necessary to provide an
altitude estimate, though generally more satellites than four are available
overhead at a given time. Figure 1.2 shows 9 visible satellites for a
particular location at a particular point in time (see here for an animated
version). The GPS device’s position is triangulated based on the known
positions of the satellites and the passage time for the radio waves (like a
radar altimeter). The computed altitude is referenced relative to sea level,
and is thus a geometric altitude. GPS-derived altitude estimates are subject
to inaccuracies caused by things like signal blockage and reflections (e.g.,
buildings, trees) and interaction with particles in the ionosphere1 that
delay the radio signals. GPS altitude measurements are less accurate than
their horizontal measurements (with a rule of thumb of 3X difference in
accuracy). Typically, a GPS altitude measurement is accurate to within
about 10–20 meters (35–70 ft), if the signal is good.

Figure 1.2: Visualization of GPS satellite locations around the earth for a
given instant in time. Wikimedia Commons, El pak, public domain.

1part of the atmosphere that is ionized by solar radiation and can include parts of the
mesosphere, thermosphere, and exosphere
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1.3 Hydrostatic Equation and Geopotential Altitude

You probably already know that as you go up in altitude the air pressure
and density generally decrease, but we need to be able to quantify this
relationship. We can relate pressure changes with altitude using a
hydrostatic balance (hydrostatic means a fluid at rest). Consider an
arbitrary cubic control volume (Fig. 1.3) and let’s assume the atmosphere
is at static equilibrium. Gravity exerts a force downward from the center of
the control volume with a magnitude of: ρdV g where dV is the volume of
the control volume. There are also pressure forces on the top and bottom.
The pressures can’t be identical, otherwise the total vertical force
(including gravity) would not sum to zero. Because this is an
infinitesimally small control volume, the pressure on top differs by some
infinitesimal amount p + dp. Thus the force balance in the vertical
direction is:

pdA − (p + dp)dA − ρgdV � 0 (1.1)
We can simplify this, and use the fact that dV � dAdh:

pdA − (p + dp)dA − ρgdV � 0
−dpdA − ρgdV � 0
−dp − ρgdh � 0

dp � −ρgdh

(1.2)

Figure 1.3: An arbitrary control volume in the atmosphere with pressure
and gravitational forces.

This is called the hydrostatic equation, which we can integrate to find
pressure as a function of altitude. One complication in the integration is

20
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that g actually varies with altitude. However, it is conventional to use a
constant value of g in the integration, specifically the acceleration of
gravity at sea-level gsl . In making this choice, h no longer corresponds to
the geometric altitude, but rather is a fictitious altitude called the
geopotential altitude. In other words:

gdh � gsl dhGP (1.3)

where the subscript GP corresponds to the geopotential altitude, and dh
without a subscript is the geometric altitude. We can use Newton’s
universal law of gravitation to relate the acceleration between sea-level
and some other altitude:2

g � gsl

(
R

R + h

)2

(1.4)

where R is the mean radius of the earth (mean sea-level), and h is the
geometric altitude from sea level corresponding to the location where we
compute g. If we substitute this relationship into the differential equation
above we have a relationship between geometric and geopotential
altitudes:

dhGP �

(
R

R + h

)2

dh (1.5)

This equation can be integrated (skipping those steps) yielding:

hGP �
Rh

R + h
(1.6)

or inverted:
h �

RhGP

R − hGP
(1.7)

Thus, we can easily convert between geometric and geopotential altitudes.
However, most of the time the distinction between geometric and
geopotential altitude is not particularly relevant. Only at altitudes larger
than 65 km do the two altitudes differ by more than 1%.

2This is still just an approximation because it assumes that the earth is a perfect sphere
and that its mass distribution is radially symmetric.
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1.4 International Standard Atmosphere

Generally pressure and density both decrease with altitude, but, as noted
in the description of the atmosphere layers, the temperature profile is
more complex. We need to quantify this relationship so we can estimate
thermodynamic properties as a function of altitude. A common way this is
done is by using the international standard atmosphere. The international
standard atmosphere is an idealized, steady-state model. It does not
represent actual atmospheric conditions, which of course vary both
spatially and temporally across the earth. Instead, it is a empirical model
meant to represent typical conditions.
The core of the standard atmosphere is the definition for the temperature
distribution with altitude. The temperature profile is tabulated in
Table 1.1, which contains some defined altitudes, and the temperature
gradient (also known as the lapse rate) between these altitudes. For
example, from −0.61 km to 11 km the temperature decreases with altitude
at a rate of −6.5 K/km. From 11 km to 20 km the temperature is constant
(isothermal), and so on. Note that the table uses geopotential altitude, not
geometric altitude, but as discussed that’s generally not an important
distinction for most of the range of this table.
The temperature profile is depicted pictorially in Fig. 1.4. For reference,
the figure contains an aircraft around the altitude band where commercial
aircraft fly, and a rocket near the Karman line or the “edge of space”.
There is no precise transition from earth’s atmosphere to outer space; the
Karman line is a convention defined as 100 km altitude.
To compute temperature as a function of altitude, we still need a starting
point, or reference point. The reference conditions are defined at sea level,
and are tabulated in Table 1.2.

Table 1.2: Sea-level reference conditions.

Tsl temperature 288.15 K
psl pressure 1.01325 × 105 Pa
gsl acceleration of gravity 9.80665 m/s2

With a reference temperature, and the defined temperature gradients, we
can estimate temperature at any altitude within the defined range.
Pressure and density require additional relationships. We already derived
a hydrostatic balance that relates pressure and density as a function of
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Table 1.1: Defined temperature
gradients (lapse rates) in the stan-
dard atmosphere.

Geopotential Temperature
altitude (km) gradient (K/km)

-0.61 -6.5
11 0
20 +1
32 +2.8
47 0
51 -2.8
71 -2.0

84.852
Figure 1.4: Graphical depiction of
the temperature profile for the stan-
dard atmosphere.

altitude Eq. (1.2). We can then relate pressure, density, and temperature
through the ideal gas law:

p � ρRT (1.8)

where R is the specific gas constant for air, and as defined in the standard
atmosphere is 287.053 J/(kg-K).
There are two types of regions in the standard atmosphere: constant
temperature gradients (isothermal), and linear temperature gradients. For
both cases, we can derive analytic expressions for these thermodynamic
quantities. In the following derivations we will use the acceleration of
gravity at sea level, and thus all altitudes are geopotential altitude.
However, we will drop the GP subscript for convenience.
Let’s start with an isothermal layer. Using the hydrostatic equation, but
replacing density with pressure and temperature using the ideal gas law:

dp � −
p

RT
gsl dh (1.9)

Separating terms to prepare for integration:

dp
p

� −
gsl

RT
dh (1.10)

Because this is an isothermal region, everything in the right-hand
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integrand is constant. Integrating between two points yields:

ln
(

p2

p1

)
� −

gsl

RT
(h2 − h1) (1.11)

or
p2 � p1 exp

(
−

gsl(h2 − h1)
RT

)
(1.12)

For a linear temperature gradient we can express the temperature
distribution as:

T2 � T1 + s(h2 − h1) (1.13)

where s is the lapse rate. In differential form: dT � sdh. We start with the
same differential expression from before:

dp
p

� −
gsl

RT
dh (1.14)

This time temperature is not constant so the integral is not as
straightforward. While we could express T as a function of altitude and
integrate with respect to altitude, it will be easier to integrate with respect
to temperature. We make the substitution dh � dT/s:

dp
p

� −
gsl

sRT
dT (1.15)

Pulling out the constants for integration∫ p2

p1

dp
p

� −
gsl

sR

∫ T2

T1

dT
T

(1.16)

After integrating, using the rules of logarithms, and simplifying we have:

p2 � p1

(
T2
T1

) −gsl
sR

(1.17)

Thus, with a starting point for pressure, and a known temperature
distribution we can now compute the pressure as a function of altitude.
From pressure and temperature, we can compute density from the ideal
gas law:

ρ �
p

RT
(1.18)
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Viscosity and the speed of sound are both functions of temperature. The
absolute (dynamic) viscosity can be estimated using Sutherland’s Law:

µ �
βT3/2

T + S
(1.19)

where β � 1.458 × 10−6 k g
smK1/2 and S � 110.4 K. The speed of sound (a) is

given by the following expression for an ideal gas:

a �
√
γRT (1.20)

where γ is the ratio of specific heats, which is γ � 1.4 for air.
Online calculators can be handy for looking up atmospheric properties
and/or comparing your results. Further details on this model can be
found in a NASA report.

1.5 Curve Fit to Standard Atmosphere

The piecewise nature of the standard atmosphere can be a bit cumbersome
to work with.3 Drela devised a curve fit that requires only one equation for
temperature and one for pressure [1]. The fit is only applicable for
altitudes below 47 km, but that spans the range of interest for most
aerodynamic aerospace applications. The equations are:4

T(h) � Tsl − 71.5 + 2 ln
[
1 + exp(35.75 − 3.25h) + exp(−3 + 0.0003h3)

]
(1.21)

p(h) � psl exp
(
−0.118h − 0.0015h2

1 − 0.018h + 0.0011h2

)
(1.22)

where h must be in km and T in K. Figure 1.5 compares these fits against
the standard atmosphere.

1.6 Other Atmospheric Models

Many other atmospheric models exist, and the appropriate one depends
on the type of data and level of precision required. We will not provide a

3Also, it is not ideal for use in gradient-based optimization because it is not continuously
differentiable.

4The temperature equation is slightlymodified fromDrela’s to explicitly include sea level
temperature.
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Figure 1.5: Comparison between standard atmosphere (red dashed line)
and the curve fit (blue solid line).

comprehensive list, but merely mention two examples. The NRLMSISE-00
is a model of the upper atmosphere (up to 1000 km). It is an empirical
model and is particularly useful for higher altitudes (mesosphere and
thermosphere). This atmospheric model can be used for things like
estimating drag on satellites, which would be far too inaccurate using the
standard atmospheric model.
Cameron Beccario developed a nice visualization based on data from
multiple sources. Looking at just temperature, for example, it is clear that
the assumption that temperature only varies with altitude is a crude one.
Latitude, longitude, and time may be critical inputs depending on the
accuracy required for the application.
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CHAPTER2

Fundamentals

This chapter discusses a range of topics that are foundational in our study
of flight vehicle design. These topics include: nomenclature for airfoils
and wings, common nondimensional parameters, and lift curves and drag
polars.

2.1 Airfoil Geometry

A starting point for creating a lifting surface (e.g., a wing), is to define the
airfoils that it is composed of. An airfoil is a 2D cross-section of a lifting
surface (Fig. 2.1). Airfoils use streamlined shapes to produce lift with low
drag.
Figure 2.2 highlights some of the main nomenclature associated with an
airfoil. The leading edge of an airfoil is the forward most point, whereas the
trailing edge is the aft most point. The chord line is a straight line connecting
the leading and trailing edge. Its length is called its chord length or just
chord.
The shape of the airfoil between the leading and trailing edge is divided
into upper and lower surfaces. For some applications, like a propeller, the
concept of upper and lower is less natural (because upper is not
necessarily up) and so the two sides are called the suction and pressure side
respectively.

27



Chapter 2. Fundamentals A. Ning

Figure 2.1: An airfoil is a 2D cross-section of a wing or other lifting surface.
The streamlined shape is designed to produce lift efficiently with low drag.

The curve that is exactly halfway between the upper and lower surface is
called the camber line. The local camber is the distance between the chord
line, and the camber line. The maximum camber is simply referred to as
the airfoil’s camber. The local thickness is the distance between the upper
and lower surface. The maximum thickness is simply referred to as the
airfoil’s thickness. An important parameter for an airfoil is its
thickness-to-chord ratio, written as t/c. A typical t/c for aircraft airfoils
(sometimes referred to as thickness) is between 8-14%.

Figure 2.2: Some nomenclature for an airfoil.

The shape of an airfoil can be described in many ways. One well-known
designation is the NACA 4-series. A NACA 4-series airfoil is defined by a
set of equations, one for thickness and one for camber, that are
parameterized by four digits. To describe what these parameters are we
will use the NACA 2412 as an example (see Fig. 2.3). The first digit defines
the maximum camber as a percentage of the chord (2% chord in this
example). The second digit defines the location of the maximum camber
in tenths of chord (0.4 chord in this example). The last two digits define
the thickness of the airfoil in percent chord (t/c � 0.12 in this example). A
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NACA 00XX (where XX means any number), is a symmetric section. In
other words, there is no camber so the airfoil is symmetric. Symmetric
sections are commonly used in tails and winglets.

Figure 2.3: An illustration of the key dimensions for a NACA 2412 airfoil
with unit chord.

While the NACA 4-series are well known, and are still sometimes used in
simpler geometries like tails, they are rather limited and thus not generally
useful for design. Several more general parameterization methods exist,
like B-splines, but we will not elaborate on these methods.
Airfoils for supersonic sections, like a low-sweep wing of a supersonic
aircraft or fins on a rocket, will have a sharp rather than a blunt leading
edge (Fig. 2.4). This is because shock waves become the dominant source of
drag and a sharp leading edge decreases the strength of the shock waves.

Figure 2.4: Two examples of airfoils used for locally supersonic flow.

2.2 Wing Geometry

Figure 2.5 highlights some of the main nomenclature associated with a
wing. The wingspan or just span (b) is the distance from tip-to-tip,
projected on the plane of the wing. Wing area is generally denoted with an
S and different types of wing areas are used depending on the application.
In general, the chord distribution can vary continuously along the wing,
but for a simple linearly tapered wing it can be parameterized in terms of
the root chord (cr) and tip chord (ct). Similarly, the twist distribution can
vary continuously, but for a linearly twisted wing is parameterized by the
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root twist (θr) and tip twist (θt). The dihedral angle (φ) is a rotation angle
from horizontal. It can also be a distribution, rather than a constant value.
Sweep is usually measured from the quarter-chord (a line/curve
connecting 1/4 the distance along the chord), but is sometimes measured
from the leading edge instead. Sweep need not be constant, but can vary
continuously along the span.

Figure 2.5: Some nomenclature for a wing or other lifting surface.

For a simple wing we define the taper ratio, which is the ratio of the tip
chord to the root chord:

λ �
ct

cr
(2.1)

Another fundamental parameter is aspect ratio, which applies to any
wing, and is defined as:

AR �
b2

S
(2.2)

Figure 2.6 shows wings with a high and low taper ratio and a high and low
aspect ratio.
Often, we need a representative chord length for a wing. This is needed
for things like Reynolds number calculations and for normalizing
moments (both of these will be reviewed momentarily). A simple option is
the mean geometric chord:

c̄ �
S
b

(2.3)
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Figure 2.6: Examples of a low and high taper ratio and a low and high
aspect ratio.

However, this is not often used in practice. A better representative length
is the mean aerodynamic chord. The mean aerodynamic chord is a
chord-weighted average chord:

cmac �
2
S

∫ b/2

0
c2dy (2.4)

The mean aerodynamic chord is particularly important for stability
analysis. For a linearly tapered wing the mean aerodynamic chord is:

cmac �
2
3

(
cr + ct −

cr ct

cr + ct

)
(2.5)

2.3 Aerodynamic Forces and Moments

A body in a fluid, is subject to both pressure and shear forces1 as seen in
Fig. 2.7. The differences in pressure drag and shear drag will have
important design implications, as we will see later. For now the important
point is that all aerodynamic forces come from pressure or shear. From
statics you should recall that we can reduce any distributed load into an
equivalent representation with point loads/moments. In this case, the
result of the pressure and shear loads can be equivalently described by
two forces and one moment as shown in Fig. 2.8 (for a 2D airfoil, in general
there is three forces and three moments).
The location where the forces/moments are specified could be any point
on the body, but typically it is defined at the quarter-chord. The
quarter-chord is the point on the chord line that is 1/4 of the chord length
from the leading edge. The reason why the quarter-chord is typically used

1To be accurate, pressure and shear are not actually forces, but rather are tractions. Their
application over some area results in a force.
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Figure 2.7: Pressure and shear are the two types of forces for a body im-
mersed in a fluid.

is that the quarter-chord is the theoretical location for a thin airfoil’s
aerodynamic center. We will define the aerodynamic center in the chapter
on stability (Chapter 5). For now just think of it as the most convenient
point to resolve aerodynamic forces/moments at. The aerodynamic center
for a wing approximately occurs at the quarter chord point of the
spanwise location on the wing where the local chord is equal to the mean
aerodynamic chord. Hence, the significance of the mean aerodynamic
chord.

Figure 2.8: The pressures and shear over any body can be resulted into an
equivalent set of forces and moments, two forces and one moment in 2D,
and three forces and three moments in 3D.

The moment for an airfoil is called the pitching moment. Two different
axes are typically used in defining the forces as shown in Fig. 2.9. The first
is the body-axes, which are aligned with the airfoil. In this coordinate
system to the two forces are called the normal force (N) and the axial force
(A). For aerodynamicist, a more frequently used coordinate system is the
wind-axes, which are aligned with the freestream direction, which is
opposite the direction of flight. In this coordinate system the forces are
called lift and drag. Drag is always defined parallel to the freestream
direction, and lift is always defined perpendicular to the freestream
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direction. The angle between the freestream and the chord line is called
the angle of attack (α). In practice, it is usually the aircraft that is rotated
relative to a horizontal flight direction as shown in the insert.
Mathematically it is equivalent to draw the chord line as horizontal, with
the freestream rotated as shown in the main part of the figure. The latter is
merely a convenience.

Figure 2.9: Definitions for normal and axial force in the body coordinate
system, or lift and drag in the wind coordinate system. Angle of attack is
the angle between the freesteam direction and the chord line.

2.4 Nondimensional Parameters

In fluid dynamics you were exposed to the power of nondimensional
numbers, and these are used heavily in aerodynamics. Before discussing
further, let’s review a few nondimensional numbers from fluid mechanics.
The Reynolds number:

Re �
ρVc
µ

(2.6)

where ρ and µ are the fluid’s density and dynamic viscosity respectively,
V is the freestream (or local) speed, and c is some relevant length scale
used in normalization, which for an airfoil would be the chord length and
for a wing would be the mean aerodynamic chord. The Reynolds number
is a ratio of inertial to viscous forces. For a commercial transport, the
Reynolds number is typically in the millions or tens of millions. In other
words, outside of the boundary layer, the air speed is so high that inertial
forces are much, much more important than viscous forces. For a small
UAV, the Reynolds number might be of order 10,000.
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TheMach number:
M �

V
a

(2.7)

is a ratio between the freestream (or local) speed and the speed of sound.
In other words, a Mach number of one means that the vehicle is moving at
the speed of sound. Mach numbers less than 1 are called subsonic, at 1 is
called sonic, and above 1 is called supersonic. Mach numbers larger than
about 5 are called hypersonic, although the number 5 is somewhat arbitrary
as there is no fundamental change in flow physics right at that point like
there is at the sonic point. A flow field with Mach numbers less than about
0.3 is essentially incompressible, and thus the Mach number is not a
relevant parameter for that flow. There are other parameters you were
exposed to like the Froude number (ratio of inertial to gravitational forces),
but, excepting lighter-than-air vehicle, the buoyancy force of the air is
negligible. For aerodynamics generally Reynolds number and Mach
number are the most important.
The power of nomdimensionalization is that it can express a complicated
relationship succinctly and universally, and it is the basis for all wind
tunnel testing. For example, the drag of a given airfoil is a function of
many things, the angle of attack, air density, viscosity, speed of sound,
freestream speed, its size, etc.:

D � f (α, ρ, µ,V∞ , a , c) (2.8)

However, we can express the same relationship in terms of a
non-dimensional drag coefficient as:

CD � f (α, Re ,M) (2.9)

The power of this form is that the drag coefficient doesn’t depend on
density directly (for example), but rather on Reynolds number. Thus, if we
create the same Re and M with a scaled geometry, we can determine the
drag coefficient that would be experienced on the full airplane. Similarly,
for a given shape, we can tabulate or calculate lift and drag coefficients as a
function of α, Re and if high speeds are important M and re-use them for
various applications.
Because an airfoil is 2D, the lift/drag is actually lift/drag per unit span,
which we will represent as L′ and D′. We will also frequently use the
dynamic pressure, which is defined as:

q∞ �
1
2
ρ∞V2

∞ (2.10)
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The lift/drag/moment coefficients are defined as follows:

cl �
L′

q∞c
(2.11)

cd �
D′

q∞c
(2.12)

cm �
M′

q∞c2 (2.13)

where c is the chord. Note that lower case letters are used to denote 2D
(airfoil) coefficients.
A three-dimensional body, like a wing, is defined similarly but with an
extra length dimension in the denominator:

CL �
L

q∞Sre f
(2.14)

CD �
D

q∞Sre f
(2.15)

Cm �
M

q∞Sre f c
(2.16)

Note the capital letters are used for denoting 3D coefficients. The type of
reference area Sre f used must be specified when providing coefficients.
For a wing it is typically the planform area, whereas for a fuselage the
cross-sectional area is typical. For a full aircraft the trapezoidal reference area
is typically used (Fig. 2.10). This area is a trapezoid that matches the main
portion of the wing and extends all the way to the centerline. Its not the
exact same shape as the wing, but is easier to use. Any area can be used as
long as it is consistent and is defined, it merely provides the length scales
used in the normalization.
One last important nondimensional parameter is the pressure coefficient:

Cp �
p − p∞

q∞
(2.17)

We will make use of this parameter in the next section.

2.5 Pressure Distributions

In fluid dynamics you likely studied flow around a cylinder. Figure 2.11a
shows streamlines, and the pressure distribution around a cylinder,
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Figure 2.10: Half of the trapezoidal reference area shown overlaid on the
aircraft. Attribution: Airplane Drawing Top View, CC BY-NC 4.0

assuming inviscid flow. The dark blue indicates high pressure, while
white indicates low pressure.
We can visualize the pressure distribution around the cylinder in a 2D plot
as shown in Fig. 2.11b. The angle θ starts at 0 at the leading edge of the
cylinder and wraps around to the back (in either direction as the flow as
symmetric). The pressure coefficient starts at 1 at the leading edge (which
indicates a stagnation point in incompressible flow, see Eq. (2.17)), and
reaches a low of −3 and the top/bottom of the cylinder.
Recall that this is an idealized, inviscid case and does not represent flow
around a real cylinder. One way to think about this is to use an analogy of
a ball rolling down a hill. It starts out at the top with no kinetic energy, all
the potential energy is converted to kinetic energy at the bottom, and if
there is no friction it will return to the exact same height. The pressure
distribution follows the same kind of pattern. However, a real flow is
viscous, and like the analogy with the ball, energy is lost and so it cannot
return to the initial energy state.
As the flow traverses the front part of the cylinder it is moving from high
pressure to low pressure, this is called a favorable pressure gradient
(“downhill” in our analogy). Conversely, as it moves from the top of the
cylinder to the back it is moving from low pressure to high pressure,
which is called an adverse pressure gradient (“uphill” in our analogy). With
the presence of friction the flow cannot stay attached to the body all the
way through the adverse pressure gradient. The flow will separate from
the body creating a wake as depicted in Fig. 2.12. The corresponding
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(a) Streamlines and pressure contours for
invisicd flow around a cylinder. Image
from Thierry Dugnolle, Wikimedia, public
domain.

(b) Pressure distribution around the
cylinder starting from θ � 0 corresponding
to the leading edge and traversing to the
back. The pressure coefficient starts at 1 at
the stagnation points, drops to -3 at the
top/bottom of the cylinder, and recovers
back to 1 and the back end.

Figure 2.11: Pressure distribution around a cylinder

pressure distribution is shown in Fig. 2.13a. Note that the pressure
distribution does not recover to the same height. Now the pressure
distribution is no longer symmetric front to back (higher pressure in
front), hence there is now a net drag force.

Figure 2.12: A real, viscous, fluid cannot navigate the adverse pressure
gradientwithout separating and creating awake. Image fromNASA, public
domain.

By convention we usually plot the negative of the pressure distribution on
the y-axis, for reasons we will see shortly. For the cylinder this is shown in
Fig. 2.13b. All the information is the same, but the rolling ball analogy is
less natural.
Now, let’s look at an airfoil. For an airfoil the pressure distribution and
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(a) The adverse gradient is too strong to
navigate without separating causing the
real pressure distribution to deviate
from the idealized inviscid case.

(b) Same figure but with −Cp plotted on
the y-axis.

Figure 2.13: Pressure distribution for a viscous cylinder (solid) versus in-
viscid (dashed). The parameter θ is the position on the cylinder, varying
from θ � 0 at the leading edge and traversing to the trailing edge.

streamlines are visualized in Fig. 2.14a, and the pressure coefficient along
the surface of the airfoil is plotted in Fig. 2.14b (as generated by XFOIL).
Unlike, the cylinder, the airfoil is not symmetric and so we see a pressure
distribution for the upper and lower surfaces. Note that the negative of the
pressure coefficient is plotted on the y-axis. We can now see the reason for
this choice. The upper part of the curve (negative pressures) corresponds
to the upper surface of the airfoil, and the lower part of the curve (positive
pressures) corresponds to the lower surface of the airfoil.
The steepness of the adverse gradient is not as severe as the cylinder, and
thus the flow can remain attached up to the trailing edge (likely there is a
small amount of separation right at the trailing edge). This greatly reduces
the pressure drag and is the reason the airfoil has the streamlined shape as
opposed to the blunt shape of the cylinder. Notice that the pressure
coefficient on the aft end of the airfoil recovers to a much higher value than
does the cylinder (though it is not a perfect recovery and there is still
pressure drag).
The pressure coefficient plot can tell us a lot about the performance of the
airfoil. For example, we can show that the lift coefficient of the airfoil is
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(a) Streamlines and pressure
contours around an airfoil for
inviscid potential flow. Image
from Thierry Dugnolle,
Wikimedia, public domain.

(b) Pressure distribution around airfoil as generated
by XFOIL.

Figure 2.14: Pressure around an airfoil.

directly related to the area between the two curves2:

cl ≈
∫ 1

0

(
Cp l − Cp u

)
d
( x

c

)
(2.18)

where Cp l and Cp u are the pressure coefficient on the lower and upper
surface respective, and x/c is the normalized axial position along the
airfoil from 0 to 1.
As mentioned, the steepness of the adverse pressure gradient is a critical
factor in keeping the flow attached and thus reducing drag. Much of the
airfoil shaping is done to provide as much lift as possible while maintain
attached flow to keep drag down. Note that these are competing priorities.
As lift is increased (area between the curves) there will generally be a
steeper adverse pressure gradient eventually leading to stall (discussed
more in the next section).
Figure 2.15 shows the pressure distribution for an airfoil flying at higher
speeds. In this case, the airfoil is flying at subsonic speeds, but acceleration

2Actually, this formula gives the normal force rather than lift since we’d need the angle of
attack for the latter, and it ignores the contribution of shear stress. But in most applications
the normal force and lift force differ only slightly and the contribution of shear stress to lift
is negligible.
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over the airfoil causes the local Mach number to become supersonic over
portions of the airfoil. In this figure the critical pressure coefficient (Cp

critical) separates subsonic from supersonic flow. After the flow becomes
supersonic a shock wave causes an abrupt increase in pressure during the
recovery. A strong shock causes a lot of drag, and so airfoil shaping in this
flow regime must take care to reduce shock wave strength while
maintaining lift.

Figure 2.15: Pressure coefficient for an airfoil flying at subsonic speeds,
but with local supersonic flow from acceleration over the airfoil. Figure by
philip poppe, Wikipedia, public domain.

2.6 Lift Curves and Drag Polars

As discussed previously, the force/moment coefficients for a given airfoil
are a function of the angle of attack, Reynolds number, and Mach number.
For many applications we might only operate within a narrow range of Re
and M where performance does not vary significant with these
parameters. In these cases the lift, drag, and moment coefficients are
effectively only a function of angle of attack. Or, variation with one or both
of Re and M may be important but it can still be helpful to visualize these
as separate curves (e.g., a separate plot for a set of discrete Re).
The variation of lift coefficient with angle of attack is called the lift curve
and an example is shown in Fig. 2.16. This example is for an airfoil (2D). If
the lift curve was for a full wing or full airplane then the y-axis would
show CL. Lift varies linearly with angle of attack until approaching stall.
Stall occurs because the angle of attack becomes too large, the flow
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separates from the airfoil and causes a significant increase in drag and a
decrease in lift.

Figure 2.16: A notional lift curve slope highlighting the zero-lift angle of
attack, lift curve slope, and maximum lift coefficient before stall.

The maximum lift coefficient that is achievable before stall is denoted as
cl max or CLmax in 3D. The slope of the linear portion of the lift curve is
called the lift curve slope. It is usually denoted with a m or an a. Thin airfoil
theory shows that the lift curve slope of a thin 2D airfoil is theoretically 2π.
Real airfoils have a slope near this, but are slightly lower because of
viscous effects.
A symmetric airfoil would have zero lift at an angle of attack of zero.
Adding positive camber causes the zero-lift angle of attack (α0) to become
negative. That means that at zero angle of attack, a cambered airfoil
produces lift. For a 2D airfoil, the lift coefficient prior to stall can be
computed as:

cl � m(α − α0) (2.19)

where m is the lift curve slope shown in Fig. 2.16.
If we add back in variation in Reynolds number the lift curve slope is
generally negligibly affected. The main impact of Reynolds number is on
stall (cl max), which is a viscous phenomenon. Mach number does not
usually have a significant impact on lift, unless the change in Mach
number is large.
The variation in drag coefficient with angle of attack (or lift coefficient) is
called the drag polar. Figure 2.17 shows a notional drag polar, though more
typically it is plotted as a function of lift coefficient rather than angle of
attack. Again, for a full aircraft drag polar it would be plotted as CD as a
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function of CL. Reynolds number is often important for drag polars (as
would be expected since Reynolds number accounts for changes in
viscosity). In this case a series of drag polars are shown at different
Reynolds numbers. If the Mach number is less than 0.3 then there is
generally no impact on drag, but for Mach numbers larger than 0.5 the
impact of Mach number is significant.

Figure 2.17: A notional drag polar. Plotted here versus angle of attack, but
versus lift coefficient is more conventional.

Figure 2.18 shows the lift curve, drag polar, and moment curve for a
NACA 2412 airfoil. Past stall the drag results are not reliable hence the
very steep slope on the drag polar. Prior to stall, moment coefficient also
has (theoretically) linear behavior and in practice is usually close to linear.
By plotting the drag polar as shown in the figure (cl on y-axis, cd on
x-axis), we can determine the maximum lift to drag ratio graphically. The
lift to drag ratio L/D is an important measure of aerodynamic efficiency. If
we take a straight line from the origin and tilt it until it just touches the
drag polar, then the slope of that line is the max L/D, and the
corresponding lift coefficient (and angle of attack) is the operating
condition that maximizes L/D.
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Figure 2.18: Lift curve, moment curve, and drag polar for a NACA 2412
airfoil at a Reynolds number of 1 million and a Mach number of 0. Figure
is generated by XFOIL.
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CHAPTER3

Drag

The energy required by an aircraft is primarily used to overcome drag.
Thus, drag estimation is a critical component of aircraft performance. This
chapter provides an overview of some simplified methods to estimate
drag. The interested reader is encouraged to study aerodynamics to learn
more about the physics behind these methods and to be exposed to more
accurate means to estimate drag.

3.1 Breakdown

Drag is a vector (i.e., a magnitude and a direction). As discussed in
Chapter 2, drag is defined as the aerodynamic force in the direction of the
freestream. Thus, the essence of drag estimation is determining its
magnitude.
To make the process approachable, drag is usually decomposed into
different components, a process called drag breakdown. There are many
ways this can be done, the essential requirements are that all important
sources of drag are accounted for, and that no source is double counted. In
this text we will breakdown drag into three main sources:

1. Parasitic drag. Two types of stresses act on any body in a fluid:
normal stresses (pressure) and shear stresses. Their contributions to
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drag are known as pressure drag and skin friction drag, and their
sum is called parasitic drag, zero-lift drag, or sometimes just viscous
drag. For many aircraft, skin friction drag is the largest component of
drag.

2. Induced drag. Lift cannot be created without expending energy. The
associated additional drag caused by lift is called induced drag,
vortex drag, or lift-dependent drag.

3. Compressibility drag. At high speeds shock waves are formed, and
energy is carried away by these shock waves. This type of drag is
called compressibility drag or wave drag. For Mach numbers less
than 0.3 compressibility drag is generally negligible. However, for
commercial aircraft, which typically fly around Mach 0.75–0.9, or jets
which can fly well above the speed of sound, this is an important if
not dominant source of drag.

We will use the subscripts p for parasitic, i for induced, and c for
compressibility. The total drag is the sum of these components.

D � Dp + Di + Dc (3.1)

3.2 Parasitic Drag

Parasitic drag is a combination of skin friction and pressure drag. Each of
these will be discussed separately, then combined into a total parasitic
drag estimate.

3.2.1 Skin Friction Drag

Skin friction drag is the drag caused by viscous shear stresses acting over a
body. In this section we will provide an overview of the physical
mechanism and a means to estimate skin friction drag for a flat surface.
From an introductory course in fluid mechanics or aerodynamics you may
recall the concept of a boundary layer. For high Reynolds number flow,
typical of most aircraft, the flow is essentially inviscid everywhere, except
near the body. This region near the body where viscous effects are
important is called the boundary layer.
At the body the flow must satisfy the no-slip condition. The no-slip
condition states that the relative fluid velocity at the surface of a solid
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object must be zero. Physically, this condition arises from molecular level
mixing. In reality the fluid is not a continuum but rather a large collection
of molecules. Molecules exchange energy, and thus speed with nearby
molecules. Far away from the body the average speed of the molecules
must be the freestream speed. But at the surface the average speed must be
zero because the molecules are exchanging energy with the solid surface
that is not moving (in the frame of reference of the solid object). Thus, a
boundary layer forms to transition between the solid surface and the
external velocity.
Figure 3.1 shows a diagram of typical boundary layer behavior over an
airfoil. The boundary layer starts from a stagnation point, and at first the
boundary layer is laminar. Lamina means layer, and a laminar flow moves
in “layers”. What this really means it that mixing only occurs at a
molecular level, and so the fluid behaves almost like layers of flow with
different speeds. In contrast, turbulent flow is characterized by chaotic
mixing across many scales.
At some point the laminar boundary layer becomes unstable and
transitions to turbulent flow. Many things can cause these instabilities to
occur sooner including increasing surface roughness, increasing Reynolds
number, adverse pressure gradients, and surface heating. For the high
Reynolds numbers of aircraft, laminar flow can typically only be sustained
for about 10–20% chord, except for favorable conditions with specially
shaped designs.
The boundary layer will generally not be able to stay attached to the body
in an adverse pressure gradient and will separate, leaving a wake behind.
Ideally, this wake is as small as possible as will be discussed in connection
with pressure drag.

stagnation 
point

laminar
turbulenttransition

separation

wake
velocity 
deficit

Figure 3.1: Depiction of a boundary layer in a high Reynolds number flow.
Skin friction drag is caused by the interaction between the fluid and the
body and pressure drag is caused by the momentum deficit in the wake.

Figure 3.2 compares a laminar and turbulent boundary layer. Some
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important observations include: 1) the turbulent boundary layer is fuller
closer to the wall (i.e., has higher speeds closer to the wall), and 2) the
turbulent boundary layer is larger (i.e., it returns to freestream speed
farther away from the wall).
The first observation means that a turbulent boundary layer has a higher
wall shear stress, and thus skin friction drag. We can see this by recalling
the definition of shear stress at the wall:

τw � µ
du
dy

����
y�0

(3.2)

The turbulent boundary layer has a larger velocity gradient at the wall,
thus higher shear stress.
Higher speeds near the wall isn’t necessarily all bad. While it does lead to
higher skin friction drag, the increased momentum is able with withstand
an adverse pressure gradient for longer, and thus delay separation and
decrease the wake size. For a blunt body, pressure drag is usually
dominant and so a turbulent boundary layer will often produce less total
drag. This is why, at least in part, a golf ball has dimples. The dimpled
shape forces turbulence allowing the ball to fly further when hit. For a
streamlined shape, like an airfoil, skin friction drag is usually the bigger
contributor and so sustaining a substantial section of laminar flow is
desirable. However, too much is not good either. A fully laminar section is
prone to separation and premature stall.
The skin friction drag, per unit length, is the integral of the shear stress
across the surface:

D′ �
∫ L

0
τw dx (3.3)

This drag is normalized, in the same manner as the drag coefficient, and
for this special case it is given the name skin friction coefficient:

C f �
D′

q∞L
�

1
q∞

∫ 1

0
τw d

( x
L

)
(3.4)

For a laminar boundary layer the skin friction coefficient on a flat plate
with no pressure gradient can be solved analytically (known as the Blasius
solution, and something you would study in a more advanced fluids class):

C f �
1.328√

Re
(laminar) (3.5)
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Figure 3.2: A comparison between laminar and turbulent boundary layer
profiles. The edge velocity Ue is the velocity outside of the boundary layer,
and xt is the distance from the leading edge until transition.

For a turbulent boundary layer no analytic solution is possible. Various
empirical fits exist, below is one of the simpler versions in wide use [1]:

C f �
0.074
Re0.2 (turbulent) (3.6)

Note that in both of these formulas the Reynolds number is based on the
total length of the boundary layer.
For high speeds, a Mach number correction is needed. At high speeds the
skin friction coefficient decreases (though not the skin friction drag
because the dynamic pressure increases). The skin friction coefficient
relative to the above incompressible formulas is given by [2]:

C f

C f inc
�

(
1 + 0.144M2)−0.65 (3.7)

This relationship is plotted in Fig. 3.3.
An airfoil is not a flat plate, but we can reasonably use the same approach
using the length of the airfoil surface. An airfoil is generally not fully
laminar or fully turbulent although we sometimes approximate it the way
for conceptual design. A more accurate approach to computing the skin
friction coefficient on an airfoil with both laminar and turbulent flow is
discussed in Section A.1. The user must keep in mind that the above
formulas are based on a smooth flat plate. Surface roughness can add
considerable drag and so additional markup factors are necessary to
account for roughness.
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Figure 3.3: Reduction in skin friction coefficient at high Mach numbers.

3.2.2 Pressure Drag

Ideally an aircraft flies through though initially undisturbed air, and after
it passes, the air is again at rest. Thus, no net energy was transferred to the
air. Unfortunately, perfect efficiency is not possible, and a wake will be left
behind. Figure 3.1 depicts this velocity deficit, which means that there is a
pressure imbalance and thus a resultant drag.
A streamlined shape will generally have much less drag than a blunt
shape. For example, both the airfoil and the cylinder shown in Fig. 3.4
have approximately the same drag for Reynolds numbers of low-speed
aircraft [3]. This surprising result is why many early biplanes had such
poor performance. The wire bracing, although seemingly small, created a
large amount of drag. This is also why performance cyclists go to great
lengths to use streamlined spokes, helmets, frames, etc.

Figure 3.4: The larger airfoil and the small cylinder have approximately the
same drag.

In general, predicting pressure drag is complex and requires solving the
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flow field around an object. For our purposes we will use a simplified
semi-empirical model for lifting surfaces (e.g., wings, tails) and bodies of
revolution (e.g., fuselages, pods, nose cones). A flat plate, at zero lift, has
no pressure drag. Adding thickness to an object will create pressure drag,
and in this simple method we will multiply the skin friction coefficient by
a form factor that accounts for the increase in drag due to thickness.
For a lifting surface many semi-empirical methods exist for the form factor
(k) [4]. In this text we use Shevell’s formula [5]:

k � 1 + Z
t
c
+ 100

( t
c

)4
(3.8)

where

Z �
(2 −M2

∞) cosΛ√
1 −M2

∞ cos2Λ
(3.9)

In these formulas Λ is the quarter-chord sweep angle and t/c is the
thickness-to-chord ratio. For incompressible flow Z � 2 cosΛ. The wing
form factor is depicted in Fig. 3.5 for three different sweep angles at
M∞ � 0.

Figure 3.5: Form factor for a lifting surface as a function of thickness-to-
chord ratio.

For a body of revolution (e.g., fuselage) various form factor methods also
exist, though all are based on the fineness ratio ( f r). The fineness ratio is
defined as the length over the diameter f r � l/d for the body of revolution
as seen in Fig. 3.6a. Shevell provides a figure for form factor versus fineness
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ratio, but not an explicit formula [5]. A naive fit to the data would lead to
form factors less than 1 for large fineness ratios, which is not physically
consistent. For this text we have developed the following expression using
a simple quadratic fit, but with the constraint that it bottoms out at 1.

k �

{
1.675 − 0.09 f r + 0.003 f r2 5 < f r < 15
1 f r ≥ 15

(3.10)

This form factor is seen in Fig. 3.6b. Note that this method is not valid for
fineness ratios smaller than 5. This formula can also be used for
non-circular cross sections. In that case one defines an effective diameter
based on the maximum cross sectional area (Smax) of the body of
revolution:

de f f �

√
4Smax

π
(3.11)

(a) Definition of length and
max diameter used in
defining fineness ratio.

(b) Form factor as a function of fineness ratio.

Figure 3.6: A body of revolution.

3.2.3 Putting it Together

We can now put the skin friction and pressure drag together to form
parasitic drag. The total parasitic drag is:

Dp � kC f q∞Swet (3.12)
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The first factor accounts for the pressure drag, the second for the skin
friction drag, and the last two are from the normalization of the skin
friction coefficient. The wetted area Swet is depicted in Fig. 3.7. The
parasitic drag acts only on the portions of the body that are exposed to the
fluid. It is called a wetted area because it is the part of the vehicle that
would be wet if dipped in a fluid.

Figure 3.7: Wetted area is the area of that component that would get wet if
dipped in a fluid. In this picture a portion of the wing carries through the
fuselage (i.e., it is inside the fuselage and wouldn’t “get wet”.)

We can estimate wetted area for a lifting surface as:

Swet ≈ 2
(
1 + 0.2 t

c

)
Sexposed (3.13)

The factor of 2 accounts for both sides of the exposed planform area
(Sexposed), and the inclusion of the thickness to chord ratio (t/c) is to
approximate the additional area from curvature.
For a cylindrical section of a fuselage the area is simply

Swet � πdl (3.14)

For a rounded cylinder, like a nose cone, we can approximate the wetted
area as:

Swet � 0.75πdl (3.15)

The last step is to normalize the drag to form a parasitic drag coefficient.
Using the standard definition of the drag coefficient:

CD �
D

q∞Sre f
(3.16)

where Sre f is some reference area for the aircraft that in general is different
from the wetted area of the particular component. We need to normalize
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by the same area for all components so that drag coefficients can be added
together. The parasitic drag coefficient is then:

CD p � kC f
Swet

Sre f
(3.17)

Additional sources of parasitic drag need to be added to this initial
estimate. First, the method discussed estimates the parasitic drag of each
component in isolation, but when assembled in an aircraft additional
interference drag is created. It is possible that the interference could be
beneficial, but it is almost always detrimental with a typical increase in
drag of 3–8% [2]. Second, we have assumed ideal lifting surfaces and
axisymmetric sections, but real aircraft require vary protuberances and
hinges that create additional drag. For a jet transports these protuberances
add about 2–5% additional drag, whereas a propeller-driven aircraft may
have 5–10% additional drag [2]. A small RC aircraft is likely to have at least
a 10% drag markup from protuberances and could have much more if not
carefully designed. Other sources of additional parasitic drag include
nacelle base drag, fuselage upsweep drag, control surface gap drag, etc.

3.2.4 Strip Theory

The proceeding method is easy to use, and appropriate in the early stages
of design, but it is oversimplified for many configurations and does not
address some fundamental considerations like how drag changes with
angle of attack. An alternative approach to computing parasitic drag that
is a bit more involved, but is generally more accurate, is strip theory. In
this approach we subdivide the wing into a bunch of 2D strips, or in other
words into airfoils (Fig. 3.8). Using 2D theory we compute the drag
produced by each airfoil, and then we integrate across the wing to get the
total drag.
For each section we find the angle of attack based on the local freestream
and twist, and simply use the drag polar for that airfoil to compute the
drag coefficient of that section:

cd � f (α, Re ,M) (3.18)

The drag polar could come from any valid source including simulation,
wind tunnel data, or flight testing. Obviously the better the source the
more accurate the drag prediction.
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Figure 3.8: Strip theory breaks thewingup into strips (i.e., airfoils), depicted
in blue.

One wrinkle, is that the angle of attack we need to use is what is called the
effective angle of attack. This is the geometric angle of attack (what we
normally think of as angle of attack) minus the induced angle of attack
(which will be defined in the next section):

αe f f � αg − αi (3.19)

Computing the induced angle of attack generally requires a numerical
solution rather than a closed-form solution.
Once we have the drag coefficient for each strip, we can get the total drag
coefficient through an integral (or summation):

CD p �
1

Sre f

∫
cd c (3.20)

where the above version of the formula assumes that the dynamic
pressure is constant along the wing.
This type of approach is used in XFLR5. Its main limitation is that it
ignores the three-dimensional nature of the flow across the wing,
including crossflow, but for many applications that is reasonable, and the
flat-plate based method we introduced shares the same limitation.

3.3 Induced Drag

Induced drag is the additional drag necessary to generate lift. There are
many ways to describe the physical mechanism. Perhaps one of the more
fundamental is to consider Newton’s third law. If lift is generated, that
means that the surrounding air is generating a force on the vehicle to push
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it upward. By Newton’s third law, the vehicle must be creating an equal an
opposite force pushing the air downward.
Indeed the air is pushed downward, but it does not continue downward
indefinitely. Instead, because the way vorticity is distributed along the
wing (discussed in an aerodynamics course) the air circles around as
shown in Fig. 3.9a. Generally, this circulation of air forms two
counter-rotating spiral vortices. One of these vortices is visualized from an
aircraft flying through colored smoke in Fig. 3.9b

$OUG�-C,EAN��\��7INGTIP�$EVICES���7HAT�4HEY�$O�AND�(OW�4HEY�$O�)T

���

constitutes the vortex sheet that ends up streaming back from the wing trailing edge. 
The vortex sheet is a necessary part of the flowfield because the conservation laws 
of fluid mechanics dictate that the wing cannot produce the general flow pattern 
of Figure 3.1 without also producing the jump in spanwise velocity. On an intuitive 
level, the spanwise-‐velocity jump can be understood as being a result of the tendency 
of air to flow away from the high pressure under the wing toward the low pressure 
above the wing. The wing itself presents an obstacle to this motion and deflects it in 
the spanwise direction.

The development of the vortex sheet after it leaves the trailing edge is illustrated in 
Figure 3.2. Within the first couple of wingspans downstream, the sheet generally 
rolls up toward its outer edges to form two distinct vortex cores. (This is the general 
pattern for a wing in the "clean" condition, flaps-‐up. The flaps-‐down pattern is more 
complicated, with cores forming behind flap edges as well behind the wingtips.) 
Although the vortex cores are distinct, they are not as concentrated as they are 
sometimes portrayed, since a considerable amount of air that was initially non-‐
vortical is entrained between the “coils” of the sheet during rollup.

In Figure 3.2 the vortex sheet is illustrated as having essentially zero thickness, and 
the idealized theories model it that way mathematically. In the real world the vortex 
sheet is a physical shear layer of finite thickness that has its origin in the turbulent 
boundary layers on the upper and lower surfaces of the wing and, like the boundary 
layers, it is filled with small-‐scale turbulent motions.

The vortex cores are often referred 
to as "wingtip vortices,” though 
this is a bit of a misnomer. While it 
is true that the cores line up fairly 
closely behind the wingtips, the 
term “wingtip vortices” implies 
that the wingtips are the sole 
sources of the vortices. Actually, as 
we saw in Figure 3.2, the vorticity 
that feeds into the cores generally 
comes from the entire span of the 
trailing edge, not just from the 
wingtips.

-C,EAN?FIG?���

Figure 3.1. Velocities in a 
crossflow plane behind a 
lifting wing

Figure 3.2. The vortex wake 
behind a lifting wing

(a) Visualization of airflow in plane of the
wing.

(b) Picture of aircraft flying through
colored smoke to visualize the wake
vortex. Picture from NASA, public
domain.

Figure 3.9: Visualization of wake vortex.

If we look at a line between the two vortices the velocity distribution looks
like that shown in Fig. 3.10a. There is downward moving air between the
two vortices, and upward moving air to the sides. As the vortices trail
behind the aircraft in a wake it forms a horseshoe pattern like that shown
in Fig. 3.10b. This velocity distribution (partially) explains why many
migratory birds fly in a V shape (Fig. 3.11). If another bird flies behind and
to the side of another bird then it can fly in a region of rising air and thus
the energy it is required to expend is reduced. By flying in this manner the
birds can increase their range (distance they can fly).
Many misconceptions about induced drag exist. A common explanation
for the tip vortices is that there is high pressure below the wing and low
pressure above the wing and so the flow leaks around the edge (Fig. 3.12).
This is true, and helps explain why the vortices circle around, but it is
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(a) Induced velocity from the vortex pair.
Downwash between the vortices and
upwash outboard of the vortices.

(b) The vortices trail behind in a wake
causing downwash behind the wing and
upwash to the sides.

Figure 3.10: Visualization of the downwash/upwash from the trailing vor-
tices behind an aircraft.

Figure 3.11: Migratory birds in a V formation. Picture from Hamid Haji-
husseini, CC BY 3.0.
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incomplete. This perspective makes the process seem like a tip effect, and
has lead to the idea that the aerodynamic purpose of a winglet is to
suppress this tip vortex. This is misleading. By this logic a box wing
(Fig. 3.13) should have no induced drag, as it has no tip. Lift is more
fundamental than just a tip effect, and as pointed out by Newton’s third
law, to create lift there must be energy left behind in the air. Certainly,
vorticity is highest at the tip (and thus the center of vorticity is near there),
but the formation of the vortices and the production of induced drag is
affected by the entire lifting surface and not just the tip. Winglets modify
the lift distribution in such a way that it acts like a span extension. We will
see shortly that increasing span decreases induced drag.

Figure 3.12: A simplified view of induced drag. The air leaks around the
wing tip from the high pressure to low pressure side to form the vortex.

Figure 3.13: Box or annual wing. Image from Steelpillow, Wikimedia, CC
BY-SA 3.0.

Another way to look at induced drag is to use the Kutta-Joukowski
theorem. This theorem says that the inviscid force per unit length
generating by a lifting body is given by:

F′ � ρ ®V × ®Γ (3.21)

where Γ is the circulation. Circulation is defined as a line integral of the
velocity around a closed contour:

Γ �

∮
®V · d®l (3.22)
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For the airfoil in Fig. 3.14, if it is generating lift, its circulation will be into
the page as shown. Any closed contour, of any shape, taken around the
airfoil will give the same value for the circulation. This is an admittedly
terse definition of circulation, but the important point for our purposes is
that the generated force is given by the cross product defined in the
Kutta-Joukowski theorem, also shown in that same figure.

Figure 3.14: Circulation is found by integrating around any closed contour
around the lifting body. Lift is given by the cross product of the freestream
velocity and the circulation.

As discussed, when a wing generates lift it forces air downward. This
downward moving air is called downwash (w) and is shown in Fig. 3.15.
The effective incoming velocity is no longer V∞ but rather Vr . Again,
applying the Kutta-Joukowski theorem we see that the force vector has
tilted backwards creating a component of the force in the lift direction and
a component in the drag direction (lift and drag are defined relative to
V∞). This component of drag is the induced drag.
The formula for the induced drag, and induced drag coefficient is given by:

Di �
L2

q∞πb2einv
(3.23)

CD i �
C2

L

πAReinv
(3.24)

where AR � b2/Sre f is the aspect ratio, and einv is the inviscid span
efficiency that will be discussed in more detail shortly. Notice the strong
dependence on lift, and on span. As expected as we increase lift, the
induced drag increases. Increasing span allows for a decrease in induced
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Figure 3.15: Induced drag from the viewpoint of the Kutta-Joukowski The-
orem. The presence of downwash (w) tilts the incoming velocity vector and
thus the resulting force. The component in the direction of the freestream
is induced drag.

drag. This is why high-efficiency aircraft, or birds, have long wing spans
although with the tradeoff of generally slower speeds.
It is important to note that this formula gives the inviscid induced drag. All
the behavior we have discussed so far does not depend on the presence of
viscosity. The inviscid span efficiency einv hides some complicated flow
physics behind a single number. Effectively, it is a measure of how close
the lift distribution is to the one that produces minimum induced drag.
For a planar wing, which means a wing whose planform is contained in
one geometric plane (e.g., no winglets), the lift distribution for a fixed span
planar wing with minimum induced drag is an elliptic shape as seen in Fig. 3.16.

Figure 3.16: An elliptic distribution of lift.

Most aircraft do not have an exact elliptic lift distribution, but will often be
fairly close. An elliptic distribution produces an inviscid span efficiency of
1.0 and a typical value for a wing is 0.98. The presence of the fuselage
tends to decrease the lift produced at the center as shown in Fig. 3.17. For
a wing/fuselage combination the inviscid span efficiency can be estimated
as:

einv � 0.98

[
1 − 2

(
d f

b

)2
]

(3.25)
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where d f is the diameter of the fuselage, and b the wingspan (a
simplification of the formula in [6]).

Figure 3.17: The presence of the fuselage causes a loss in lift production
near the centerline.

The presence of lift also tends to increase the viscous component of drag.
While this could potentially be book-kept with parasitic drag, we will
include it with induced drag. Empirical data suggests that viscous
induced drag also increases proportionally with the square of the lift. We
can estimate the viscous induced drag coefficient as:

CD i ,v � KCD pC2
L (3.26)

Note that quadratic dependence on lift. We also assume that it is
proportional to the parasitic drag. The remaining factor, K, is an empirical
constant determined to be approximately K � 0.38 [5]. We can combine
the inviscid and viscous components as follows:

CD i �
C2

L

πAReinv
+ KCD pC2

L

CD i �
C2

L

πAR

(
1

einv
+ KCD pπAR

) (3.27)

We would like to return our equation to a simple form like before, so we
define everything in parenthesis as 1/e where e is a new term called the
Oswald efficiency factor. Now the induced drag coefficient is given by:

CD i �
C2

L

πARe
(3.28)

where
e �

1
1

einv
+ KCD pπAR

(3.29)
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Notice that our total induced drag coefficient equation looks the same as
the inviscid induced drag coefficient (Eq. (3.24)), except we have replaced
einv with e. Whereas a typical value for the inviscid span efficiency (einv) is
close to 1, a typical value for the Oswald efficiency factor (e) is between
0.7–0.9. The induced drag in Eq. (3.23) transforms similarly with e
replacing einv .
The previous section mentioned the induced angle of attack, which we
will touch on briefly. The presence of downwash changes the direction of
the incoming velocity as explained earlier and shown in Fig. 3.15. The
induced angle of attack is the angle created between the freestream and
the new relative velocity as shown in Fig. 3.18.

αi � tan−1
(
−w
V∞

)
(3.30)

On the right side of the figure we see that the induced angle of attack
reduces the angle of attack experienced by the airfoil:

αe f f � αg − αi (3.31)

where αg is the geometric angle of attack. Thus, the presence of
downwash decreases the angle of attack experienced by each section.

Figure 3.18: The induced angle of attack reduces the effective angle of attack
of the section. Angle of attack of airfoil exaggerated for clarity of display.

For an elliptic lift distribution, the downwash is constant along the wing
and the induced angle of attack is given (with a small angle
approximation) by:

αi �
CL

πAR
(3.32)

In general, the downwash, and thus the induced angle of attack, varies
along the wing and must be determined through a numerical solution
such as lifting line theory or a vortex lattice method discussed in an
aerodynamics course.
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3.4 Tradeoffs in Parasitic and Induced Drag

For low Mach number (i.e., no compressibility drag) the total drag
coefficient or total drag of an aircraft is given by:

CD � CD p +
C2

L

πARe
(3.33)

or
D � CD p q∞Sre f +

L2

q∞πb2e
(3.34)

At low speeds the drag is dominated by induced drag (see q∞ in
denominator), where as high speeds the drag is dominated by parasitic
drag (see q∞ next to CD p). The parasitic, induced, and total drag as a
function of speed, for an example aircraft, is shown in Fig. 3.19. The point
at which they cross, is the speed for minimum total drag, or in other words
the speed that maximizes the lift-to-drag ratio.

flight speed

dr
ag

inducedparasitic

total

Figure 3.19: Tradeoff in parasitic and induced drag versus flight speed.

3.5 Compressibility Drag

Before discussing methods to estimate compressibility drag we need to
understand the physical mechanism, and so we begin with sound waves.
Disturbances in a fluid are communicated via sound
waves—infinitesimally weak pressure waves that travel at the speed of
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sound. A familiar example is a river flowing around a rock. The water
“senses” the presence of the rock and starts diverting its path before it
reaches the rock. The mechanism that allows the water to sense the rock is
sound waves, or pressure waves, transmitted through the water. The
increased pressure starts to divert the water well before it reaches the rock.
Let’s reduce our rock to a point and rather than have the fluid move
around the rock, let’s have the point move through the fluid. Figure 3.20
shows four scenarios with the point moving to the right. In the first
scenario the point is not moving. Pressure waves travel in all directions at
equal speed (the speed of sound). In the second scenario the point is
moving to the right at subsonic speeds. The pressure waves in the
direction of travel bunch up, and the separation between the pressure
waves behind the point elongates. In the third scenario the point is
moving at the speed of sound. The pressure waves coalesce at the front as
they are all moving at exactly the same speed as the point. In the last
scenario the rock is moving faster than the speed of sound. In one instant
of time the point sends off a pressure wave, but in the next instant of time
the rock has traveled past that sound wave. The envelope of pressure
waves forms a cone, known as a Mach cone. See this webpage for an
animated version of this concept.

Figure 3.20: Sound waves emanating from a point moving to the right for
four different Mach numbers.

Now let’s revisit our rock in the river example, but with an airplane and a
small region of air. The following is only an analogy as fluid properties
vary throughout the flow, but illustrates the general principle. If the
airplane is flying subsonically the air will “sense” that the airplane is
coming because of the pressure waves that emanate ahead of the aircraft.
It will start moving ahead of time to flow around the airplane, like the
river around the rock.
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Now let’s assume the airplane is flying supersonically. An air particle that
is in front of the airplane won’t know the airplane is approaching until it’s
already there. It can’t know because the airplane is flying faster than the
pressure waves. This is a problem because the air needs to move around
the aircraft, but won’t be able to until it’s too late. Nature’s solution is a
shock wave.
A shock wave is a narrow region that causes an instantaneous change in
flow conditions.1 In an instant the pressure, density, and temperature all
increase, the Mach number decreases, and the flow direction changes (if
the flow is perpendicular to the shockwave then the flow direction does
not change).
In the prior example the point was infinitely small and so it created an
infinitely weak disturbance. The resulting wave front is called aMach wave.
For a finite disturbance the coalescence of sound waves creates a shock
wave, or for an aircraft multiple shock waves (see Fig. 3.21).

Figure 3.21: Shock waves around an aircraft in a wind tunnel visualized
using Schlieren photography. The Schlieren method takes advantage of the
bending of light through density changes, and a shockwave produces a near
instantaneous change in density. Image from NASA, public domain.

A course in compressible flow will discuss shockwave theory in more

1It’s not actually instantaneous. The shock wave is like a boundary layer—a very thin
region dominated by viscous effects. It’s so thin that to the external flow it is effectively
instantaneous. Note that even though shock waves have a viscous structure, they will still
be correctly predicted in an inviscid solution.
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detail. For aircraft design our main interest in shock waves is that they
carry energy away and thus increase our drag. The stronger the shock
wave the more the drag increases. Shock strength increases with blunter
shapes and with increasing Mach number.
The following subsections discuss methods to estimate wave drag for
transonic speeds and supersonic speeds separately. Recall that
compressibility drag is often referred to as wave drag.

3.5.1 Transonic Wave Drag

Transonic mean Mach numbers close to 1. Usually transonic refers only to
subsonic speeds, but sometimes transonic is used to mean both subsonic
and supersonic speeds. In our case we mean the former, with a typical
range of Mach 0.7–1.
Even though the freestream speed is subsonic, as air is accelerated around
the aircraft regions of supersonic flow can occur. Figure 3.22 illustrates
flow around an airfoil at three different Mach numbers. The first airfoil
illustrates what is called the critical Mach number, or the Mach number
where the maximum velocity on the aircraft is sonic. This flight speed is
the point just before supersonic flow will appear. In aircraft design we
usually care more about the crest critical Mach number (Mcc). This is the
Mach number where the crest (top) of the wing first becomes sonic.
After passing the critical Mach number regions of supersonic flow exist on
the airfoil, highlighted in dark blue in the figure. As the freestream Mach
number increases the shock strength increases leading to higher
compressibility drag. Viscous pressure drag may also increase. This is
because speed drops significantly across the shock wave, thus making the
boundary layer more likely to separate.
The formation of shock waves leads to a precipitous increase in drag as
Mach 1 is approached. The rise is so sharp that it is often referred to as a
“sound barrier” (Fig. 3.23). Not a barrier in a sense of impenetrability, but
a barrier in the sense that a tremendous amount of energy is required to
pass through. The Concorde, for example, had to use afterburners to pass
through the sound barrier. Note that drag drops after Mach 1, though it
does start increasing again (not shown on the plot).
One of the major keys to unlocking efficient transonic flight was the
discovery by Adolf Busemann, and later independently by R. T. Jones, that
a swept-back wing decreased transonic wave drag. In fact, this discovery is
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Figure 3.22: Visualization of regions of supersonic flow over an airfoil
traveling at transonic speeds. Image from FAA, Airplane FlyingHandbook,
public domain.

Figure 3.23: Notional plot of the steep compressible drag rise, or “soundbar-
rier” prior to Mach 1. The crest critical Mach number and drag divergence
Mach number are also shown.
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considered one of the most important discoveries in aerodynamic history.2
The concept can be motivated through a simple thought experiment.
Imagine an infinite wing of constant cross-section in an inviscid flow. If
the wing started moving sideways at constant speed, and the flow were
inviscid, nothing would change. In a coordinate system moving at the
wing speed, only the normal component of the inflow would exist. In
other words, the normal and tangential components of velocity are
independent. By adding a tangential component we have exactly recreated
a swept wing flying obliquely (Fig. 3.24).

Figure 3.24: An unswept wing, on the left side, with normal (Mn) and
tangential (Mt) components of Mach number, is exactly the same as a swept
wing flying obliquely as shown on the right side.

In other words, as only the normal component of velocity matters for the
straight wing, so too it is only the normal component of velocity that
matters for the swept wing (Fig. 3.25). The implication of this idea is that
sweeping the wing allows the airfoils to see a reduced effective Mach
number. For example, if the flight Mach number was 0.8, and the sweep
was 30 degrees, then the airfoils (normal to the sweep) could be designed
to operate as if the incoming flow was M � 0.8 cos 30◦ � 0.69. That is a
large reduction and is what has enabled transport aircraft to fly at much
higher speeds. This concept is called simple sweep theory as it is a
simplification of the real flow because it assumes two-dimensional flow
behavior (that’s what an finite wing implies), that all sections are identical,
and assumes inviscid flow (viscosity can be important for the crossflow
boundary layer development). Despite the simplifying assumptions, in
most cases it approximates the real flow behavior quite well.
A forward swept wing produces the same transonic drag reduction
benefits. However, forward sweep is aeroelastically unstable. For a

2https://www.nasa.gov/langley/hall-of-honor/robert-t-jones
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Figure 3.25: For a swept wing only the normal component of the velocity
matters according to simple sweep theory.

forward swept wing an increase in lift at the tips typically causes them to
twist up, which further increases lift creating a positive feedback loop
leading to divergence. For a backward swept wing increased lift at the tip
decreases the twist, leading to decreased lift and thus a stable
configuration. This instability is one of the main reasons why forward
sweep is much less common.
For transonic speeds we generally want to fly as fast as possible without
incurring a significant drag rise penalty. In other words, most transport
aircraft fly at the point just as the curve in Fig. 3.23 starts to turn upward.
This Mach number is called the drag divergence Mach number (Mdd) and is
labeled in that figure. The drag divergence Mach number can be estimated
using a modification of the Korn equation with simple sweep theory [7]:

Mdd �
0.95

cosΛ
− t/c

cos2Λ
− CL

10 cos3Λ
(3.35)

Notice that sweep plays a major factor, as expected, as does thickness and
lift.
The compressibility drag coefficient can then be estimated using the
following empirical relationship [8]:

CD c �

{
0 for M∞ < Mcc

20(M∞ −Mcc)4 for Mcc < M∞ < 1
(3.36)

Note the rapid rise in drag (quartic) with Mach numbers past Mcc . For
Mach numbers less than Mcc there are no shock waves and thus no wave
drag.
To complete the set of equations we need a way to relate Mdd (when drag
starts to rise rapidly) to Mcc (when there is no compressibility drag).
Various definitions for the drag divergence Mach number exist. In the
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following we use the definition that drag divergence occurs once the slope
of the drag curve equals 0.1:

dCD

dM
� 0.1 (3.37)

If we take the derivative of Eq. (3.36) and use the above definition of Mdd

we find the following relationship:

Mcc � Mdd − 0.11 (3.38)

3.5.2 Supersonic Wave Drag

For supersonic flight the presence of shock waves is unavoidable. To
minimize drag, we generally want to have oblique shocks and this requires
a sharp leading edge and slender shapes as depicted in Fig. 3.26 or as seen
in a concept supersonic aircraft (Fig. 3.27).

Figure 3.26: Depiction of an oblique shock around a sharp-nosed airfoil.

Figure 3.27: Supersonic transport concept showing sharp leading edges and
slender shapes. Image from NASA, Boeing concept supersonic transport,
Icon-II, public domain.
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The minimum wave drag for a wing can be broken up into two parts: one
due to volume and one due to lift. The derivation assumes that the lift
distribution is elliptic in both directions. In other words, this is the
minimum drag and so for a given design the drag could be much higher.
The formulas are derived by R. T. Jones [9], and are manipulated in
Section A.2 to a form consistent with our usage. The results are shown
below.
The wave drag of a wing due to volume is given by:

CD c ,v � 4Sr

( t
c

)2 (β2 + 2r2)
(β2 + r2)1.5 (3.39)

where
β �

√
M2 − 1, (3.40)

r �
πl2

4Sg
(3.41)

and Sr � Sg/Sre f is the ratio of the gross area to the reference area us ed in
the drag normalization. The wave drag of a wing due to lift is given by:

CD c ,l �
C2

Lr
4Sr


√

1 +

(
βSr

r

)2

− 1


Sre f

Sg
(3.42)

The wave drag of a fuselage due to volume is given by:

CD c ,v �
π3

4
d2

(l/d)2Sre f
(3.43)

where l and d are the length and maximum diameter of the fuselage
respectively.
In general, we can show that the volume dependent wave drag at
supersonic speeds is proportional to volume squared over length to the
fourth power:

Dw ∝
volume2

l4 (3.44)

In other words, for low drag, a supersonic transport should be long and
have as little volume as possible. The elongation effect is reflected in many
designs, and is seen in the concept plane shown earlier (Fig. 3.27).
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However, having low volume alone is not sufficient for low drag. The way
that volume is distributed also matters. R. T. Whitcomb made the
important discovery that reducing the volume of the fuselage near the
wing led to a large reduction in drag [10]. This “coke-bottle” shape is seen
in many supersonic aircraft such as the redesigned version of the Delta
Dart (Fig. 3.28).

Figure 3.28: NASA QF-106 Delta Dart, NASA, public domain.

This idea became known as the area rule and enabled new high speeds for
aircraft. A more detailed look at the theory shows that the second
derivative of the area distribution appears in the drag calculation. This
means that the area distribution should change smoothly—sharp changes
produces high second derivatives in area and thus high drag. By
decreasing the fuselage area, just as the wing area is increasing, a
smoother cross-sectional area distribution can be maintained.
The area rule is more complex than described. The distribution of
cross-sectional areas perpendicular to the body (Fig. 3.29) only applies at
Mach 1. In general, the cross-sectional areas are taken at the angle of the
Mach wave and are thus speed dependent. Because the aircraft will
generally be flown through many speeds, this means that the area
distribution needs to be optimized for multiple conditions. Additionally,
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Figure 3.29: Cross sectional areas, as used in the area rule. Image by Petr
Dlouhý, Wikimedia Commons, public domain.

cuts need to be taken for geometric planes spanning all 360 degrees
around the aircraft.

3.5.3 High Mach or Blunt Bodies

As the Mach number is increased, or if the geometry is blunt rather than
sharp, a detached bow shock will form (Fig. 3.30). A bow shock produces
much higher drag than the oblique shocks discussed in the previous
section. For aircraft this is generally undesirable, but for a reentry vehicle
high drag is desirable. The high drag slows the vehicle down, and reduces
the heat transfer to the vehicle. The temperature increase behind a bow
shock is larger than that of an oblique shock, but because the shock
detaches, the separation distance more than makes up for the increased
temperature leading to overall lower heating.
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CHAPTER4

Wing Design

Wing design is at the heart of aircraft design. The wing (or sometimes
wings) provides almost all of the lift of the aircraft, and its dimensions
significantly affect the speed and performance of the aircraft.
Appropriately designing the wing is critical.

4.1 Fundamental Parameters

One of the primary design parameters for a wing is its span. Its definition
is usually straightforward (Fig. 4.1). Span refers to the projected span as
shown in the figure. In other words, a vertical winglet does not increase
span. Despite its apparent simplicity there are cases where the definition
of span is ambiguous. Many modern aircraft have highly flexible wings
and so the span will change depending on the flight conditions and/or
fuel loading. In this case we would also need to specify the loading
condition, for example span under a 1-g load (i.e., when lift equals weight).
Often the most fundamental tradeoff in selecting span is balancing drag
and weight (aerodynamics and structures). An increase in span decreases
induced drag as 1/b2 as we saw in Chapter 3. Conversely, an increase in
span increases bending stresses and thus structural weight. For some cases
(e.g., a flying wing) bending stress is not the dominant structural
constraint, but other structural constraints like flutter similarly require
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Figure 4.1: Depiction of wing span. The bottom shows a back view of the
wing to demonstrate that span refers to the projected span, or the span
projected onto a horizontal plane.

significant weight increases with increasing span.
If the wing area is fixed then increasing span decreases the internal
volume (e.g., fuel/battery capacity). It also decreases the Reynolds
numbers across the wing, which generally leads to increased parasitic drag
and higher stall speeds because of reduced maximum lift coefficients.
If the wing is swept back then increasing span moves the aerodynamic
center back, which may or may not be desirable. This will have a strong
effect on stability as we will see in a later chapter.
Wing area is another fundamental parameter. Many definitions are used
(e.g., wetted area, reference area, projected area) depending on the
context. One of the most common reasons to increase wing area is to
decrease stall speed. The stall speed for level flight is given by:

Vs �

√
2W

CLmaxρSre f
(4.1)

However, increasing wing area leads to increased parasitic drag and wing
weight. Wing area also affects the optimal cruise lift coefficient, which may
or may not be desirable.
Sweep is often defined relative to the quarter chord line (Fig. 4.2), but is
sometimes defined relative to the leading edge instead. The primary
reason to use sweep is to decrease transonic wave drag as discussed in
Section 3.5.1. The other reason to use sweep is as a means to achieve
longitudinal stability for a flying wing as will be discussed in Section 5.2.
Beyond those two use cases, there is rarely good reason to use sweep as
there are many detrimental effects including an increase in structural span
with a corresponding increase in weight, an increase in tip loads with a
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corresponding increase in weight and a reduced margin for tip stall, and a
reduction in CLmax .

Figure 4.2: Sweep is generallymeasured about the quarter chord (but some-
times about the leading edge). Itmaybe adistribution rather than a constant
value.

Airfoil thickness is also primarily an aerodynamic/structural tradeoff.
Thicker airfoils reduce wing weight if your wing is bending constrained
(discussed in Section 8.2), usually increase CLmax (up to a point), and allow
for more internal volume. Conversely, thicker airfoils increase parasitic
drag and compressibility drag. Thus, aerodynamic considerations usually
favor thinner airfoils, while structural considerations usually favor thicker
airfoils.

Figure 4.3: Section thickness.

Chord and twist (Fig. 4.4) are strongly coupled with the lift and lift
coefficient distributions as will be discussed in the next section. One of the
main tradeoffs with chord is that more taper decreases wing weight, but
can lead to tip stall. Although we often use taper ratio, modern wings
increasingly use composites and have more complex shapes than linear
taper.

Figure 4.4: Chord and twist.
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4.2 Lift Distributions and Lift Coefficient
Distributions

As discussed in Section 3.3, an ideal lift distribution for a planar wing,
from an aerodynamic point of view, is elliptic. When we consider not just
aerodynamics but also structures the optimal lift distribution is generally
loaded inboard further as shown in Fig. 4.5. By shifting more of the load
inboard the wing weight can be reduced, primarily because of reduced
bending loads, while only sacrificing a small amount of induced drag. For
the aerostructural optimum a typical inviscid span efficiency is about 0.98
(compared to 1 for elliptic). We tradeoff a small increase in induced drag,
for a decrease in weight, such that the overall system has improved.1

Figure 4.5: The elliptic distribution in blue is the aerodynamic optimum.
The aerostructural optimum is loaded further inboard to balance tradeoffs
in induced drag and wing weight.

Chord and twist are the biggest factors in determining the shape of the lift
distribution with sweep next in importance. If the wing is untwisted, then
an elliptic distribution of chord can be used to create an elliptic lift
distribution. An example of an aircraft with an elliptic wing is the
Supermarine Spitfire (Fig. 4.6). Although an elliptic wing can produce an
elliptic load, there is no real advantage to this shape as an elliptic
distribution of lift can be created with any wing, properly twisted.
Unfortunately, the lift distribution cannot be determined in isolation. The
lift coefficient is related to the lift distribution through its definition:

cl �
L′

q∞c
(4.2)

1If interested in more details see this mathematical study by R. T. Jones or a study I
worked on as a Masters student.
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Figure 4.6: The Supermarine Spitfire is a well-known example of an aircraft
with an elliptic wing. Image from Adrian Pingstone, Wikimedia, public
domain.

Note that the lift coefficient distribution is a function of the lift distribution
and the chord distribution.
Before discussing an ideal lift coefficient distribution we first need to
discuss critical section theory. Critical section theory is a simplified
approach to predicting when a wing/aircraft will stall. We already know
that an airfoil will stall at angles of attack past cl max , but how does that
apply to a wing where angle of attack, cl , and cl max can vary along the
wing? The basic idea of critical section theory, is that the wing is predicted
to stall when any one section would stall using 2D theory. Furthermore,
the section that first stalls is predicted to be the location on the wing where
stall initiates.
For example, from the lift distribution and Eq. (4.2) we can compute the lift
coefficient distribution. From airfoil data we can extract a distribution for
cl max along the span. Now we increase the angle of attack until the cl

curve just touches the cl max curve as shown in Fig. 4.7. The figure also
points out the spanwise position where we expect stall to occur (at about
30% of the span). Critical section theory is a simplification of how stall
develops. It works well if there is negligible crossflow across the wing, in
other words if the flow is basically two-dimensional at each section.
At first glance it would seem that an ideal lift coefficient distribution
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Figure 4.7: An illustration of critical section theory. Stall is predicted to
occur at the angle of attack at which these two curves meet, and at the
spanwise location where they meet.

would be constant across the span. That would mean that every section
was equally contributing, and thus no section would stall prematurely.
The problem with this distribution is that it doesn’t prevent tip stall, which
occurs when stall initiates near the wing tips. Tip stall is problematic for
two reasons: 1) a loss of lift far from the centerline of the wing creates a
large rolling moment that could be dangerous or at least degrade ride
quality, and 2) ailerons (the control surfaces that affects roll) are generally
located outboard to have maximum effect and if the ailerons stall then roll
control is lost. For these reason a good design must ensure that stall occurs
inboard first. Thus, an ideal cl distribution is roughly constant inboard,
then drops off towards the tip so that stall occurs inboard first.
Because both the lift and lift coefficient distribution are affected by chord
and twist (at least indirectly), and the wing bending stress depends on the
lift and chord distribution, creating an ideal balance can be challenging.
Chord is perhaps the most impactful parameter. As discussed, by using
twist we can create an elliptic lift distribution for any planform shape.
However, that planform shape then dictates what the lift coefficient
distribution looks like. For example, Fig. 4.8 shows the impact of three
different planform shapes on the lift coefficient distribution, assuming an
elliptically loaded lift distribution.
Let’s examine each of these parameters in isolation. The top portion of
Fig. 4.9 shows the impact of changing chord on the lift and lift coefficient
distributions. A high taper ratio means that the root and tip chord are
relatively close in size. That means that if there is no twist, the lift
distribution is relatively uniform. In contrast, a small taper ratio (with no
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Figure 4.8: The lift coefficient distribution for three different planform
shapes given an elliptic lift distribution.

twist) would produce higher lift at the root and lower lift at the tip.
Because chord is also coupled with the lift coefficient, some potentially
undesirable behavior is observed. For high taper ratio the chord is
relatively uniform and so the lift coefficient distribution looks fairly similar
to the lift. The low taper ratio on the other hand has small tip chords, and
so according to Eq. (4.2) the cl at the tip will be high. For structural
loading a smaller taper ratio is desirable, but we see that it increases the
likelihood of tip stall.
The second row of Fig. 4.9 shows the impact of changing twist on an
elliptically loaded wing for fixed lift. Increased twist at the tip is called
wash-in and decreased twist (i.e., increased negative twist) at the tip is
called wash-out. Many wings have some wash-out in order to produce a
more structurally efficient lift distribution. By reducing the twist at the tip
the lift at the tip is correspondingly reduced. Note that the effect of twist is
the same on lift and lift coefficient.
The last row of Fig. 4.9 shows the impact of changing sweep relative to an
elliptically loaded wing. Like twist, sweep affects both distributions in the
same way. Backward sweep increases the lift and the tip, whereas forward
sweep decreases it.
One of the primary challenges of wing design is to create a
chord/twist/sweep combination with a desirable lift distribution that
balances induced drag and structural considerations, and a lift coefficient
distribution that balances efficiency with preventing tip-stall. This is not
always easy and like most engineering decisions requires making some
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Figure 4.9: Notional depiction of how chord, twist, and sweep affects the
lift and lift coefficient distributions.

tradeoffs.

4.3 Finite Wing Lift Curve Slopes

We discussed the differences between 2D and 3D lift coefficients in
Chapter 2 and some in this chapter as well, but it is worth reemphasizing
some of the differences. Recall that the 2D lift coefficient (e.g., an airfoil) is
defined as:

cl �
L′

q∞c
(4.3)

whereas the 3D lift coefficient (e.g., wing or full airplane) is:

CL �
L

q∞Sre f
(4.4)

The total lift is related to the lift per unit span from the integral:

L � 2
∫ b/2

0
L′dy (4.5)

If we use this definition we can relate the 2D lift coefficient distribution to
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the overall wing lift coefficient:

CL �
L

q∞Sre f
(4.6)

�
2
∫ b/2

0 L′dy

q∞Sre f
(4.7)

�
2
∫ b/2

0 cl q∞cdy

q∞Sre f
(4.8)

�
2
∫ b/2

0 cl cdy

Sre f
(4.9)

(4.10)

If we divide the reference area by the span to define the mean geometric
chord c̄ then:

CL �
2
∫ b/2

0 cl cdy

bc̄
(4.11)

CL �

∫ 1

0

cl c
c̄

dy∗ (4.12)

(4.13)

where y∗ � y
b/2 . What this equation shows is that for the case where the

chord is constant (c � c̄) then the wing lift coefficient is the average of the
airfoil lift coefficient distribution. For cases where the chord is not
constant, it is a chord weighted average.
In Chapter 2 we learned that the theoretical lift curve slope of an airfoil
was 2π. The same is not true for a finite wing because of downwash. Let’s
denote the 2D lift curve slope as m. If we had an infinite wing, with a
constant airfoil then the wing lift coefficient would be:

CL � m(α − α0) (4.14)

and the lift curve slope would be unchanged.
However, for a finite wing there is downwash and so we need to include
the induced angle of attack:

CL � m(α − α0 − αi) (4.15)
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From finite wing theory, we can show that the induced angle of attack for
an elliptic lift distribution is given by:

αi � tan−1
(

CL

πAR

)
(4.16)

For small angles we can approximate this as:

αi ≈
CL

πAR
(4.17)

Substituting this in Eq. (4.15) gives:

CL ≈ m(α − α0 −
CL

πAR
) (4.18)

If we solve this for CL and take the derivative with respect to angle of
attack in order to get the wing lift curve slope we find:

dCL

dα
�

m
1 +

m
πAR

(4.19)

where m is the 2D lift curve slope, typically a value close to 2π. Notice that
as the aspect ratio goes to infinity we recover the 2D slope as expected.
However, for finite wings the lift curve slope is reduced compared to that
of its airfoils (Fig. 4.10). For example, an aspect ratio 8 wing would have a
predicted lift curve slope of 0.8(2π) or 80% of the 2D value. Keep in mind
that this is a simplified formula assuming constant airfoils, an
approximately elliptic load, and low Mach number.

Figure 4.10: Lift curve slope for airfoil and wing.

83



CHAPTER5

Stability

The best performing aircraft won’t be of much use if it is too unstable to fly.
This chapter provides an introduction to static and dynamic stability of
flight vehicles. For many aircraft the longitudinal and lateral dynamics are
effectively decoupled, and will be presented separately in this chapter.

5.1 Definitions and Fundamentals

We begin with a look at the forces and moments for a three-dimensional
aircraft. In Chapter 2 we discussed the difference between wind and body
axes for an airfoil. In three dimensions, we need one extra angle to define
the rotation between wind and body axes (sideslip angle). Recall that lift
and drag are defined in the wind axes, and that the wind axes are aligned
with the freestream direction as shown in Fig. 5.1. The angle of attack
defines one of the rotation angles between the body axes and wind axes.
As we move to 3D, we need two additional parameters: the sideslip angle
β and the side force Y.
In two-dimensions the only moment was the pitching moment. In
three-dimensions we have three moments as shown in Fig. 5.2: roll (l),
pitch (m), and yaw (n). We define these moments about the wind axes.
Conventionally, the letter l is used for roll even though this can easily be
confused with lift. In this text we will spell out roll in the coefficient.
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Figure 5.1: Wind axes. Lift and drag are defined relative to these axes.
Definitions for positive angle of attack and sideslip also shown.

Figure 5.2: The three moments for a flight vehicle have specific names: roll,
pitch, and yaw.
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The forces and moment coefficients are defined as follows:

CD �
D

q∞Sre f
(5.1)

CY �
Y

q∞Sre f
(5.2)

CL �
L

q∞Sre f
(5.3)

Croll �
roll

q∞Sre f bre f
(5.4)

Cm �
m

q∞Sre f cre f
(5.5)

Cn �
n

q∞Sre f bre f
(5.6)

(5.7)

Notice that roll and yaw use span as the second reference dimension,
whereas pitch uses chord. This is because the dynamics of roll and yaw
are primarily effected by the change in inertia from span, whereas pitch is
primary affected by changes in chord.
The rotation rates (e.g., rad/s) about the three axes are: roll rate (p), pitch
rate (q), and yaw rate (r). These rotation rates are normalized as follows:

p̂ �
pbre f

2V∞
(5.8)

q̂ �
qbre f

2V∞
(5.9)

r̂ �
rbre f

2V∞
(5.10)

(5.11)

A wide variety of control surfaces exist, but the most common are:
ailerons to control roll, elevators to control pitch, and rudder to control
yaw (see Fig. 5.3). An aircraft is said to be trimmed if the sum of its forces
and moments are zero. In other words it is in static equilibrium. The
control surfaces must have adequate response to trim the aircraft
throughout its flight profile.
Figure 5.4 overviews the different types of stability. The x-axis in each
figure is time, and the y-axis is some response (e.g., deflection). The upper
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Figure 5.3: Typical control surfaces and the moments they control.

left corner represents a statically unstable system, also known as
divergence. A disturbance from equilibrium causes the system to diverge
further and further from its equilibrium point. The bottom left corner
represents a statically stable system, also known as subsidence. A
disturbance is damped out and the response converges to a steady state
condition.

Figure 5.4: Four cases demonstrating static and dynamic stabil-
ity/instability.

The upper right figure is statically stable, but dynamically unstable. This is
also known as a divergence oscillation. The static stability causes the
system to return towards equilibrium, but it overshoots each time leading
to a dynamic instability. The bottom right figure is statically and
dynamically stable, also known as a damped oscillation. One important
takeaway from these figures is that it is possible to be statically stable and
still dynamically unstable. Thus, if stability is desired, it is important to
look at both the static and dynamic case.
Most aircraft are designed to be both statically and dynamically stable.
However, too much stability is generally undesirable as it makes it difficult
to maneuver. In fact, for some applications a small amount of instability is
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desirable. For example, many fighter aircraft are designed to be unstable.
This instability allows the fighters to be highly maneuverable, but it also
requires fly-by-wire stabilization otherwise the pilot workload would be
unmanageable (kind of like balancing a broomstick upside down). The
tradeoff is perhaps more familiar by comparing a bicycle and a car. A
bicycle is laterally unstable, whereas a car is laterally stable. The instability
of a bicycle allows it to quickly maneuver side to side (conversely, it
wouldn’t be so great if your car was at risk of tipping on to its side
whenever it stopped). For a transport aircraft, strong stability and slow
movements are desirable, whereas for a fighter some instability with quick
movements are needed.
Before proceeding there are two more concepts we need to understand.
The first is the center of pressure. From statics you learned that the
distributed loads acting on a body can always be resolved in an equivalent
set of point forces and moments, at any location. The center of pressure is
the location where the resultant moment is zero. Sometimes it is thought
of as the point through which the resultant pressure field acts. For
example, Fig. 5.5 shows a pressure distribution acting along an airfoil (just
the upper surface distribution is shown for simplicity), and three different
locations where we have resolved the distributed load into an equivalent
set of forces and moments. Note that in the middle figure the chosen
location has zero moment. This location is the center of pressure.

Figure 5.5: The distributed loads can be converted to a set of point
forces/moments at any location, though the moment will differ depending
on the chosen location. Figure by Joaquim Martins, used by permission.

While the center of pressure seems like a reasonable place to resolve the
distributed load, it turns out to not be that useful for aircraft analysis. The
problem with the center of pressure is that it moves around as the airplane
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changes angle of attack. For example, Fig. 5.6 shows the airfoil at three
different angles of attack, and thus with three different load distributions.
The resulting center of pressure for each case is at three different locations
(note that for the last case the center of pressure is not even on the airfoil).
Because an airplane must fly through a range of angles of attack,
particularly in a dynamics analysis, the center of pressure concept is
cumbersome. A more useful point is the aerodynamic center. The
aerodynamic center is the location on the vehicle where the moment does
not change with angle of attack. In other words, it is the point where:

dCm

dα
� 0 (5.12)

Unlike the center of pressure, the aerodynamic center is independent of
angle of attack (by definition). For most airfoils, its aerodynamic center is
at or near the quarter chord (c/4). For a wing, its aerodynamic center is
near the quarter-chord of the spanwise location where the chord equals the
mean aerodynamic chord. The aerodynamic center, as defined, generally
doesn’t exist past stall where the lift and moment behavior is nonlinear.Aerodynamic Center

13

lp −pu 

xcp xcp xcp 

c/4 c/4 c/4 

α = 5 
α = 0 

α = −5 

L’ 

(M’=0) 

L’ 

M’ 

1. 

2. 

Nondimensional�Coefficients�

The�forces�and�moment�depend�on�a�large�number�of�geometric�and�flow�parameters.� It�
is�often�advantageous�to�work�with�nondimensionalized�forces�and�moment,�for�which�most�
of�these�parameter�dependencies�are�scaled�out.� For�this�purpose�we�define�the�following�
reference�parameters:�

Reference�area:� S�
Reference�length:� ℓ�
Dynamic�pressure:� q∞� =� 1�

2
ρV�2�∞�

The�choices�for�S�and�ℓ�are�arbitrary,�and�depend on�the�type�of�body�involved.�For�aircraft,�
traditional�choices�are�the�wing�area�for�S,�and�the�wing�chord�or�wing�span�for�ℓ.� The�
nondimensional�force�and�moment�coefficients�are�then�defined�as�follows:�

L�
Lift�coefficient:� CL� ≡�

q∞S�

D�
Drag�coefficient:� CD� ≡�

q∞S�

M�
Moment�coefficient:� CM� ≡�

q∞Sℓ�

For�2-D�bodies�such as�airfoils,�the�appropriate�reference�area/span�is�simply the�chord�c,�and�
the�reference�length�is�the�chord�as�well.�The�local�coefficients�are�then�defined�as�follows.�

L′�
Local�Lift�coefficient:� cℓ� ≡�

D

q∞� c�
′�

Local�Drag�coefficient:� cd� ≡�

M

q∞� c�
′�

Local�Moment�coefficient:� cm� ≡�
q∞� c2�

These�local coefficients�are�defined�for�each spanwise�location�on�a�wing,�and may vary across�
the�span.� In�contrast,�the�CL,�CD,�CM� are�single�numbers�which�apply�to�the�whole�wing.�

5�

Figure 5.6: As the angle of attack changes the location of the center pressure
also changes. The location for the aerodynamic center, however, stays
constant. Figure by Joaquim Martins, used by permission.
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5.2 Longitudinal Static Stability

The aircraft shown in Fig. 5.7 is flying at static equilibrium. If the aircraft
encounters a disturbance that increases its angle of attack, α, then for it to
be statically stable it requires a negative pitching moment, Cm , about the
aircraft’s center of gravity. Conversely, if the angle of attack was decreased,
then a positive pitching moment would return it to its starting point.

Figure 5.7: An aircraft in static equilibrium, used to illustrate longitudinal
static stability.

Mathematically this condition can be expressed as:

∂Cm c g

∂α
< 0 (5.13)

Indeed, this is the definition of longitudinal static stability. This partial
derivative is called a stability derivative. There are many of them: all of
the forces/moments with respect to various flight conditions including
α, β, p , q , r and sometimes M (Mach number) and Ûα (rate of change of
angle of attack). There are also control derivatives, which are the same
except the derivative is with respect to control inputs like δa (aileron
deflection), δe (elevator deflection), and δr (rudder deflection). Because
there are many stability/control derivatives, a shorthand is often used.
The above condition is written equivalently as:

Cm ,α < 0 (5.14)

Vocally, this notation is read as: Cm α is less than zero. The fact that the
moment is about the center of gravity is implied.
Consider the longitudinal forces and moments acting on an aircraft
expressed generically in Fig. 5.8. We have not yet made any assumptions
on the signs for any quantity in the figure (other than weight). A drag
force also exists, but its effect on aircraft dynamics is generally negligible.
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Figure 5.8: Longitudinal forces and moments acting on a generic aircraft.

The circle symbol with four quadrants is the symbol for the center of
gravity (cg).
A force balance in the vertical direction shows that lift must be positive.
Now let us sum moments about the cg.

Mc g � Mac − xL (5.15)

We now divide everything by q∞, S, and c in order to normalize.

Cm c g � Cm ac −
x
c

CL (5.16)

Longitudinal static stability requires that dCm c g/dα < 0. If we take the
derivative of the previous equation to apply the stability criteria, and use
the definition of the aerodynamic center we have:

dCm c g

dα
� −x

c
dCL

dα
< 0 (5.17)

For an aircraft dCL/dα > 0 (lift increases with angle of attack), and so for
stability we require x > 0. In other words, we require the center of gravity
to be in front of the aerodynamic center. This is a general conclusion and
so bears repeating: for longitudinal static stability the aircraft’s center of gravity
must be forward of the aircraft’s aerodynamic center.
This quantity x/c is important enough that it has its own name: static
margin (note that c is generally the mean aerodynamic chord, unless a
different value of c was used in normalized the pitching moment
coefficient). The static margin is a measure of the stability of the aircraft.
Using the above expression we can also express the static margin as:

static margin �
x
c
� −

dCm c g/dα
dCL/dα

� −
(

dCm

dCL

)
c g

(5.18)
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The neutral point is the cg location on the aircraft where the static margin is
zero. In other words, this is the limit to the farthest aft position you can
place the cg and still have stability. The neutral point is the same thing as
the aerodynamic center for the full aircraft. The term aerodynamic center
can be used for components (e.g., the aerodynamic center of the tail, or the
aerodynamic center of the wing), whereas the neutral point always refers
to the full aircraft.
A typical static margin is 10–15% for general aviation, 5–10% for
commercial/military transports, and < 0 for modern fighters. Sufficient
stability is important, but more stability is not always better as it decreases
responsiveness and because it incurs greater trim drag. Trim drag is the
extra drag required to trim the aircraft. In other words, the deflection of
control surfaces to zero out forces/moments causes extra parasitic and
lift-dependent drag, which are bookkept as trim drag. Too much static
stability can also sometimes lead to a dynamic instability (see upper right
figure of Fig. 5.4).
Unfortunately, static stability is not enough. We also need the aircraft to be
trimmed (in this case Cm c g � 0). Otherwise, the aircraft is not in
equilibrium. If we apply the trim condition then we have:

Cm c g � Cm ac −
x
c

CL � 0 (5.19)

or:
Cm ac �

x
c

CL (5.20)

We already know that CL must be positive, and for stability we just
determined that x must be positive. That means that we require Cm ac to be
positive. Unfortunately, Cm ac is negative for most any airfoil, and by
extension most any wing. How then we do we trim the aircraft?
For a flying wing (tailless aircraft) there are three options. The first is to
use a reflexed airfoil. A reflexed airfoil has its aft end curved upward. This
shape is very inefficient and sacrifices quite a bit of lift (the aft end actually
lifts downward), and it usually has a poor maximum lift coefficient. But it
does allow for a positive Cm ac , which is what was needed to trim. The
second, and most common option, is to sweep the wing and use washout
(twist tips down). At zero lift, the tips will actually lift down (the tips
won’t, or shouldn’t, lift down at the cruise angle of attack). It can be a bit
tricky to design well, but with an appropriate combination of sweep, twist,
taper, and aspect ratio, one can relatively efficiently achieve stability and
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trim. The third option is to use conventional airfoil/wing design, but just
let the airplane be unstable (x/c < 0) and instead rely on active controls to
fly the airplane.
Instead of using a flying wing, the more common solution is to add a tail.
We analyze this scenario using the forces and moments shown in Fig. 5.9.
Again, we neglect the minor impact of drag, and assume the offset of the
tail relative to the wing is small. Usually, tails use symmetric airfoil
sections so Mt � 0 and is thus not shown. The fuselage, nacelles, and other
components of the aircraft do usually contribute a non-negligible moment,
but don’t change the basic conclusions for this analysis so they are
omitted. Generally, the lift from these other components is negligible.

Figure 5.9: Primary longitudinal forces and moments acting on a wing/tail
combination. The w subscripts correspond to the wing, and the t subscripts
correspond to the tail.

The stability condition is unchanged (center of gravity must be forward of
aerodynamic center), but we now need to assess trim. Computing
moments about the center of gravity gives:

Mc g � Mw − xwLw − xt Lt (5.21)

The normalizing parameters used for the wing lift coefficient, are different
from those used in the tail lift coefficient so we expand each term:

Cm c g q∞Sw cw � Cm w q∞Sw cw − xwCLw q∞Sw − xt CLt qtSt (5.22)

Notice also that the dynamic pressure experienced by the tail is not q∞ as
the tail is generally in the wake of the wing. We now divide through by
q∞Sw cw :

Cm c g � Cm w −
xw

cw
CLw − CLtη

(
St xt

Sw cw

)
(5.23)

where η � qt/q∞, the ratio of dynamic pressures, is called the tail
efficiency. Typically it is about 0.85–0.9 [1]. The tail experiences a lower
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dynamic pressure because it is the wake of the wing and/or the boundary
layer of the fuselage. For a T-tail, the tail is moved up high out of the wake
and so η � 1. The quantity in parenthesis (St xt)/(Sw cw) is known as the
tail volume coefficient and is often used for preliminary sizing of the tail
(as we will see in Section 5.5).
Recall that we need the pitching moment about the cg to be zero to trim:

Cm w −
xw

cw
CLw − CLtη

(
St xt

Sw cw

)
� 0 (5.24)

The pitching moment on a typical wing Cm w is negative as discussed, and
xw is positive for static stability (the wing provides most of the lift so the
aerodynamic center will be near here) and so the second term is negative
as well. Thus, for trim we require the last term to be positive. This is most
easily accomplished by making CLt negative. Indeed this is how a
conventional configuration operates. The purpose of the horizontal tail is
to lift downward and balance the moment generating by the wing,
allowing for the aircraft to be trimmed. The downside is that the tail is
lifting down, and so there is increased drag both from the tail, but also
from the extra incremental lift you need to carry in the wing. This
lift-dependent drag can be reduced by moving the tail further aft, so as to
make the moment arm larger, and thus reducing the amount of downward
lift the tail must create. The tradeoff is the increase weight and drag of the
structure that allows the tail to move aft.
The other alternative is to allow xt to be negative, or in other words to put
the “tail” in front of the wing. This type of configuration is called a canard
(see for example Fig. 5.10). The advantage of this configuration is that the
canard can generate positive lift, allowing for a smaller main wing.
However, the wake from the canard significantly affects the wing and so
the interference drag is larger. Additionally, to make the aircraft stable the
canard must stall before the main wing, which means that the main wing
must be larger than it would be otherwise—counteracting the main benefit
of the configuration. In short, there is not an obvious aerodynamic net
benefit, but it can be more efficient in some cases. The design is more
complex as the aerodynamic interference and cg sensitivity is usually
greater. However, one nice operational benefit is that a canard
configuration can be designed to be virtually stall proof. This is
accomplished by making the canard stall before the main wing. When the
canard stalls the lift drops forward of the cg and so the airplane returns
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back to a stable configuration (conversely if the airplane were designed so
that the main wing stalled first, then the aircraft would pitch up further
deepening the stall, which could be catastrophic). This safety feature is an
appealing benefit for home-built aircraft like the Long-EZ in Fig. 5.10.

Figure 5.10: The Rutan Long-EZ, a canard configuration designed to be
stall-proof. Photo by Adrian Pingstone, public domain.

Flying wings, conventional tail, and canards are not the only configuration
options to address longitudinal stability. Various configuration exist
including: a tandem wing, three surfaces, joined wing, box wing, twin
fuselage with dual tails, etc.
For longitudinal static stability we have learned that placing the center of
gravity ahead of the aerodynamic center is critical. Finding the center of
gravity is fairly straightforward, but how do we find the aerodynamic
center? To figure this out, we will use Fig. 5.11. On the right is the
aerodynamic center. We don’t know where it is located it, but we know it
exists (as long as we are not stalled). On the left is some arbitrary point
that we are going to take moments about. We want to solve for x which
will tell us exactly where the aerodynamic center is relative to point we are
taking moments about.
First, we take moments about the arbitrary point p:

Mp � Mac − xL (5.25)

Now we take the derivative of the above equation with respect to angle of
attack

dMp

dα
�

dMac

dα
− x

dL
dα

(5.26)
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By definition, the derivative of Mac with respect to α is 0. We can now
solve for x:

x � −
dMp/dα
dL/dα (5.27)

or normalizing:
x

cre f
� −

dCm p/dα
dCL/dα

(5.28)

where cre f is the chord used in normalizing the pitching moment
coefficient, normally the mean aerodynamic chord.

Figure 5.11: Diagram used in determining location of aerodynamic center.

Thus, we just need our full aircraft lift curve slope and the moment slope
about any arbitrary point (although this equation could be a little more
general by adding drag and vertical offsets). Notice, that if I happened to
already be at the aerodynamic center then dMp/dα is 0 as so x is 0 as
expected.
If you also want to find the value of Mac an easy way to do so is to refer to
Eq. (5.25) and note that if the lift is zero, then the corresponding moment is
the moment at the aerodynamic center. In other words, the zero-lift
pitching moment (Cm0) is the pitching moment at the aerodynamic center.

5.3 Lateral Static Stability

Let’s now determine the criteria for yaw stability, also known as
directional stability, by examining Fig. 5.12. Based on the sign conventions
show in the figure we see that if a disturbance increases the sideslip angle
β, then we need a positive yawing moment to suppress the disturbance. In
other words:

dCn

dβ
> 0 (5.29)

or in the simplified notation:
Cn ,β > 0 (5.30)
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Figure 5.12: Illustration of criteria for yaw (directional) stability through a
disturbance in β.

Be careful with the sign conventions. Recall that a positive α is in the
direction of a positive pitching moment, but a positive β is in the direction
of a negative yawing moment. A typical desired value for Cn ,β is around
0.06–0.15 (with β in radians) [2, 3]. This is one stability derivative where
bigger is usually better. This is not to suggest that a bigger tail is always
desirable, but unlike many of the other stability characteristics, if you
could get more directional stability for free then you would want it as it
improves handling.
The vertical tail provides most of the directional stability, although the
vertical tail is usually sized by control requirements rather than static
stability. Figure 5.12 also shows a vertical tail and its resultant lift force. If
the vertical tail is behind the cg then this lift provides a restoring moment
to reduce sideslip.
Roll stability is a little trickier to visualize. Figure 5.13 shows the forces
acting on an aircraft with a disturbance in the bank angle. The tricky
aspect is that bank angle (like pitch and yaw angles) does not cause a
change in aerodynamic forces directly. Aerodynamic forces only depend
on the relative wind, and bank angle is independent of wind. Weight also
does not cause a change in moments as it always acts through the cg. The
reason a bank angle disturbance causes a potential instability is that the
bank angle tilts the lift vector away from vertical and so a sideways
component of force exists (to the right in the figure). That sideways force
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causes the aircraft to move to the right, and so it begins to sideslip. Based
on the sign convention, this is a positive sideslip angle (if the aircraft is
moving from left to right, then the relative wind is from right to left). To
reduce the sideslip we need a negative rolling moment. Thus, the criteria
for roll stability is:

dCroll

dβ
< 0 (5.31)

or
Croll ,β < 0 (5.32)

Figure 5.13: Illustration of criteria for roll stability through a disturbance in
roll angle. The aircraft is flying into the page.

Too much roll stability is undesirable as the aircraft becomes overly
sensitive when turning. An ideal range for this stability derivative is much
more variable, but as a rough reference point, a typical value for Croll ,β is
between -0.1–0 [2].
This stability derivative is also known as “effective dihedral”. That is
because dihedral increases roll stability. To see this, consider the scenario
shown in Fig. 5.14. The scenario is identical to that shown in the previous
figure, namely a disturbance has created a positive bank angle. However,
this time the wings have some dihedral. Like before, the relative wind
from sideslip comes from right to left shown in black (shown below the
airplane so that the arrow directions are easier to see). We can break up
each black velocity vector into its components, the red vectors, parallel and
perpendicular to the wing dihedral. The right wing experiences a upward
velocity, whereas the left wing experiences a downward velocity. The net
effect is a restoring rolling moment to reduce the bank angle. Thus, adding
dihedral increases roll stability. Winglets also help to increase roll stability.
Negative dihedral, called anhedral, has the opposite effect and will reduce
roll stability.
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Figure 5.14: Positive dihedral increases roll stability.

5.4 Coordinated Turns and Adverse Yaw

As noted in Fig. 5.3 turning primarily occurs with ailerons, or in other
words through a rolling moment. The turn is initiated through
antisymmetric aileron deflection. A right turn, for example, has the left
aileron deflect down and the right aileron deflect up. The aileron on the
left wing increases the local camber and thus lift, wheres the aileron on the
right wing has the opposite effect and decreases lift. The increase in lift
and the left, and decrease in lift on the right, causes a rolling moment
(Fig. 5.15) and thus a component of lift to the right that allows for a right
turn.
One of the challenges with this maneuver is that because the lift on the left
side increases, the induced drag on the left side also increases. Conversely,
the induced drag on the right side decreases. The net effect is a yawing
moment opposite the turn direction that creates sideslip (see right side of
Fig. 5.15). This phenomenon is called adverse yaw.

Figure 5.15: An illustration of adverse yaw.
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Typically, the way this problem is addressed is to deflect the rudder at the
same time in order to eliminate the yawing moment (generally the
elevators would be deflected as well because tilting the lift vector during
the roll causes some loss in lift). Such a maneuver is called a coordinated
turn. Stated another way, a coordinated turn is a turn that occurs without
any sideslip. Later, in the performance chapter, we will assume that turns
are coordinated.
Rudder is not used to turn aircraft. Generally its only purpose is to
eliminate yawing moments. Turning with rudder will induce a rolling
moment and the amplitude of that rolling moment is difficult to control
with rudder. Furthermore, it will create a sideslip. Generally, this is an
inefficient and (if carrying passengers) uncomfortable approach to
turning. Small RC airplanes have low moments of inertia, and so with
sufficient roll stability, sometimes just rudder is used for turning. The
benefit is simplicity in controls for a beginning RC pilot.

5.5 Tail Types and Statistical Tail Sizing

The combination of horizontal and vertical tails is referred to as the
empennage. There are many types of empennages, some of which are
shown here.
A T-tail is used to move the horizontal tail out of the engine exhaust and
fuselage boundary layer. The effectiveness of its vertical tail is increased
because it is end-plated, similar to a winglet. However, a T-tail is
susceptible to flutter problems (think of a weight at the end of a beam),
and deep stall problems (where the aircraft is at a high angle of attack, and
the elevators on the horizontal tail becomes waked making it difficult or
impossible to escape the stall).
A cruciform tail is a compromise between the conventional tail and the
T-tail. The structural issues are mostly avoided, but you don’t get the
end-plating benefit. A dual tail, also known as an H-tail when the vertical
tails extend below, increases the effectiveness of the horizontal tail through
end-plating. Having two vertical tails allows for greater yawing moments
and can prevent issues with the rudder lining up with the propulsion
system wake and becoming ineffective. The downside of the dual tail is
that the control linkage is more complex, and, in the case of a true H-tail,
ground clearance is reduced.
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A V-tail can increase ground clearance, but increases control complexity as
the rudder and elevator must be mixed. A Y-tail (not shown in that link)
uses downward surfaces to protect a pusher propeller from ground strike
Tail sizing is complex, and includes more factors than just stability, such as
control, drag, and weight. However, as a starting point, statistical methods
can be used to provide rough estimates for proper tail sizing. This type of
approach assumes that you are designing a conventional aircraft, or more
precisely one that is like the past aircraft that the fits are based on. Because
tails add both weight and wetted area, the designer will generally prefer
the smallest tail possible that provides the necessary level of stability and
control.
Some guidelines as an initial starting point are provided below, primarily
based on commercial transports and general aviation aircraft [4, 3]:

• A typical aspect ratio is 3–5 for a horizontal tail, and 1.3–2 for a
vertical tail.

• A typical taper ratio for a tail is 0.4–0.6.

• T-tails tends to have a higher aspect ratios (5–5.5) for the horizontal
tail to avoid wake effects, and lower aspect ratios for the vertical tail
along with a higher taper ratio (0.85–1).

• A horizontal tail area is typically 20-25% of the wing area.

• The downward lift produced by the horizontal tail may be as high as
5% of the aircraft weight.

• In the longitudinal stability analysis we saw a grouping of
coefficients we referred to as the tail volume coefficient. There is
actually a coefficient for both the horizontal and vertical tail:

Vh �
Sh lh

Sw cw
, Vv �

Sv lv

Sw bw
(5.33)

where the w subscript corresponds to the wing, h to the horizontal
tail, and v to the vertical tail. Note the use of span, rather than chord,
in the normalization of the vertical tail coefficient. A typically
horizontal tail coefficient is 0.5–0.7 and a typical vertical tail
coefficient is 0.02–0.04.

• The tail arm is typically 45–65% of the fuselage length.
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• Most tails use symmetric airfoil sections.

It should be emphasized again that these are only statistical correlations
and may or may not apply to an individual aircraft. These types of fits
should only be used as starting points and are not a replacement for
important sizing constraints like: stability, nose-wheel rotation, control
authority, etc.

5.6 Dynamic Stability

As discussed in the first part of this chapter, static stability is important but
not enough. We must also examine dynamic stability. From a dynamics
course you might recall that the stability of a dynamic system can be
assessed from its eigenvalues. In general, these eigenvalues are complex,
meaning that they have a real and an imaginary part. The real part of the
eigenvalues tells us whether the response will decay or amplify. If the real
part (σ) is negative, then that particular mode is dynamically stable. The
complex part is the damped natural frequency. The larger the value, the
higher the frequency of oscillation in the dynamic response. Referring
back to Fig. 5.4 we can associate eigenvalues with each case. The upper left
is real and positive, the lower left is real and negative, the upper right is
complex with the real part positive, the lower right is complex with the
real part negative.
Typically, these eigenvalues are plotted in the complex plane, like that
shown in Fig. 5.16. All eigenvalues on the left-half plane are dynamically
stable. The further to the left they are, the faster they decay. The plot also
helps us visualize other parameters like the undamped natural frequency
(ωn) or the damping ratio (ζ), both of which are shown in Fig. 5.16. These
parameters can tell us about things like settling time, overshoot, etc.
However, for this discussion our primary interest is in dynamic stability,
which is indicated by the real part of the eigenvalue (σ).
For an aircraft, the primary modes have names associated with them.
Figure 5.17 shows the eigenvalues associated with the longitudinal
dynamics. There are two modes: the short period and the phugoid.
The short period and phugoid modes are visualized in Fig. 5.18a and
Fig. 5.18b respectively. The short period mode is generally highly damped,
and thus not objectionable. Most pilots don’t even feel it. It results in
oscillations caused by changes in angle of attack and altitude, but occurs
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Figure 5.16: A pair of eigenvalues for a particular mode plotted in the
complex plane.

Figure 5.17: Longitudinal dynamic modes for an aircraft.
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mostly at constant airspeed. The frequency of the short period mode is
strongly related to the aircraft’s static margin.
In contrast, the phugoid mode is lightly damped and has a low frequency
(or long period—in fact sometimes it is referred to as the long period
mode). It is associated with gradual changes in altitude and airspeed,
roughly at constant angle of attack. This mode is generally only very
lightly damped, or sometimes it is somewhat unstable. If piloting under
visual flight rules (VFR, which means that visibility is good and the pilot
can fly just with external cues) then some phugoid instability is generally
not a problem. This is because the pilot response time is much faster that
the instability period so it can be easily corrected, often without even
noticing. However, if piloting under instrument flight rules (IFR, which
means that visibility is poor and the pilot must rely on instrumentation),
then low phugoid damping can be problematic.

(a) Short period mode (size greatly
exaggerated).

(b) Phugoid mode.

Figure 5.18: Visualization of longitudinal dynamic modes.

For lateral dynamics there are three modes: roll subsidence, spiral mode,
and dutch roll (Fig. 5.19). The roll subsidence mode (Fig. 5.20a) is usually
uninteresting. Typically it is highly damped with no oscillatory
component. The spiral mode (Fig. 5.20b) is slow and lightly damped.
Because it is slow it can be corrected easily when detected, but if not
corrected the spiral continues to tighten with decreases in altitude, and
eventually enters a high-speed dive.
The dutch roll mode is a coupling between yawing and rolling. It can be
quite noticeable in a flight and generally leads to passenger discomfort.
Thus, for ride quality, higher damping is desirable even though it is often a
challenging mode to dampen sufficiently.
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Figure 5.19: Lateral dynamic modes for an aircraft.
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(a) Roll subsidence mode.

(b) Spiral mode.

(c) Dutch roll mode.

Figure 5.20: Visualization of lateral dynamic modes.
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CHAPTER6

Propulsion

Without a propulsion system an aircraft is just a glider. Historically,
improvements in propulsion systems have contributed about half of the
fuel-burn reductions for aviation. We start with electric motors and
propellers, which are used for small UAVs and are enabling emerging
applications like vertical takeoff and landing “air taxis”. Next, we discuss
some of the basics of gas turbine engines. Finally, we end with a brief
discussion on placement of the propulsion system.

6.1 DC Electric Motor

Figure 6.1 shows a diagram of a DC motor. A battery supplies a voltage
(vb) across a motor with some resistance (R). The back emf (vm) is the
electromotive force caused by the spinning shaft. The end product of the
motor is a torque (Q) at some rotation speed (Ω).
The rotation speed is proportional to the back emf, for a constant magnetic
field:

Ω � Kv vm (6.1)

The motor velocity constant Kv is typically given in RPM/Volts. The torque
is generated by the magnetic field and so is proportional to current. To be
more accurate, there is a no-load current (i0) required just to overcome
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Figure 6.1: Diagram of a DC motor.

friction before a positive torque is generated:

Q � Kt(i − i0) (6.2)

From an energy balance we can show that the torque constant, Kt , must be
equal to 1/Kv 1. Thus:

Q �
1

Kv
(i − i0) (6.3)

The battery must supply enough voltage to overcome the back emf and the
resistance:

vb � vm + iR (6.4)

If we solve this expression for vm , substitute vm into Eq. (6.1), and
rearrange the expression in terms of current we have:

i �
(
vb −

Ω

Kv

)
1
R

(6.5)

With the current known, we can now solve for the torque using Eq. (6.3).
The power delivered to the shaft is then:

Psha f t � QΩ (6.6)

The motor efficiency is the power out (shaft power) divided by power in
(batter power):

ηm �
QΩ
ivb

(6.7)

Thus, given the three motor constants: Kv , R, i0, and the battery voltage,
we can solve for the motor current, torque, power, and efficiency as a

1See derivation and a more sophisticated model that includes heat transfer from Mark
Drela

109

http://web.mit.edu/drela/Public/web/qprop/motor1_theory.pdf
http://web.mit.edu/drela/Public/web/qprop/motor2_theory.pdf


Chapter 6. Propulsion A. Ning

function of Ω. Motor constants can be found online for most electric
motors, but it can be worthwhile to measure these values for yourself.
For example, consider a motor with the constants Kv � 3, 691 RPM/V,
i0 � 0.28 amps, R � 1.04 Ohms, and a battery voltage of 6V. The resulting
motor torque, power, and efficiency as a function of rotation speed is
shown in Fig. 6.2.

6.2 Propellers

A detailed look at propeller aerodynamics is beyond the scope of this text.
For the purposes of design we just need a functional relationship between
inputs like the operating condition and outputs like thrust and torque.
In general, we could write the thrust as a function of many parameters like
the airspeed, rotation rate, propeller diameter, air density, air viscosity,
speed of sound, blade shape, and pitch:

T � f (V,Ω,D , ρ, µ, a , c , θ, θp) (6.8)

As discussed in Chapter 2, nondimensional analysis is fundamental to
many aerodynamic analyses, and we apply the same principles here.
There are many ways the relevant parameters could be normalized, in the
following we use standard normalization for propellers. The thrust
coefficient is defined as:

CT �
T

ρn2D4 (6.9)

where n is the propeller rotation rate in revolutions per second, and D is
the propeller diameter. In other words if Ω is in radians per second then:

n �
Ω

2π
(6.10)

and is given in revolutions per second. The torque coefficient is defined as:

CQ �
Q

ρn2D5 (6.11)

and the power coefficient is defined as:

CP �
P

ρn3D5 (6.12)
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(a) Motor torque.

(b) Motor power.

(c) Motor efficiency.

Figure 6.2: Electric motor performance for an example configuration as a
function of RPM.
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Based on these definitions you can show that these last two coefficients are
directly related by:

CQ �
CP

2π
(6.13)

Propeller efficiency is already nondimensional, and is a ratio of the useful
power out from thrust, divided by the power in from the shaft (which is
the power out from the motor, assuming no additional losses):

η �
Pout

Pin
�

TV
QΩ

(6.14)

For the inputs, most of the normalizations will already be familiar and
include the Reynolds number, and the Mach number. One new
normalization is that of the rotation speed. The advance ratio is defined as a
ratio of forward speed to rotation speed (times a constant factor):

J �
V

nD
(6.15)

Using these nondimensionalizations we can express thrust (or any of the
other outputs) in a functional form with fewer inputs:

CT � f (J, Re ,M, geometr y∗) (6.16)

where geometr y∗ means a normalized geometric description of the blade.
For some applications the Reynolds number doesn’t change appreciably
across the flight envelope, or the variation in performance with Reynolds
number is less significant. For smaller UAVs, the Mach number is
insignificant. In these cases, for a given propeller, we can determine thrust,
torque, power, and efficiency as just a function of advance ratio:

CT � f (J) (6.17)

Figure 6.3 shows the thrust coefficient, power coefficient, and efficiency of
an example propeller as a function of advance ratio.
From experimental data, or an aerodynamics simulation, this type of data
can be tabulated for a given propeller. The UIUC Propeller Data Site, for
example, contains this kind of data for a large number of propellers used
for small UAVs.
Given the data for a propeller(s), and a known operating condition
(freestream speed, and propeller rotation speed), the thrust coefficient,
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(a) Thrust coefficient and power coefficient. (b) Efficiency.

Figure 6.3: Example propeller data as a function of advance ratio.

power coefficient or efficiency can be found as a function of advance ratio
using interpolation. Then the coefficients can be unnormalized to get
thrust and torque for that operating condition. The difficulty is knowing
what rotation speed the propeller will operate at, and this is the subject of
the next section.

6.3 Motor-Prop Matching

The difficulty in choosing the right motor-propeller combination (actually
the right motor-propeller-battery combination) is that their performance is
coupled. The rotation speed, for example is not an independent parameter.
The motor shaft rotates the propeller so they must both have the same
rotation speed, and the same torque.
For example, Fig. 6.4 shows the torque of a motor using the methods
outlined in Section 6.1 as a function of the rotation speed and the battery
voltage. It also shows the torque of the propeller using the methods
outlined in Section 6.2 as a function of rotation speed and freestream
velocity. The operating torque and rotation speed, will be where these two
curves intersect. Thus the rotation speed is an implicit function of the
freestream speed and the voltage across the battery.
Furthermore, that rotation speed then determines the motor efficiency,
propeller efficiency, and propeller thrust. This is illustrated in Fig. 6.5. The
dashed line shows the rotation speed at which the two torque curves cross,
and thus the operating rotation speed. The efficiency of the motor and the
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Figure 6.4: The rotation rate and torque of the motor/prop combination is
determined by the intersection of the motor and propeller torque curves. In
other words, the rotation rate and torque are implicit functions of velocity
and voltage.

propeller are then determined from this speed. Note that the resultant
efficiency for both the motor and propeller is poor compared to their peak
efficiencies. We would call this system poorly matched. Finally, the thrust of
the propeller is determined from this rotation speed, which may or may
not be sufficient for the aircraft.
Let’s discuss the matching problem in more detail. Figure 6.6 shows two
motor/prop combinations. The one on the left is poorly-matched. No
matter what speed we operate at, the efficiency will be relatively low
because the peaks for the two curves occur at very different locations. In
contrast, a well-matchedmotor/prop system is one where their peak
efficiencies line up closely. The right hand graph in that figure is a much
better match as the peak efficiencies more closely line up.
The currently outlined approach gives the outputs (thrust, torque, and
efficiency) as a function of freestream velocity and battery voltage. For the
purposes of design we may want to look at the limiting case where we are
using full throttle (i.e., the full voltage of the battery). This means that the
battery sizing is also coupled in to this problem (both in terms of max
voltage, but also in terms of weight). Note that if you wish to explore cases
for partial throttle, for conceptual design we will assume that the
electronic speed control scales throttle linearly with voltage. However, not
all speed controllers have a linear scaling. In any case, using a known
battery voltage reduces to computation of thrust, torque, and efficiency to
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Figure 6.5: The rotation speed from the intersecting torque curves in turn
determines the efficiency of both the motor and the propeller, as well as the
thrust of the propeller.

Figure 6.6: An example of a poorlymatched, and better (if notwell)matched
motor-prop system.
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just a function of flight speed.

T,Q , η � f (V) (6.18)

To make sure the design is adequate we need to compare thrust across the
flight speed range, with drag across the flight speed range. As discussed
in Chapter 3 we can compute the drag as a function or airspeed:

D(V) � CD p qSre f +
L2

qπb2e
(6.19)

Clearly, we need T > D across the speeds we want to fly at. Equality is
sufficient to maintain level flight, but in general we need excess thrust so
that we can climb (and to provide some margin for uncertainties in these
estimates).
Choosing the right motor/prop/battery combination might seem
daunting, and indeed will require some iteration, but can be made easier
by thinking about the most important parameters. For example, most
fixed-pitch small UAV propellers have a peak efficiency at around the
same advance ratio, generally between 0.4–0.7. If you know your design
flight speed, and approximate propeller size, then you can compute the
corresponding rotation speed. For a small UAV you will likely use a 2- or
3-cell LiPo battery, which has a voltage of 7.4 or 11.1 V respectively. With a
known battery you can compute the Kv value that will give you a
well-matched RPM at say 70% max voltage. This thought process ignores
many coupling effects, but is a starting point for further iteration. On our
website2 there is a script to help you analyze how well your
motor/prop/battery system is matched, and to plot thrust and drag across
a range of speeds.
One way to help size the motor is to look at the power-to-weight ratio. In
Chapter 7 we will learn more about why this is an important parameter for
electric-powered aircraft. For small UAVs a reasonable target is 150 W/kg,
or for an aerobatic UAV perhaps as much as 300W/kg. Modern RC aircraft
almost always use brushless motors. The electronic speed controller (ESC)
is sized by making sure it is rated for the maximum current of the motor
and the maximum voltage of the battery (with some margin).

2http://flow.byu.edu/me415/

116

https://en.wikipedia.org/wiki/Brushless_DC_electric_motor
http://flow.byu.edu/me415/


Chapter 6. Propulsion A. Ning

6.4 Gas Turbine Engines

A propulsion system, from a propeller to a rocket, can be represented
generically as shown in Fig. 6.7. Air may enter the system at a mass flow
rate of Ûm at the freestream speed of the vehicle, and leave at some exit
velocity Ve . In between, fuel may be injected at a mass flow rate of Ûm f . The
thrust generated by this system is given by a momentum balance
(derivation omitted):

T � Ûm(Ve − V∞) + Ûm f Ve + (pe − p∞)Ae (6.20)

where p is pressure, and Ae is the exit area. For a rocket engine Ûm � 0 as
there is no air entering. For an electric motor there is no combustion so
Ûm f � 0. For a jet engine, all of these terms are important. For subsonic
applications, or a fully expanded rocket nozzle (which is the ideal
condition), pe � p∞. Also for a jet engine the mass fuel rate is generally
much lower than the mass flow rate of the air. Thus, for an electric motor
and (approximately) for a jet engine at subsonic conditions the thrust
equation reduces to:

T � Ûm(Ve − V∞) (6.21)

We now have the intuitive result, that to generate thrust, an air-breathing
propulsion system must accelerate the incoming air.

Figure 6.7: A generic representation of a propulsion system with incoming
air flow rate Ûm, fuel mass flow rate Ûm f , and exit velocity Ve .

The propulsion system must not only generate sufficient thrust, but should
do so efficiently. To analyze efficiency, we will look at the propulsion
system in the ground frame of reference Fig. 6.8. The propulsion system,
depicted as the blue box, travels at some speed V∞. Because we are in the
ground frame of reference, there is still (not-moving) air ahead of it, and in
its wake the relative velocity is Ve − V∞. This energy in the wake
represents wasted energy. Like the discussion with drag, if possible, we
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would like the propulsion system to pass through and leave no wasted
energy in the wake. Unfortunately, this is not compatible with creating
thrust as seen in our thrust equation (Eq. (6.21)).

Figure 6.8: A propulsion system flying by in the perspective of the ground
frame of reference.

The overall efficiency of a propulsion system is given by the product of the
propulsive efficiency and the thermal efficiency, and is the ratio of power in
the fuel (enthalpy times mass flow rate) to useful work out to the vehicle:

η � ηtηp �
TV∞
Ûm f h f

(6.22)

where h f is the enthalpy of the fuel. The thermal efficiency is the efficiency
of converting the power in the fuel to mechanical power in the working
fluid (power to vehicle plus power lost in wake):

ηt �
TV∞ +

1
2 ( Ûm + Ûm f )(Ve − V∞)2

Ûm f h f
(6.23)

For our purposes, we are more interested in the propulsive efficiency.
Propulsive efficiency is given by a ratio of the useful power out (thrust times
forward speed) to all the mechanical power produced (useful power out
plus the power wasted in the wake):

ηp �
TV∞

TV∞ +
1
2 ( Ûm + Ûm f )(Ve − V∞)2

(6.24)

If we use the simplified form of thrust (Eq. (6.21)) then the propulsive
efficiency reduces to:

ηp �
2

1 +
Ve
V∞

(6.25)

We can now see that there is a fundamental tradeoff between high thrust
and high efficiency. To produce lots of thrust we want a large exit velocity
(Ve) relative to V∞ (Eq. (6.21)). Unfortunately, the larger the exit velocity
the worse the efficiency (Eq. (6.25)). For ideal efficiency a propulsion
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system’s exit velocity would equal V∞ (and thus there would be no wake),
but there would also be no thrust.
An alternative approach to increasing thrust, without penalizing
efficiency, is to increase the mass flow rate (Eq. (6.21)). This means that we
need a larger propeller or a larger engine inlet. Unfortunately, larger
propellers/inlets have higher tip speeds that eventually will create shock
waves with associated drag increases and efficiency losses. Furthermore,
the faster we fly the worse this problem becomes. In other words, at higher
speeds we are forced to have smaller inlets to avoid shock waves, and thus
smaller mass flow rates.
Ultimately, these tradeoffs lead to the two ends of the spectrum depicted
in Fig. 6.9. A turboprop, on the left, uses a small velocity increase with a
large mass of air (high efficiency) to produce sufficient thrust. But because
the propeller is large, flight speeds must be relatively slow. Conversely, a
turbojet, on the right, uses a large velocity increase with a small mass of air
(low efficiency). The small inlet allows for high flight speeds. A turbofan
falls somewhere in the middle and is what is used on most commercial
transports.

Figure 6.9: The range of gas turbine engines from turboprops to turbojets.
Image adapted from NASA, public domain.

In a turbofan, some of the air passes through the turbine and some passes
through the fan but bypasses the core (Fig. 6.10). The bypass ratio is defined
as:

Ûmb ypass

Ûmcore
(6.26)

the ratio of the mass flow rate that bypasses the core, over the mass flow
rate through the core. The turboprop and turbojet are effectively extremes
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of a turbofan where the turboprop has a very large bypass ratio and the
turbojet has a bypass ratio of zero. Commercial transports continue to
push the turbofan bypass ratio higher to increase efficiency while
maintaining effectively the same incoming Mach number.

Figure 6.10: In a turbofan some of the air passes through the fan and into
the core, and some passes through the fan but bypasses the core. Image by
K. Aainsqatsi, Wikimedia, CC BY-SA 3.0.

A gas turbine engine contains a compressor and a turbine and their blades
are shaped very differently as depicted in Fig. 6.11. Furthermore, there are
many stages in the compressor and only a few stages in the turbine as seen
in Figs. 6.9 and 6.10. The reason for this is that air passing through the
compressor is moving from a low pressure region to a high pressure
region, or in other words through a strongly adverse pressure gradient.
The airfoils can’t carry much lift without separating, hence the lightly
cambered airfoils and the need for many stages, each stage creating a small
increase in pressure. Conversely, air passing through the turbine is
moving from high to low pressure with a very favorable pressure gradient.
The airfoils can be very aggressive with camber and thickness in order to
generate high lift and extract maximum power from the airflow.
The compressor performs work on the air and turns the shaft, whereas the
turbine extracts work from the fluid. Net work is achieved because the
work extracted at the turbine is at a much higher temperature (see the
Brayton cycle).
We mentioned a turbojet as the extreme end of a turbofan, but there are
actually more extreme options. As the Mach number gets past about Mach
3 a turbojet is no longer a useful option. A ramjet (Fig. 6.12) gets rid of the
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Figure 6.11: Typical blade shapes for the compressor and turbine sections
of a gas turbine engine.

turbine and compressor altogether, and uses the high speed of the aircraft
to compress the air. This configuration removes a lot of moving parts, but
is relatively inefficient as high drag is created by the shock waves needed
to slow the air down to subsonic speeds for combustion. Also, it only
works at high Mach numbers so some other form of propulsion or assisted
takeoff is needed to get the vehicle up to speed.
As the speed increases even further (approximately more than Mach 5)
less compression is desirable so that the temperatures don’t get too high
and enough useful work can be extracted, and so a scramjet (supersonic
combustion ramjet) is used. In this case the air stays supersonic all the way
through. As you can imagine, maintaining combustion at supersonic
speeds presents its own unique challenges. The Mach numbers that
correspond to these various propulsion devices in summarized in Fig. 6.13.
Earlier we defined the efficiency of an engine, however a more commonly
used metric is the specific fuel consumption (s f c), also known as thrust
specific fuel consumption. It is the ratio of fuel weight burned per unit
time relative to thrust:

s f c �
Ûm f g
T

(6.27)

A lower s f c means that it takes less fuel to produce a specified amount of
thrust. Typically s f c is expressed in units of 1/hr. (As we will see, rockets
use a metric called specific impulse which is the inverse of s f c, except
usually expressed in seconds rather than hours).
We can see how s f c is related to its overall efficiency by using the
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Figure 6.12: Depiction of a ramjet. Image by Cryonic07, Wikimedia Com-
mons, CC BY-SA 3.0.

Figure 6.13: Mach number range for different propulsion devices. Modified
from a figure by Kashkhan, Wikimedia Commons, CC BY-SA 3.0
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definition of overall efficiency (Eq. (6.22)) and replacing the thrust with
that of the Eq. (6.27):

η �
V∞g

s f c h f
(6.28)

Thus, s f c and η are inversely related as we would expect.
Jet engines have enabled the wonders of modern air transport in part
because jet fuel (and petroleum-based fuels in general) is so energy dense.
A typical energy density is approximately 42 MJ/kg, That means just 1 kg
of jet fuel contains approximately the amount of energy needed to send 1
kg of mass into orbit.

6.5 Propulsion System Placement

Beyond selecting a suitable motor/propeller combination, or a suitable gas
turbine engine, one needs to determine how many propulsors to use and
where the place them. Figure 6.14 shows two configurations, the one on
the left is called a single and the one on the right a twin. The primary
benefit of a single is simplicity. The main benefit of a twin is some
redundancy allowing for the possibility of a recovery from an engine
failure. You can also use counter-rotating props, which provide some
benefit in terms of lateral trim drag. For small UAVs a twin is usually more
crash resistant and for hand launches can allow you to be out of the blade
path (especially for a pusher, discussed next). For piloted aircraft, a twin
moves the propulsion systems out of the primary field of view.

Figure 6.14: A single versus a twin propulsion system configuration.

While the historical trend has been to move from a large number of
engines to a small number (generally 1–2), recent advances in battery
technology, motor power density, IMU capabilities, and autonomous
control are reversing that trend for electric-powered aircraft applications.
Whereas jet engines are more efficient with fewer large systems, electric
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motors can be (approximately) just as efficient with a large number of
small motors. Having a large number of small motors can allow for greater
redundancy, control, and effective mechanical actuation for applications
like vertical takeoff. This type of system is called distributed propulsion
(Fig. 6.15), and is an active area of research.

Figure 6.15: NASA X-57 Maxwell concept aircraft with 14 electric motors.
Image from NASA, public domain.

Another major design decision, for a propeller-driven aircraft, is whether
to use a pusher or tractor configuration. Figure 6.16 shows these two
configurations with a pusher on the left and a tractor on the right. A
pusher allows for improved visibility and directional stability (the
propulsion system acts kind of like a vertical tail). Some primary
disadvantages of a pusher are that it moves the center of gravity farther aft
and is usually noisier because the prop ingests the wing wake. Efficiency
tradeoffs are less clear. The wings on a pusher will be more efficient
because they are not in the prop wash, but the propellers will be less
efficient because they are in the wing wake (and vice-versa for a tractor).

Figure 6.16: A pusher versus a tractor configuration.

Finally, placement of the propulsion system can be on the fuselage, on the
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wing, in a pod, in the tail, etc. Determining proper placement requires an
integrated look at aerodynamic performance, structures, stability, and
other system-level considerations.
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CHAPTER7

Performance

Performance is an integration of the various subsystems into high-level
metrics that describe how well the aircraft performs. Various metrics are
important to the aircraft designer depending on the mission and flight
envelope of the vehicle. This chapter discusses some of the more common
performance metrics.

7.1 Range

Range is the maximum distance that an aircraft can fly. We will develop
two expressions to estimate range: one for propulsion systems at constant
thrust and one for systems at constant power. Recall from Chapter 6 that
there are basically two extremes for propulsion systems: imparting a large
velocity change to a small mass of air, or imparting a small velocity change
to a large mass of air. The former corresponds to jet engines. Because the
exit velocity is so large, the thrust is relatively insensitive to the freestream
speed (Eq. (6.21)). In other words, the thrust is relatively constant with
airspeed. The latter option corresponds to propeller systems. The thrust of
propeller-driven systems varies significantly (generally decreasing with
airspeed), but its power is relatively constant with changes in airspeed.
While there are gas-powered piston engines with propellers, most modern
uses of propellers are with electric power. Thus, we will only analyze
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electric propeller-driven aircraft. In the following sections we will refer to
jet powered and electric powered for convenience, but really mean constant
thrust with fuel burn and constant power with no fuel burn respectively.

7.1.1 Jet Powered

We begin with estimating range for a jet-powered aircraft. Because the
amount of fuel in the aircraft changes during the flight we need to start
with the specific range. The specific range is the distance flown per unit
weight of fuel burned. We can express the specific range as follows:

specific range �
distance flown
fuel burned

�
distance flown / time
fuel burned / time

(7.1)

The numerator is the flight speed, and the denominator is the weight flow
rate (mass flow rate times acceleration of gravity).

specific range �
V∞
Ûm f g

(7.2)

In Chapter 6 we saw the following definition for the specific fuel
consumption (Eq. (6.27)):

s f c �
Ûm f g
T

(7.3)

Thus, we can express the fuel burned per unit time ( Ûm f g) as s f c T. So, the
specific range is given by:

specific range �
V∞

s f c T
(7.4)

If we assume steady, level flight then thrust equals the drag. Next, we
multiply the equation by lift over weight, which should be equal for
steady, level flight.

specific range �
V∞

s f c D
L
W

(7.5)

The range is the integration of specific range (distance/weight change)
over the total change in weight across the flight. For a jet-powered aircraft
the weight of the aircraft decreases through the flight, so the range is given
by integrating the above expression from the initial weight (Wi) to the final
weight (W f ) :

R �

∫ W f

Wi

V∞
s f c

L
D

1
W
(−dW) (7.6)
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where a minus sign is used because the weight decreases from initial to
final.
In the following derivation we will make the simplifying assumption that
the specific fuel consumption, lift-to-drag ratio, and velocity are constant
during the flight. The latter is equivalent to constant Mach number in the
isothermal portion of the atmosphere. Making these assumptions allows
us to pull those constants out of the integral.

R �
V∞
s f c

L
D

∫ Wi

W f

dW
W

(7.7)

After performing the integral we have an expression that allows us to
estimate range:

R �
V∞
s f c

L
D

ln
(

Wi

W f

)
(jet powered) (7.8)

This is the well-known Breguet range equation
For comparing with electric vehicle later, it will be easier to specify the
weights as a fuel fraction (weight of fuel relative to max total takeoff
weight) and to use masses rather than weights. The initial mass is the total
takeoff aircraft mass including fuel (mTO), whereas the final mass is that
minus the fuel mass mTO −m f . So the jet engine range estimates looks like:

R �
V∞
s f c

L
D

ln
(

1
1 − m f /mTO

)
(jet powered) (7.9)

As an aside, there are different range equations depending on what
you choose to hold constant. In this case we have held velocity and
CL constant (so that L/D is constant). That means that the density
is not constant (CL � W/( 12ρV2Sre f )) and would need to decrease
through the flight as the weight decreases. In other words, the air-
craft would need to increase in altitude while flying (a cruise-climb).
This is usually a preferably way to fly as it is closer to constant Mach
number, which is why we have used this form of the equation. Com-
mercial transports can’t perform a continuous cruise-climb because of
air traffic control requirements, but for long flights do approximate it
by shifting to higher altitude levels as the flight progresses. An alter-
native approach is to hold CL and density (altitude) constant, leading
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to a different estimate for range:

R � 2 V∞
s f c

√
L

D

(√
Wi −

√
W f

)
(7.10)

The Breguet range equation is simple to use and demonstrates that need
for balance between aerodynamic efficiency (L/D), propulsive efficiency
(s f c), and structural efficiency (m f /mTO). The first two sub-metrics we
have seen already, but the “structural efficiency” is new. The most ideal
structure would be one that is 100% fuel (i.e., no structure) and at the end
of flight your airplane would weigh nothing. That would make Wi/W f

infinite, which means that your range was infinite in the sense that if your
airplane needed no structure, just fuel, you could add an infinite amount
of fuel to fly forever. Of course, that is not possible, some finite amount of
structure is always needed, and an all-fuel aircraft would be useless
because it couldn’t carry any payload. For a given amount of fuel, the
lighter the structure is, then the better the structural efficiency is.
Another way to express this range equation is in terms of the overall
efficiency of the propulsion system. Recall from Chapter 6 that the overal
efficiency was related to s f c by (Eq. (6.28)):

η �
V∞g

s f c h f
(7.11)

where h f is the enthalpy of the fuel. We now solve this for V∞/s f c and
substitute that into the Breguet range equation:

R �
h f

g
η

L
D

ln
(

1
1 − m f /mTO

)
(7.12)

This form of the equation is arguably more useful as the enthalpy and max
efficiency of jet engines are more universal than V∞ or even s f c.
These equations are very useful for preliminary design, but recall that
multiple assumptions were made. In detailed design we could relax the
assumptions on steady-level flight and on constant properties. Instead, we
would perform a numerical integration through the flight trajectory to
estimate range.
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7.1.2 Electric Powered

Estimating the range of an electric powered vehicle is a little more
straightforward because the mass of the vehicle doesn’t change through
the flight. Batteries are often characterized by their specific energy, which
is their energy per unit mass (eb). The total energy available from the
battery then is the specific energy, times its mass, times its thermal
efficiency (as there are some losses).

Eavailable � eb mbηb (7.13)

Note that eb should be an effective specific energy for the battery that
accounts for losses from temperature, depth of discharge, cycle life, etc.
The energy expended from the propulsion system1

Eexpended �
TR
ηpηm

(7.14)

where R is the range, T is the average thrust across the flight, ηp is the
propeller efficiency, and ηm is the motor efficiency. For steady-level flight
the thrust equals the drag so

Eexpended �
DR
ηpηm

(7.15)

We can now equate the energy available to the energy expended and solve
for range:

R �
eb mbη

D
(7.16)

where η � ηbηmηp is the total efficiency of the propulsion system (battery,
motor, propeller, etc.). To put this in a similar form to that of a jet engine
we will do the same thing we did in the previous section: multiply by lift
over weight assuming steady, level flight:

R �
eb mbη

D
L
W

�
eb mbη

D
L
W

(7.17)

where W is the total mass of the aircraft including battery. Rearranging we
have:

R �
eb

g
η

L
D

mb

mTO
(7.18)

1Actually, this is the minimum expended energy as there are various subsystems like
lights, instrumentation, etc. that are also powered by the battery.
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There are a lot of similarities between this equation and that of a
jet-powered aircraft (Eq. (7.12)). Both have an efficiency term, lift-to-drag
ratio, and a structural efficiency. The structural efficiency follows
essentially the same role here: an ideal structure would be all battery
(excluding some mass for payload). However, the jet engine has some
advantage here as burning fuel during the flight decreases the aircraft
weight. Figure 7.1 compares the two “efficiencies” (note this isn’t really an
efficiency). A typical fuel fraction is around 40% or less so this generally
isn’t a major difference.
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Figure 7.1: Comparison of mb/mTO for a battery versus ln(1/(1 −
m f uel/mTO)) for various mass fractions of battery/fuel.

Peak efficiencies for the two systems also differ. An efficient jet engine has
around a 40% total efficiency, where as an electric system can be
approximately twice as efficient.
However, both of these differences are relatively small compared to the last
difference: the enthalpy of jet fuel compared to battery specific energy.
The enthalpy of jet fuel is about 42.8 MJ/kg. Today’s best batteries (at
scale) have a specific energy of approximately 300 Wh/kg or 1.08 MJ/kg.
In other words, jet fuel is amazingly energy dense, about 40 times that of a
battery! This factor explains the major difference in range capabilities
between the two types of propulsion.
Electric propulsion can’t compete on range, but it does have its
advantages: no emissions, less noise, cheaper, fewer moving parts, higher
efficiency, efficient at small sizes to allow for distributed propulsion, etc.

131



Chapter 7. Performance A. Ning

Thus, the current interest for short range applications, especially with
vertical takeoff and landing (VTOL).

7.2 Endurance

Endurance is similar to range, but rather than a measure of flight distance,
endurancemeasures flight time. For applications like search and rescue,
time in the air is more important than distance flown.
Specific endurance is time flown per unit weight of fuel burned:

specific endurance �
time

fuel burned

�
1

fuel burned / time

�
1
Ûm f g

�
1

s f c T

(7.19)

Note that this is the same as specific range divided by V∞. Following the
same procedure as the previous section yields:

t �
1

s f c
L
D

ln
(

1
1 − m f /mTO

)
�

h f

g
η

V∞
L
D

ln
(

1
1 − m f /mTO

)
(jet power)

(7.20)

t �
eb

g
η

V∞
L
D

mb

mTO
(electric) (7.21)

where t is the endurance.

7.3 Optimal Lift Coefficients

In this section we will explore the approximate optimal lift coefficient to
fly at for different metrics. For a given altitude, this corresponds to an
optimal speed. This is easy to see using the definition of the lift coefficient
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and rearranging:

CL �
L

1
2ρV2Sre f

(7.22)

V �

√
2L

ρSre f CL
(7.23)

Lift coefficient is a more fundamental parameter, because it is
nondimensional, so all derivations are in terms of lift coefficient even
though we often speak in terms of speed. All the estimates in this section
are simplified to allow for analytic formulas. This type of approach is
helpful to build intuition and to understand what parameters matter most,
but as the aircraft design progresses a numerical computation of optimal
lift coefficients should be used rather than these analytic formulas.

Lift to Drag Ratio. The minimum drag speed of an aircraft is of course
zero. More interesting is the minimum drag speed for a fixed lift, which is
equivalent to maximizing the lift-to-drag ratio. If the compressibility drag
is negligible then the drag coefficient can be expressed as:

CD � CD p +
C2

L

πARe
(7.24)

and the lift to drag ratio is then:

L
D

�
CL

CD
�

CL

CD p +
C2

L
πARe

(7.25)

To find the lift coefficient that maximizes this expression we need to take
the derivative of this equation, with respect to CL, and set the result equal
to zero (note that it’s a little simpler to instead minimize D/L rather than
maximize L/D).

d(L/D)
dCL

�
CD p +

C2
L

πARe − CL
2CL
πARe(

CD p +
C2

L
πARe

)2 � 0 (7.26)
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Thus,

CD p +
C2

L

πARe
− 2

C2
L

πARe
� 0 (7.27)

CD p �
C2

L

πARe
(7.28)

(7.29)

Or in other words, the lift coefficient that maximizes L/D occurs when the
parasitic drag and induced drag are equal. Solving for the lift coefficient
yields:

CLmax L/D �

√
CD pπARe (7.30)

The above derivation assumed that both e and CD p are independent of CL,
though neither is strictly true. The inviscid span efficiency changes with
lift coefficient, but usually not by much for modest changes in lift
coefficient. The parasitic drag coefficient isn’t a function of CL per se.
However, both depend on Reynolds number and so because lift is fixed
they are implicitly related:

dCD p

dCL
�
∂CD p/∂Re

∂CL/∂Re
(7.31)

Both depend on Mach number as well, but we assume that is negligible
consistent with our assumption that compressibility drag is negligible. A
numerical simulation, evaluating drag at each Reynolds number and Mach
number will yield a more accurate estimate, but the above formula is
useful for conceptual design purposes.

Range Jet Power. Recall that the specific range for a jet aircraft is:

V∞
L
D

1
s f c W

(7.32)

Both weight and s f c are independent of the lift coefficient (if at constant
altitude—s f c changes some with density), and so to maximize range we
need to maximize

V∞
L
D

� V∞
CL

CD
(7.33)
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We can infer already that the speed for maximum range will be faster than
the speed for minimum drag. That is because the presence of the V∞ term
means that increasing speed has a linear effect whereas the decrease in
L/D for increasing speed beyond the max L/D speed will initially be small.
Using Eq. (7.23) and assuming steady level flight (L � W) the metric we
need to maximize becomes: √

W
1
2ρSre f CL

CL

CD
(7.34)

For a given altitude, removing terms that are independent of CL reduces
the above expression to: √

CL

CD
(7.35)

Thus, to maximize range we need to maximize the above expression, or
minimize its inverse, with respect to CL. We will do the latter:

d CD√
CL

dCL
�

d
dCL

(
CD p

C1/2
L

+
C3/2

L

πARe

)
(7.36)

� −1
2

CD p

C3/2
L

+
3
2

C1/2
L

πARe
� 0 (7.37)

CD p � 3
C2

L

πARe
(7.38)

In other words, for maximum range the parasitic drag is three times the
induced drag.

CLmax range, jet �

√
CD pπARe

3
�

1√
3

CLmax L/D (7.39)

We see that indeed the optimal lift coefficient is lower than of max L/D, or
referring to Eq. (7.23), the maximum range speed is 31/4 times the
maximum L/D speed. In other words, the maximum range speed is about
32% faster.
Again, keep in mind, that some simplifying assumptions were made like
assuming constant s f c, and so a numerical solution is preferable when
possible. Still these analytic solutions are useful in lending insight into
what parameters matter most and in determining approximate optimal
conditions.
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Range Electric Power. For an electric powered vehicle all the terms in the
range equation (Eq. (7.18)) are constant with lift coefficient except ηL/D.
Unfortunately, the efficiency term is not easily amenable to an analytic
expression. Generally it varies weakly with flight speed, as compared to
L/D, and so for the purpose of this analysis we assume constant efficiency.
If efficiency is constant with CL, then CL for maximum range under electric
power is the same as the CL for maximum L/D.

CLmax range, elec ≈ CLmax L/D (7.40)

Again, remember that this expression is only true if propeller efficiency is
constant. In practice, the maximum range speed is usually somewhat
faster than the maximum L/D speed. If the propulsion system has been
identified then a numerical solutions should be sought.

Endurance Jet Power. For a jet, the only terms in the endurance equation
(Eq. (7.20)) that vary with CL are L/D (again ignoring small variations in
sfc). That means that speed for max endurance is the same as the speed for
max L/D.

CLmax endurance, jet � CLmax L/D (7.41)

Endurance Electric Power. For an electric powered aircraft to maximize
endurance we must maximize the quantity

η

V
L
D

(7.42)

Again, we make the same approximation that η is constant. In that case, to
maximize endurance we need to maximize the quantity:

1
V

L
D

(7.43)

Using a similar procedure to that of maximizing range of a jet-powered
aircraft, we find that for optimizing endurance we need to minimize the
quantity:

CD

C3/2
L

(7.44)
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Taking the derivative with respect to CL gives:

d CD

C3/2
L

dCL
�

d
dCL

(
CD p

C3/2
L

+
C1/2

L

πARe

)
(7.45)

� −3
2

CD p

C5/2
L

+
1
2

C−1/2
L

πARe
� 0 (7.46)

CD p �
1
3

C2
L

πARe
(7.47)

In other words, for maximum endurance the parasitic drag is one third of
the induced drag.

CLmax endurance, elec ≈
√

3CD pπARe �
√

3CLmax L/D (7.48)

We see that indeed the optimal lift coefficient is higher than of max L/D,
or referring to Eq. (7.23), the maximum endurance speed is 3−1/4 times the
maximum L/D speed. In other words, the maximum endurance speed is
about 24% slower. As noted previously, a numerical solution is preferably
if the various in efficiency is known, though in general the max endurance
speed will be slower than the max L/D speed.

7.4 Rate of Climb

When climbing, the lift, drag, and thrust vectors tilt as shown in Fig. 7.2,
whereas weight remains pointed downward. A force balance along the
direction of flight yields:

T � D + W sin γ (7.49)

where γ is the climb angle. Rearranging the expression gives:

sin γ �
T − D

W
(7.50)

The rate of climb is the speed we climb vertically. This is given by the
component of our flight speed in the vertical direction:

V∞ sin γ (7.51)
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Using the previous equation gives the rate of climb:

R/C �
V∞(T − D)

W
(7.52)

Figure 7.2: Depiction of forces on aircraft during a steady climb..

As discussed in the beginning of this chapter, for a jet-powered aircraft
thrust is mostly independent of speed, so a good metric of climb
performance is the thrust-to-weight ratio: T/W . For electric-powered
aircraft power is mostly independent of speed, so a good metric of climb
performance is the power-to-weight ratio: P/W or TV/W . For jet power,
the speed that maximizes the rate of climb is faster than the speed for max
L/D. For an electric powered aircraft, since power is constant, the speed
that maximizes rate of climb is the minimum power speed (which is the
same as the speed for maximum endurance). As long as the flight path
angle, γ, is not large, in conceptual design we usually assume that the
aircraft drag is unchanged from its level flight value.
Maximizing rate of climb means minimizing the time it takes to reach a
certain altitude. However, various other climb metrics are sometimes used
including maximizing the gradient of climb (a slower speed) or
minimizing the fuel/energy used to climb (a faster speed with a lower rate
of climb).
Another related metric is the ceiling. The absolute ceiling is the highest
altitude the aircraft can fly at, and is the altitude at which the rate of climb
equals zero. As the altitude increases, density decreases, and the speed to
maintain level flight increases. This increase in speed requires more
power. Additionally, for jet engines the maximum power available tends to
decrease with altitude, and propeller performance is affected by density as
well. In either case, there is some altitude at which there will be no excess
power and the aircraft will no longer be able to climb. A related, and
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perhaps more useful metric is the service ceiling. This is the highest altitude
at which a given rate of climb can be sustained. The target climb rate is
often around 30 meters/minute for larger aircraft.

7.5 Glide Ratio

Gliding flight if when a heavier-than-air aircraft flies without any thrust.
The glide ratio refers to the ratio of forward distance traveled relative to
vertical distance descended. A high glide ratio is desirable because that
means for a given starting altitude, the aircraft can glide further. We can
determine the glide ratio starting from the same equation used previously
in climbing (Eq. (7.50)). The only difference is that this time there is no
thrust:

sin γ � −D
W

(7.53)

The negative sign denotes that the flight angle is decreasing rather than
increasing as in the climb case. We will drop the negative sign going
forward, with the understanding that the angle is now positive down.
Referring to Fig. 7.2 again, a force balance perpendicular to the flight
direction yields:

L � W cos γ (7.54)

Solving for weight and substituting into the previous equation gives:

sin γ �
D

L cos γ
(7.55)

After rearranging we have:

tan γ �
D
L

(7.56)

The glide ratio as stated earlier is the ratio of forward distance relative to
vertical distance. From Fig. 7.3 we can see that this is precisely 1/tan γ:

glide ratio �
1

tan γ
�

L
D

(7.57)

In other words the glide ratio is the same as the lift-to-drag ratio.
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Figure 7.3: Depiction of a gliding aircraft showing that the glide ratio
(forward distance / vertical distance) is exactly the lift to drag ratio.

7.6 Turning Radius

As discussed in Section 5.4, turning generally occurs by banking the
aircraft in a coordinated turn. Figure 7.4 depicts how tilting at a bank
angle (Φ) allows a component of the lift to turn the aircraft through a
centripetal acceleration. A force balance in the vertical direction gives:

L cosΦ � m g (7.58)

Applying Newton’s second law in the horizontal direction, using the form
for centripetal acceleration, gives:

L sinΦ � m
V2

Rt
(7.59)

where Rt is the turning radius. If we combine these two equations we can
solve for the turning radius:

Rt �
V2

g tanΦ
(7.60)

Figure 7.4: Depiction of an aircraft turning to allow determination of the
turning radius.
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We can’t do much about the acceleration of gravity so if we want to able to
make tighter turns we need to either fly slower (decrease stall speed) or
increase our bank angle. For small UAVs a fairly extreme bank angle is
acceptable, but would be much more limited in passenger carrying aircraft.

7.7 High Lift Devices

Takeoff and landing performance are primarily functions of stall speed.
Using Eq. (7.23) we see that the stall speed occurs once CL reaches its
highest value: CLmax .

Vstall �

√
2W

ρSre f CLmax
(7.61)

This equation tells us what we can do if we want a slower stall speed and
thus a shorter runway for takeoff/landing. We can’t control air density,
but this equation does explain why we need a longer runway at airports at
high altitudes. Decreasing stall speed is a common reason for increasing
wing area, but that choices comes with other design compromises. Clearly,
increasing CLmax has a major effect on decreasing stall speed.
Unfortunately, designing for high lift means that drag will be high too.
What we really want is variable geometry: a high-lift configuration for
takeoff/landing, and a streamlined configuration for cruise. This is exactly
how transport aircraft operate.
There are two primary mechanisms for changing the geometry of a wing
to increase its maximum lift coefficient: flaps and slats. Both are used in
combination on transport aircraft. A variety of flaps are depicted in
Fig. 7.5a, with a picture of one in Fig. 7.5b.
Flaps increase the effective camber of the airfoil, and thus the zero lift
angle of attack (Fig. 7.6). Notice that for a given angle of attack the lift is
increased, and that the angle of attack for maximum lift is reduced. Notice
also that using flaps has almost no effect on cl max . The primary benefit of
flaps is that maximum lift occurs at a lower angle of attack, which helps
with pilot visibility and decreases the amount of necessary fuselage
upsweep (the aft end of the fuselage curves up to increase ground
clearance during takeoff rotation).
A slotted flap enables higher lift through two mechanisms. First, it
reenergizes the boundary layer allowing for attached flow along the flap at
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(a) A variety of flap options. Figure by
NiD.29, Wikimedia Commons, CC
BY-SA 3.0.

(b) A flap system on a transport aircraft.
Picture by David Monniaux, Wikimedia
Commons, CC BY-SA 3.0.

Figure 7.5: Trailing edge flaps.

Figure 7.6: Flaps change the effective camber, and thus the zero lift angle of
attack. They have almost no effect on cl max however.
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higher angles of attack. Second, it increases the pressure experienced at
the aft end of the main wing allowing for a less adverse pressure gradient.
The other common high-lift device is a slat, which occurs on the leading
edge (Fig. 7.7a) rather than the trailing edge. As seen in Fig. 7.7b, slats
have little effect over most of the lift curve. Instead, they extend the range
of angles of attack over which the flow remains attached, thus delaying
stall. Like the difference between a pointed airfoil and a round-nose
airfoil, the leading edge shape allows for attached flow across a wider
range of angles of attack. Slats work well in combination with flaps by
extending the maximum lift coefficient, while keeping the angle of attack
manageable. Flaps generally do not extend along the full wing, but slats
do. The reason for this is that slats change the maximum lift coefficient
and the aircraft can’t take advantage of that extra lift unless it is extended
across the full span, especially at the tips. For example, Fig. 7.8 shows an
example where slats did not extend all the way to the wingtips. The extra
possible lift at the root can’t be utilized because the tip will stall first.

(a) Slat on the leading edge of a wing.
Picture from Arpingstone, Wikipedia,
public domain.

(b) Slats have almost no effect on camber,
instead the increase the maximum section
lift coefficient.

Figure 7.7: Picture of a slat and a notional diagram of its effect on lift.
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Figure 7.8: An example where slats extended only over a portion of the
wing. In that case the extra increase in cl max is unusable.

7.8 Takeoff

We will discuss only the main principles involved in determining takeoff
field length. For further details you are referred to the Federal Aviation
Regulations (FARs) See for example, Part 25 for transport aircraft.
One critical speed during takeoff is called the decision speed and is denoted
as V1. If you have an engine failure or other critical failure before the
decision speed then you abort the takeoff and put on full brakes. This is
called the accelerate-stop distance. If you have a failure after the decision
speed you must takeoff (there won’t be enough runway to brake), circle
around and land or divert to an alternate airport. This is called the
accelerate-climb distance. Takeoff field length considers not just the
runway, but includes the total distance until the airplane is some height
above the ground (Fig. 7.9), which is 35 feet for transport category
airplanes and 50 feet for general aviation.

Figure 7.9: A critical factor in takeoff field length is the decision speed
between braking and climbing. Takeoff distance is defined as not just the
ground roll portion, but also the distance required to clear an obstacle of
height h.

The takeoff distance is determined from the balanced field length. The
balanced field length is the point at which the accelerate-stop distance and
accelerate-climb distance are equal. This is the shortest possible field
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length for safe takeoff of that aircraft.
Figure 7.10 illustrates this concept. The gray line shows how much runway
you would need to accelerate to the candidate value of V1. The vertical
distance from the gray to the blue curve corresponds to the extra distance
required to stop assuming you decided to stop at the decision speed.
Intuitively it makes sense that if we decide to stop at a later (higher) speed,
then we will need more distance to come to a stop. hence the blue line
moves further and further away from the gray.
The vertical distance from the gray to the red curve corresponds to the
distance required to clear the required obstacle height assuming you
decided to takeoff. This line drops down because the decision point
corresponds to an engine failure event. If we fly further with two engines,
it’ll take less runway to reach takeoff speeds with our remaining engines.
Conversely, if we have a failure very early, and decide we’re still going to
takeoff anyway, it’ll take more distance to get up to speed on our one
engine. Hence the red line is further away at low speeds.
Clearly, it is not ideal to decide to takeoff if an engine failed early while still
traveling slowly. Conversely, it is not ideal to decide to brake if we are
moving quickly. The minimum distance that balances these considerations
is the crossover point of the two curves and is called the balanced field
length. At that point the distance to stop and the distance to takeoff are
identical. This point defines the actual value of V1. If we are below this
speed then its requires less distance to stop, and if we are above this speed
then it takes less distance to continue the takeoff.2
There are too many uncertainties to predict takeoff field length accurately
from an equation, but we can work out what parameters matter and
provide an expression that is useful in making relative comparisons in
takeoff field length. Recall that we assume that jet powered aircraft
operated at constant thrust, whereas electric propeller-driven aircraft
operate at constant power.

2This article provides a good overview of these concepts if you’d like a little more detail
without going all the way to the FARs.
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Figure 7.10: An illustration of the balanced field length where the distance
to stop and the distance to climb are equal.

Takeoff Jet Power. We start by rearranging Newton’s second law and
setting up an integral from the start of the ground run to some time t:

F � m
dV
dt

(7.62)

dt �
m
F

dV (7.63)∫ t

0
dt �

∫ V

0

m
F

dV (7.64)

We make the assumption that the net force is independent of speed, which
is reasonable if thrust is much larger than drag (drag itself is a strong
function of speed). Then the integral simplifies to:

t �
m
F

V (7.65)

We now perform a second integral to get distance (d) traveled and
integrate from the start of the ground run until lift off (LO). We also make
use of Eq. (7.65) in order to express velocity as a function of time:

dLO �

∫ tLO

0
Vdt (7.66)

dLO �

∫ tLO

0

Ft
m

dt (7.67)

Again, we make the same assumption of constant force (net thrust) when
performing the integral:

dLO �
F
m

t2
LO

2
(7.68)
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Or, using Eq. (7.65) the distance to liftoff is:

dLO �
mV2

LO

2F
(7.69)

We can reexpress this equation in terms of variables more usable to the
aircraft designer by noting that m � W/g, the force is the net thrust
(F � T − D), and the minimum lift-off speed is 20% greater than Vstall :

VLO � 1.2

√
2W

ρSre f CLmax
(7.70)

Plugging these alternate parameters into our ground roll expression gives:

dLO � 1.44 W2

gρSre f CLmax(T − D) (7.71)

Drag in this case is particularly difficult to predict. It’s not the same as
drag during level flight, but needs to include ground effect and rolling
friction including some alleviation in the normal force from lift:

D � µ(W − L) + Daero (7.72)

Instead, we will assume that thrust is much bigger than drag (which is
usually true and which we have already implicitly assumed by using a
constant force in the integrals), then takeoff distance should be
proportional to the remaining parameters (removing constants):

dLO ∝
W2

ρSre f CLmaxT
(7.73)

Again, this procedure does not give us a accurate predictive function per
se, but it does, for example, tell us that an aircraft that is twice as heavy
will approximately require four times the takeoff length. Note that this
discussion has only focused on the ground roll distance (omitting the
climb over obstacle portion). For a transport aircraft the ground roll is
most of the total length (about 80%) so often it is the ground roll that is
focused on during conceptual design.
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Electric Powered Takeoff. We follow the same procedure as before, but
now assume constant power rather than constant thrust. In the first
integral: ∫ t

0
dt �

∫ V

0

m
F

dV (7.74)

the force is not constant, but if we multiply top and bottom by velocity we
will have power: ∫ t

0
dt �

∫ V

0

mV
P

dV (7.75)

Assuming power is constant during takeoff:

t �
m
P

V2

2
(7.76)

The second integral for distance, replacing V with the above expression
gives:

dLO �

∫ tLO

0
Vdt (7.77)

�

∫ tLO

0

√
2Pt
m

dt (7.78)

�

√
2P
m

2
3

t3/2
LO (7.79)

Using Eq. (7.76) to replace time in the above expression gives:

dLO �
mV3

LO

3P
(7.80)

We make the same substitutions as before for stall speed giving:

dLO � 1.629 W5/2

g(ρSre f CLmax)3/2Pnet
(7.81)

where P is the net power including drag, though again we will usually
assume the power from thrust is much larger.

dLO ∝
W5/2

(ρSre f CLmax)3/2P
(7.82)

Unlike transport aircraft, for electric powered aircraft the climbing phase
may be longer than the ground roll phase and thus would be important to
include even in conceptual design. However, the details of transitioning
from ground roll to climb are outside our scope.
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7.9 Landing

Landing field length is perhaps even more difficult to predict because of
the large number of uncertainties, but as we will see it is primarily a
function of stall speed. Landing consists of three phases: glide,
deceleration, and ground roll (Fig. 7.11).

Figure 7.11: Notional depictionof landingwith aglidingphase, deceleration
phase, and a ground roll phase.

During the gliding phase, we can use the glide ratio we derived earlier:

dglide � h
(

L
D

)
e f f

(7.83)

where h is the obstacle height (50 feet for transport aircraft under Part 25),
and (L/D)e f f is an effective lift-to-drag ratio including ground effect.
The deceleration phase is where the aircraft is just above the ground, but
not yet touching the ground. Deceleration occurs from aerodynamic drag.
If we assume constant deceleration:

ddecel �
V2

g − V2
L

2a
(7.84)

�
V2

g − V2
L

2 De f f

W/g

(7.85)

�

(
L
D

)
e f f

1
2g
(V2

g − V2
L ) (7.86)

(7.87)

where Vg is the speed at the end of the glide phase, and VL is the landing
speed before touchdown.
The ground phase is where the wheels are on the ground and the brakes
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are applied. Assuming constant deceleration from friction:

ddecel �
V2

L

2a
(7.88)

�
V2

L

2(µ(W − L) + D)/m (7.89)

�
V2

L W
2g(µ(W − L) + D) (7.90)

(7.91)

where the drag is now higher with spoilers deployed.
Spoilers are a critical component of a landing system (Fig. 7.12). They
increase aerodynamic drag, but more importantly they drastically
decrease lift allowing for a bigger normal force and thus higher rolling
resistance from the brakes. The total drag is a combination of rolling drag
and aerodynamic drag. The rolling drag has the potential to be much
bigger so it is important to decrease lift quickly to allow the brakes to slow
the aircraft down.

Figure 7.12: Spoilers on an aircraft. Picture from Richardgm, Wikimedia
Commons, public domain.

Adding all the terms we see that landing distance is of the form (where A
and B are some constant independent of speed):

d � A + BV2
L (7.92)
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and because the landing speed is proportional to the stall speed (where C
is a different constant):

d � A + CV2
s (7.93)

In the end, landing distance is primarily a function of stall speed. In
practice, pilot skill in touching down quickly so that spoilers and brakes
can be deployed, perhaps makes the biggest difference.
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Structures

The aircraft structure must be designed to safely carry all loads
experienced during flight. At the same time the structure should be as
small and light as possible so as to not increase the required lift or wetted
area. Aerodynamics and structures are often at odds and so careful design
is necessary to achieve an optimal balance.

8.1 Typical Structural Elements

Most aircraft components are built using a semi-monocoque structure. A
monocoque structure is one in which loads are carried through an external
skin (e.g., an egg shell). A semi-monocoque structure uses a shell structure
but with reinforced frames. This type of design can be seen in the fuselage
shown in Fig. 8.1.
Figure 8.2 highlights some of the major structural components of the
fuselage. The frames provide the shape and also increase buckling
strength. The long skinny members between frames carry longitudinal
loads and are called stringers or longerons. Often the terms are used
interchangeably, but do have a small difference in meaning.1 The skin
(besides providing a covering), primarily carries torsion and shear loads.

1This Wikipedia article discusses the difference.
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Figure 8.1: Semi-monocoque structure visible inside aircraft fuselage. Pic-
ture by YSSYguy, Wikimedia Commons, CC BY-SA 4.0.

These same elements are visible in the picture of the fuselage seen
previously (Fig. 8.1).

Figure 8.2: A depiction of some of the major elements in a typical fuselage
structure.

Figure 8.3 shows a simplified wing structure. Like the frames on the
fuselage, the ribs provide shape and buckling strength. Even though
pictured as solid, ribs are generally not solid in order to save weight.
Though not pictured, stringers (also called stiffeners) are usually used as
well, and of course skin. One major difference for a wing is that it must
carry the lift of the airplane, which equals or exceeds the weight of the
entire airplane. To help carry those loads, a spar or spars are used. Spars
help carry the vertical loads and also increase torsional rigidity. The top
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and bottom of the spars, called the spar caps, carry bending loads.

ribs

spar

Figure 8.3: Some elements in a simple wing structure. Figure adapted from
this figure and this figure, both by MLWatts, Wikimedia Commons, public
domain.

Large transports typically use a box beam structure with a front spar and
rear spar (depicted as 1 and 2 in Fig. 8.4). The region between these spars
forms a box beam structure. A cross-sectional view can be seen in Figure 5
of this webpage.

8.2 Wind Bending

For many aircraft the critical loads in the wing come from bending.
Figure 8.5 shows a typical load distribution across a conventional aircraft.
Most of the weight (inertial load) is concentrated near the centerline,
whereas the lift is distributed across the wing. Furthermore, the weight is
distributed throughout the entire aircraft whereas the lift in concentrated
primarily in the wing. In other words, the inertial loads from the wing are
relatively small compared to the lift in the wing. The wing, mounted to the
fuselage, acts like a cantilevered beam, and the distributed aerodynamic
loads create large bending moments in the wing. Flying wings are an
exception where bending may not be a critical case. For a flying wing the
aerodynamic and inertial loads are all contained in the wing so they tend
to cancel out to a much greater degree.
In the previous section, we discussed how transport wings typically use a
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Figure 8.4: A more complex wing structure has a front and rear spar, ribs,
and stringers, in a box beam construction. Figure from Tosaka, Wikimedia
Commons, CC BY 3.0.

Figure 8.5: Typical aerodynamic and inertial loaddistribution for a transport
aircraft.
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box beam structure. A simplified representation of one is depicted in
Fig. 8.6. The dashed portions of the wing contain just a thin skin, that is
effectively non-structural, with the primary purpose of creating the
aerodynamic shape. A cross-section of the wing, with positive loading,
experiences a bending moment like that shown in the figure. The upper
surface is in compression, while the lower surface is in tension.

Figure 8.6: A notional depiction of a box beam often used in large aircraft
wing structures. It consists of a forward and rear spar, and spar caps on top
and bottom.

In the following, we derive a simplified estimation of the mass of material
required to resist bending. This is not meant to be a highly accurate
methodology, but rather a simple analytic expression that can give insight
into what parameters most affect the structural weight of the wing.
The wing can be approximated as a beam, and the bending stress can then
be estimated from the beam bending equation (assuming uni-axial
bending):

σ �
Mb c

I
(8.1)

where Mb is the bending moment, c is the distance from the neutral axis,
and I is the moment of inertia about the neutral axis. In this case, the
distance from the neutral axis to the upper (or lower) surface where the
stress is highest is approximately t/2 where t is the airfoil thickness. We
can approximate the moment of inertia as two rectangles each with area
A/2 as seen in Fig. 8.7. The sides of the box beam would contribute some
to the moment of inertia, but the biggest contribution comes from the spar
caps (similar approximation often used in I-beams). Furthermore, we
assume that the spar cap is thin relative to the airfoil thickness, which is
usually a good approximation, so that the moment of inertia about its own
center line is negligible. Using the parallel axis theorem, and multiplying
by two to account for both upper and lower surfaces, we estimate the box
beam moment of inertia as: I � 2(A/2)(t/2)2. Putting these terms together
gives:

σ �
2Mb

At
(8.2)
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Figure 8.7: Simplified representation of the box beam for the purposes of
estimating its moment of inertia about the neutral axis.

The mass of bending structural material in the wing is given by integrating
the area A of material across the span:

mbendin g �

∫
ρAdy (8.3)

where ρ is the density of the structural material. If we solve the stress
equation for A and plug it into this expression we find that the mass of
bending structural material can be estimated by the following expression:

mbendin g �

∫ 2ρMb

σt
dy (8.4)

If we further assume that the structure is as efficient as possible, and thus
every section is near its maximum stress (a constant), then the structural
bending weight of the wing is proportional to the local bending moment
over the local airfoil thickness.

mbendin g ∝
∫

Mb

t
dy (8.5)

This expression explains why a thicker airfoil generally results in a lighter
wing (if bending constrained). A thicker airfoil increases the moment of
inertia of the section, like separating the two ends of an I-beam, reduces
stress, and thus reduces the amount of material needed in the wing to
resist bending.
In conceptual design it can be useful to constrain

∫
Mb/t as a surrogate for

structural wing weight. The bending moment varies throughout the wing,
but the maximum is generally the root bending moment, which is the
bending moment at the root of the wing. Sometimes root bending moment
is used as a simpler surrogate for structural wing weight.
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Although root bending moment has been frequently used in past
aircraft conceptual design studies, its often a poor metric for wing
bending weight. One problem with root bending moment is that it
ignores airfoil thickness so that the optimal spans are far too large
(for a fixed area as span increases the chords shrink, and thus for
fixed airfoils the thicknesses shrink also). Root bending moment is
also especially problematic for nonplanar wings. A winglet canted
towards the root will not increase root bending moment at all, but
would of course increase wing weight.

Root bending moment is given by the integral of the lift distribution times
the moment arm from the root across the semispan (see the top of Fig. 8.8).

Mbr �

∫ b/2

0
yL′dy (8.6)

As you may recall from statics, we can always replace a distributed load
with an equivalent point load, at an appropriate location. We will call the
nondimensional distance along the semispan η (see the bottom half of
Fig. 8.8). Using the point load representation the root bending moment is
given by:

Mbr �
ηbL

4
(8.7)

Figure 8.8: The distributed load on a wing can always be represented
equivalently as a point load at some nondimensional distance η away from
the root.

The position η defines the location of the lift centroid, or the center of lift.
While we won’t perform the integral here, we can show that if we use an
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elliptic lift distribution for L′ then the analytic solution for η is:

ηelliptic �
4

3π
(8.8)

This means that the lift centroid is at about 42.4% of the semispan for an
elliptic lift distribution. If the lift centroid is further out, then the bending
moment increases.
For a given lift centroid position, there are an infinite number of possible
lift distributions. Of those infinite options, one has the lowest induced
drag. R. T. Jones derived what the best inviscid span efficiency is for a
given lift centroid position [1]:

einv ,max �
1

9
2π

2η2 − 12πη + 9
(8.9)

This function is plotted in Fig. 8.9. Again, it should be emphasized that
this equation does not predict what the inviscid span efficiency is for a
given lift centroid position, it predicts what the best possible inviscid span
efficiency is for a given lift centroid position.
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Figure 8.9: The highest possible inviscid span efficiency, for a given position
of the lift centroid η.

We can think of this figure as directly representing a tradeoff between drag
and weight. The peak of this curve is at η � 4/(3π) and corresponds to
einv � 1: an elliptic lift distribution. If we decrease η then we decrease the
bending moments in the wing, and thus the bending weight of the wing.
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However, we can see that we have to sacrifice some inviscid span efficiency
to make this happen, or in other words the induced drag will increase.
For a given wing weight, with fixed area (so that parasitic drag is roughly
constant), the optimal aerostructural lift distribution differs from the
aerodynamic optimum as seen in Fig. 8.10. As we learned in the Chapter 3
the minimum induced drag solution for a fixed span planar wing is an
elliptic wing. However, if we consider structures we can maintain the
same wing weight but lower drag by shifting the load distribution inboard
while simultaneously increasing the span. The resulting drop in inviscid
span efficiency is more than made up by the increase in span. The details
on what the optimal span increase and lift distribution is vary
considerably depending on the wing taper, critical structural altitude, stall
behavior, etc [2]. However, the general principle is that the aircraft
performance is usually improved by shifting the load inboard slightly to
allow for a higher span (or a lighter wing for a fixed span).

Figure 8.10: Comparison between aerodynamically optimum lift distribu-
tion and aerostructural optimum.

8.3 Flight Envelope Preliminaries

There are various ways to look at an aircraft’s flight envelope. We will look
at two. The first is referred to by various names including a placard speed
diagram, a doghouse plot, or just a flight envelope. Sometimes these
names refer to other types of diagrams. The plot we are interested in is
max/min true airspeed as a function of altitude. The second type of plot is
called a V-n diagram. This plot shows the max/min load factors as a

160



Chapter 8. Structures A. Ning

function of speed. Specifically we will look at the maneuvering envelope.
Before diving into the details we need to learn more about load factors and
airspeeds. The n in V-n is called the load factor. It is a ratio of the lift to the
weight of the aircraft:

n �
L
W

(8.10)

In steady level flight, the aircraft flies with lift equal to weight, or a load
factor of one (n � 1). Typically, load factors are expressed in “g’s”. For
example, n � 1 is a load factor of 1g, whereas n � 2 is a load factor of 2 g’s.
This phrasing is used because at n � 2, in the frame of the aircraft, objects
would appear to fall with an acceleration twice that of gravitational
acceleration (g). The same definition is used in turning flight (Section 7.6),
e.g., a 3g turn.2
The V in V-n refers to air speed. There are actually several different air
speeds that are used in connection with aircraft.

• True airspeed (TAS): the speed of the aircraft relative to the air. This is
what we usually think of as V∞.

• Ground speed: the speed of the aircraft relative to the ground. If there
is no wind then ground speed is equal to true airspeed.

• Equivalent airspeed (EAS): an equivalent airspeed at sea level that has
the same dynamic pressure the aircraft is currently flying at. We can
relate TAS and EAS with the following expression:

1
2
ρ(TAS)2 �

1
2
ρsl(EAS)2 (8.11)

where ρsl is the air density at sea level. Solving for EAS gives:

EAS � TAS
√

ρ

ρsl
(8.12)

The benefit of EAS is that for structural loading, we don’t care about
speed per se, but rather about the dynamic pressure. If the flight
handbook specified limits in terms of true airspeed then it would
need different speed limits for every altitude (or really for every
density). Alternatively, if we use equivalent airspeed to specify the
limits than those speeds apply no matter what altitude we fly at.

2From Eq. (7.58) we can see that in turning flight n � 1/cosφ.
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In an aircraft, airspeed is generally not measured directly anyway.
Instead dynamic pressure is measured using a pitot tube. From a
dynamic pressure (q) measurement one can compute the equivalent
airspeed:

EAS �

√
2q
ρsl

(8.13)

• Indicated airspeed: This speed (and the next one) are less important
for our discussion, but are mentioned here to be complete. A pitot
tube measures static pressure and total pressure and from those
measurements one can compute dynamic pressure. In an
introductory fluids class you learned that dynamic pressure is
simply the difference between those two pressures:

q � pT − p (8.14)

However, that is not true at high speeds where compressibility is
important. For compressible flow the dynamic pressure can be
computed from those two pressure measurements, but the formula
is more complex:

q �
γ

γ − 1
p

[(
pT

p

) (γ−1)/γ
− 1

]
(8.15)

An airspeed indicator reports the speed as estimated using the
difference in total and static pressure (and thus ignores
compressibility). The reason for this is that a pressure difference can
be measured with a purely mechanical device. The resulting speed
from an airspeed indicator, is called the indicated airspeed. With
modern air data computers, an airspeed indicator is less relevant,
though may be used as a backup system.

• Calibrated airspeed. Also less relevant to our discussion, but this is
indicated airspeed with instrumentation and position corrections
applied. For example, at higher angles of attack the pitot tube is not
in ideal alignment and will have additional error.

To summarize the different flight speeds: indicated airspeed uses a simple
difference in total pressure and static pressure. Indicated airspeed
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becomes calibrated airspeed when corrections to instrumentation and
position errors are applied. Calibrated airspeed becomes equivalent
airspeed, when compressibility is accounted for. Equivalent airspeed
becomes true airspeed when the local air density is used. True airspeed
becomes ground speed when the local wind is included.

8.4 Speed-Altitude Flight Envelope

In this section and the next we will use the equations and limits set for
transport category aircraft FAR Part 25.333, though the general principles
are applicable to other categories. We will only highlight the primary
considerations, the FARs provide many more requirements and details
needed for certification.
One speed that is defined in the FARs is VC or MC, the design cruising
speed or Mach number. It is intended to be the maximum cruising speed,
and is typically about 6% higher than a normal cruise speed because the
aircraft doesn’t usually cruise at max continuous power [3]. Note that
there are other requirements in the FARs related to adequate separation
from gust speeds.
Another specified speed in the FARs is VD or MD , the design dive speed or
Mach number. If no other information is supplied it must be 1.25 times VC.
However, the FARs allow for demonstration of a lower dive speed by
flying at 7.5◦ below the nominal flight path for 20 seconds then pulling up
at 1.5g. The speed increase from this type of maneuver is usually lower
than the maximum required, as is typically close to 1.15 times VC [3].
The flight envelope diagram shows true air speed on the x-axis and
altitude on the y axis (Fig. 8.11). The maximum speed is limited by VD or
MD and structural limitations. For commercial transports, typically a
design dive Mach number is specified because of compressibility drag
limitations. In the isothermal portion of the atmosphere that translates to
constant true air speed. However, at lower altitudes the temperature
increases towards the ground. Thus, the speed of sound increases, and for
a given Mach number, the true airspeed increases (blue curve in Fig. 8.11).
As the altitude decreases, this true airspeed would continue to increase,
and thus the dynamic pressure and resulting structural loads. However,
there is no need to fly as fast at such low altitudes, and so the maximum
dynamic pressure is constrained. This point is called the “knee” of the
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Figure 8.11: Anexampleflight envelope showing the rangeof true air speeds
allowed as a function of altitude.

From this point downward the speed is constrained at constant dynamic
pressure, or in other words constant equivalent airspeed. We can use
Eq. (8.11) to convert from EAS to TAS. As the density increases towards the
ground the resulting TAS decreases so as to maintain constant dynamic
pressure (red curve in Fig. 8.11).
The lower limit on speed is set by stall, and this we can compute simply
from its definition (Eq. (7.61)). As altitude is increased the density
decreases and so the stall speed increases. This is shown in the green
curve. Generally some stall margin is added in, and the curve is adjusted
at lower altitudes for flaps/slats. Finally the operational ceiling
(Section 7.4) sets a limit on the maximum altitude that can be flown (the
black curve). For aircraft that would fly at higher altitudes, like supersonic
transports, sometimes additional “knees” are added to the curve
otherwise the allowable speeds at sea level would be excessive.

8.5 V-n Diagrams

A notional V-n diagram is shown in Fig. 8.12. We will break down how
each part is created, but for now we start with an overview. On the x-axis
is the flight speed in equivalent airspeed. Recall, that EAS is more useful
than true airspeed for this type of diagram because it is a measure of
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dynamic pressure independent of altitude (always based on sea level
density). On the y-axis is the load factor. The region between the blue
curves defines our flight envelope. We can safely maneuver at any
speed/load factor within that region. The flight envelope is limited by
stall, maneuver limits, and gust limits.

Figure 8.12: A notional V-n diagram.

Let’s begin with stall. We are familiar with stall from previous chapters.
However, the type of stall we computed before is called the 1g stall (level
flight), whereas now we compute stall for various load factors. Recall that
the load factor is L/W . The maximum load factor that can be achieved
before stall is given by:

nmax �
Lmax

W
�

CLmax
1
2ρsl(EAS)2Sre f

W
(8.16)

Clearly, we cannot fly at a load factor higher than stall will allow (for a
given speed), even if structural damage was not an issue. The equation
above defines a quadratic curve as a function of EAS, and is plotted in
Fig. 8.13 for both positive and negative angles of attack. The relationship is
actually more complex as CLmax is a function of Mach number and
Reynolds number, but for this discussion we will treat it as a constant with
flight speed. The other important point to remember is that CLmax is not
the same for positive and negative angles of attack, hence the curves are
not symmetric about the x-axis.
The next limiting factor is maneuvers. As we saw in Fig. 7.4, maneuvers
like turning are going to increase our load factor. The FARs limit the
maximum allowable maneuver load factor:

nm ,max � 2.1 +
24, 000

W + 10, 000
(8.17)
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Figure 8.13: Stall limitations prevent higher load factors at low speeds.

where W is the maximum weight of the aircraft in lbs. The additional
instruction in the FAR is: “except that n may not be less than 2.5 and need
not be greater than 3.8”. Most commercial aircraft are large enough such
that their maximum maneuver limit load is 2.5. This limit load defines an
upper limit that intersects with the stall curve (Fig. 8.14). A factor of safety
of 1.5 is also applied in testing for ultimate loading, though not shown on
the diagram.

Figure 8.14: The regulations specify a maximum maneuver limit load.

Next, we cannot exceed the dive speed discussed in the previous section,
for the given altitude. Because we are plotting this in EAS, this limit
applies for the entire red part of the curve shown in Fig. 8.11, which is the
most critical. The blue part the curve in Fig. 8.11, would have a lower EAS.
We can see that VD limits the diagram on the right side as shown in
Fig. 8.12.
Finally, for negative maneuver limit loads the FARs state that the lower
limit may not be less than −1 at speeds up to VC and that it must vary
linearly with speed from the value at VC to zero at VD (Fig. 8.15).
The other structural consideration is gusts. A vertical gust can cause a
significant change in angle of attack and subsequently on load factors.
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Figure 8.15: The negative maneuver limit load is capped at −1, and has a
linear ramp from VC to VD .

However, the determining of critical gust loads is more complex as it
requires dynamic analysis and will not be covered here. More details are
in the FARs and in corresponding advisory circulars.
Once the complete V-n diagram is completed, we can identify the critical
points as shown in Fig. 8.16. The aircraft design must be shown to be safe
at these critical points (including the 1.5 factor of safety). The four corners
tend to stress all parts of the spar cap in tension and compression (in
different amounts) as shown in Fig. 8.17.

Figure 8.16: For structural testing/simulation we need to verify safety at
the extreme points (including safety factors).
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Figure 8.17: The extreme points of the V-n diagram stress different parts of
the spar cap in tension and compression.
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CHAPTER9

Rocket Fundamentals

We now turn our attention to rockets. Rockets are certainly different from
aircraft, but we will find that many of the principles we have learned will
transfer over with minor adaptations. In this chapter we discuss some
high-level principles and definitions related to rocket performance.

9.1 Types

Various types of rockets exist including chemical, nuclear, solar, electric,
etc. Chemical rockets are the most common and are the only ones we will
discuss in this book. The three primary types of chemical rockets include:
solid propellant, liquid propellant, and hybrid propellant. The propellant of a
rocket consists of fuel and an oxidizer.
A solid propellant rocket (Fig. 9.1), also called a solid rocket motor, uses a
solid mixture of fuel and oxidizer called the grain. The main advantages of
a solid propellant rocket are no moving parts enabling a simpler design,
the use of propellants that are usually stable enabling ease of storage and
handling, a compact design, and generally reduced costs. Their primary
disadvantage is that the burning rate must be determined beforehand
through its design (discussed below), and so it cannot be throttled. It also
can’t be shut off once ignited. Solid rockets also tend to have a lower
specific impulse (a measure of efficiency discussed later).
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Figure 9.1: Depiction of a solid rocket. Figure by Pbroks13, Wikimedia
Commons, CC BY-SA 3.0.

The grain can have a variety of shapes in order to create the desired thrust
profile. A few simple shapes are shown in Fig. 9.2. The mass flow rate, and
thus the thrust, is proportional to the burning surface area. So, for
example, the tube shape at the top of the figure increases in surface area as
it is burned making the thrust increase with time. This is called a
progressive burn. The star shape maintains a relatively constant surface
area, and thus constant thrust, in what is called a neutral burn. The last
example has a double anchor shape with decreasing surface area, and thus
decreasing thrust, in what is called a regressive burn.
These examples are simplistic—large solid rockets utilize much more
complicated shapes. For example, the space shuttle solid rocket boosters
used a combination of an 11-point star shape in the forward end and
double truncated cone shapes in the aft end. The thrust profile for these
boosters is more complex and is depicted in Fig. 9.3.
The highest stresses on the rocket occur when the dynamic pressure is
highest, a point referred to as max-q. As the rocket increases in altitude the
speed increases, but the density decreases creating a dynamic pressure
curve that starts out low at the ground, peaks, then decreases again at high
altitudes. For the space shuttle max-q occurs at about 10 km altitude.
Besides structural limitations, the drag is also highest at max-q and so it is
more efficient to wait to increase thrust until after this point has past. We
can now understand the reasoning behind the thrust profile in Fig. 9.3. It
is desirable to have high thrust at ignition, a reduction in thrust during the
high dynamic pressures, then an increase in thrust after max-q.
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Figure 9.2: A few simple shapes for solid rocket grain cores and notional
depictions of their corresponding thrust profiles over time.

Figure 9.3: Thrust profile for the space shuttle solid rocket boosters. Figure
from NASA, Wikimedia Commons, public domain.
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A liquid propellant rocket (Fig. 9.4), also called a liquid rocket engine, uses
pressurized liquid propellants. The advantages/disadvantages of a liquid
propellant rocket are basically just the opposites of a solid rocket. A liquid
rocket can be throttled as the flow rates of the fuel and oxidizer can be
adjusted or even stopped completely. However, the complexity (and
associated cost) is much higher as they often require a turbopump, high
pressures, and sometimes must be able to store cryogenic propellant.
Liquid propellants tend to be more difficult to handle and store as they
may be extremely toxic, highly reactive, and/or require cryogenic storage.
Liquids are also subject to cavitation and pogo, which is an unstable
feedback loop between thrust and flow rates.

Figure 9.4: Depiction of a liquid rocket. Figure by Nwbeeson, Wikimedia
Commons, CC BY-SA 3.0.

Hybrid rockets (Fig. 9.5) use a solid fuel with a liquid oxidizer (reverse
hybrids are also possible, which are a liquid fuel with a solid oxidizer).
The goal is to try to get the advantages of both solid rockets and liquid
rockets. A hybrid can be throttled and shut down, and is somewhat
simpler than a liquid rocket as less piping and values are required. The
main disadvantage is the mixing of a solid and liquid at burn time is less
reliable and is thus generally less efficient. Perhaps the best known
example of a hybrid rocket is that used on SpaceShipOne.

Figure 9.5: Depiction of the hybrid rocket motor used on SpaceShipOne.
Figure by Jack, Wikimedia Commons, public domain.
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9.2 Thrust and Efficiency (Specific Impulse)

Most rockets produce thrust in essentially the same manner: a pressurized
fuel/oxidizer mixture is combusted, and then thermodynamically
expanded through a nozzle to produce high exit velocities (Fig. 9.6).

Figure 9.6: A notional depiction of a chemical rocket. Figure from Duk,
Wikimedia Commons, CC BY-SA 3.0

Previously, we introduced the thrust equation (Eq. (6.20)), which is
repeated here:

T �((((((Ûm(Ve − V∞) + Ûm f Ve + (pe − p∞)Ae (9.1)

Most rockets are not designed for air to pass through as a working fluid so
the first term is zero. For simplicity the last two terms are often combined
leading to the definition of an effective exit velocity C.

T � Ûm f C (9.2)

where
C � Ve +

(pe − p∞)Ae

Ûm f
(9.3)

Typically, the Ûm f Ve term in the thrust equation is much larger than the
pressure term so that the effective exit velocity is not far off from the actual
exit velocity.
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Notice that because the first term is the thrust equation is zero, that the
thrust of a rocket is independent of flight speed. It is not, however,
independent of altitude. As we saw in Chapter 1, as altitude is increased
the atmospheric pressure decreases. This means that thrust increases with
altitude, with a typical increase of about 10–30% [1].
Recall also the definition of specific fuel consumption:

s f c �
Ûm f g
T

(9.4)

Rockets instead use the inverse of this expression and call it the specific
impulse (actually this is simplified assuming constant thrust and constant
mass flow rate as we will see shortly):

Isp �
T
Ûm f gsl

(9.5)

We can derive this by recalling the definition of an impulse (using thrust
as the force below):

I �
∫

Tdt (9.6)

The specific impulse then is impulse per unit weight of propellant.

Isp �

∫
Tdt

gsl
∫
Ûm f dt

(9.7)

We can see that for constant thrust and constant mass flow rate, the above
expression reduces to Eq. (9.8). We will use the simplified expression in
this book.
Although the acceleration of gravity varies, the definition of Isp uses a
constant reference value for g, the value at sea level, so that the specific
impulse can be specified independent of altitude. The units of specific
impulse are typically given in seconds, although it is not a measure of time
(it is thrust per weight flow rate). A higher value of Isp is better. If we use
the definition for thrust above (Eq. (9.2)) then we can relate specific
impulse and effective exhaust velocity:

Isp �
C
gsl

(9.8)

Thus, we can see that either Isp or C can be used as a measure of the
rocket’s propulsive efficiency.
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Usually specific impulse and thrust are inversely correlated for similar
reasons to the efficiency/thrust tradeoffs we studied in Chapter 6. A
launch vehicle with a chemical engine can produce a few million Newtons
of thrust and will have a specific impulse of a few hundred seconds.
Whereas a deep space probe with an ion thruster will produce only a tenth
of a Newton of thrust, but with a specific impulse in the thousands of
seconds.

9.3 Tsiolkovsky Rocket Equation

Consider the representation of a rocket shown in Fig. 9.7. Fuel is expelled
out the back of the rocket in order the accelerate the rocket. We can derive
an equation for the rocket acceleration using Newton’s second law:

F �
dp
dt

(9.9)

We will examine the change in momentum of the system, as well as the
external forces.

Figure 9.7: Depiction of a rocket where fuel is expelled to accelerate the
rocket.

The initial momentum of the system is:

pi � (m + dm)V (9.10)
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The final momentum of the system is:

p f � m(V + dV) − dm(C − V) (9.11)

Thus, the change in momentum per change in time is:

dp
dt

�
p f − pi

dt
� m

dV
dt
− C

dm
dt

(9.12)

The external forces acting on the rocket are primarily gravity and
aerodynamic drag. Putting these together using Newton’s law gives:

m
dV
dt
− C

dm
dt

� −m g − D (9.13)

For simplicity, in the following derivation we will neglect drag. Drag
varies through the rocket flight and so its impact would generally need to
be included numerically. This is usually a smaller term, so for this
first-order analysis we will neglect it:

m
dV
dt
− C

dm
dt

� −m g (9.14)

dV − C
dm
m

� −gdt (9.15)∫
dV −

∫
C

dm
m

� −
∫

gdt (9.16)

We now integrate during the the burn time of the rocket, approximating C
and g as constant during the time interval (neither is really constant so
using an average value would be more appropriate):

∆V � C ln
(

minitial

m f inal

)
− gtb (9.17)

where tb is the burn time. We can also express this equation in terms of a
fuel fraction to more closely parallel how we expressed structural
efficiency of an aircraft:

∆V � C ln
(

1
1 − mp/minitial

)
− gtb (9.18)

where mp is the propellant mass. In rockets a common nomenclature is to
use the mass ratio (MR), which is defined as the initial mass divided by the
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final mass1. Using the mass ratio, the rocket equation becomes:

∆V � C ln (MR) − gtb (9.19)

If the rocket is flying at an angle θ with respect to vertical, then only a
component of gravity acts to slow down the rocket, and so the equation is
modified as:

∆V � C ln (MR) − gtb cos θ (9.20)

These are all various forms of what is known as Tsiolkovsky’s rocket
equation.
This equation is kind of like the Breguet range equation for aircraft
performance as it combines various subsystem metrics into a high level
metric. The change in velocity ∆V is an important parameter for rockets
and is a function of propulsive efficiency (C), structural efficiency
(mp/minitial) and aerodynamic efficiency (drag is important but we
neglected it in this simplified formula because it requires knowing how
drag changes in time).
This equation gives insight into the magnitude of the challenge of
designing a rocket that can escape earth’s gravity. In order to get into low
earth orbit, accounting for gravity and drag, a ∆V of about 9 km/s is
required. Some of the most energetic rocket propellants have an effective
exhaust velocity (C) of 3–4 km/s. Using the rocket equation and solving
for mp/minitial reveals that in order to get into the low earth orbit the
rocket needs to be about 90% propellant! Orbital launch systems are
typically closer to 85% propellant as they make use of staging (discussed
in this next section), though this is still an amazingly high number.
Compare that to a commercial aircraft that has approximately a 45% fuel
fraction, or a car that has a fuel fraction of a few percent. This means the
structure of the rocket must be extremely efficient, and after the propellant
and structure there isn’t much room left for payload. Indeed, the payload
fraction (mass of payload / initial mass) of the Saturn V was only 4% and
that of the space shuttle was about 1.5%.
In Section A.3 this equation is integrated once more to estimate the change
in altitude:

∆h �

[
V0 + C

(
1 − ln(MR)

MR − 1

)
− 1

2
gtb cos θ

]
tb cos θ (9.21)

1In some texts, the mass ratio is defined as the inverse of this definition, so be careful!
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9.4 Staging

The purpose of most rockets is to deliver a payload. However, to get that
payload to its destination a lot of propellant and structure is required. The
primary mass components of a rocket are the structural mass (ms),
propellant mass (mp), and the payload mass (mpa yload).
As propellent is burned some of the structure is no longer necessary and it
is desirable to shed this structure to lighten the rocket. This is
accomplished with staging. A multi-stage rocket is depicted in Fig. 9.8.
Staging increases the altitudes that can be reached, in fact a single stage
rocket cannot reach orbit with current technology. Each stage might use
different types of motors optimized for the conditions it will be used in.
The downside of staging is added complexity, and some inefficiencies
associated with lifting extra motor weight for stages that will be used later.

Figure 9.8: Depiction of a two stage rocket broken down into propellant
mass (mp), structural mass (ms), and payload mass (mpa yload)

Using the example two-stage rocket in Fig. 9.8, the initial mass is given by:

minitial � mp1 + ms1 + mp2 + ms2 + mpa yload (9.22)

The mass ratio for stage one (initial over final mass) is:

MR1 �
minitial

minitial − mp1
(9.23)

Thus, the velocity change from stage one (ignoring losses from gravity for
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this example) is found by using Tsiolkovsky rocket equation:

∆V1 � gsl Isp ln(MR1) (9.24)

For the second stage the mass ratio is (recalling the the structure from
stage one will be discarded):

MR2 �
minitial − mp1 − ms1

minitial − mp1 − ms1 − mp2
(9.25)

The corresponding velocity change from stage two is:

∆V2 � gsl Isp ln(MR2) (9.26)

The total increase in velocity across both stages is simply their sum:

∆V � ∆V1 + ∆V2 (9.27)

We can perform a similar analysis to that just described, but repeated for a
range of stages. It turns out that the optimal scenario for a staged rocket, is
to design it so that each stage produces the same change in velocity (i.e.,
∆V1 � ∆V2 � . . .). If we assume optimal staging, and that each stage has
the same propellant fraction, we can compute an analytic expression for
the payload fraction that can be delivered [2].

payload fraction �

[
1 − 1

ζ
+

1
ζ

exp
−∆V

nIsp gsl

]n

(9.28)

where n is the number of stages, and ζ is the propellant fraction per stage
(identical for all stages).
As an example, let’s consider a rocket where each stage is 90% propellant
(optimistic), that the specific impulse of each stage is 350 seconds (towards
the high end for a chemical rocket), and that the required ∆V is 9 km/s
(low earth orbit). The results are shown in Fig. 9.9. Notice that one stage
cannot get to orbit, that the additional benefit decreases rapidly with each
additional stage, and that even in the best scenario no more than about 5%
of the rocket can be payload. The small additional benefits relative to the
increased complexity of adding stages, explains why the use of more than
three stages in a rocket is rare.
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Figure 9.9: Maximum payload that can be carried to orbit as a function of
the number of stages assuming optimal staging, 90% propellant per stage,
and an Isp of 350 seconds.

9.5 Stability

Roll, pitch, and yaw are defined the same as for an aircraft. In fact, not
much new needs to be said about rocket stability as the principle is the
same as for an aircraft. Namely that the center of gravity must be forward
of the aerodynamic center (and for a rocket, forward means above).
However, for a rocket the angle of attack is essentially always zero.
Because the angle of attack doesn’t really change, there is no real need to
distinguish between the aerodynamic center and the center of pressure
like there is for an airplane. Thus, when discussing rockets the stability
criteria is typically expressed as requiring the center of gravity to be above
the center of pressure (Fig. 9.10).
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Figure 9.10: A statically stable rocket has its center of gravity above the
center of pressure.
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CHAPTER10

Rocket Propulsion

It is rocket science! Rocket science isn’t a separate field per se, but is
primarily a combination of thermodynamics, compressible flow, and
chemistry. We will start with a review of some thermodynamic principles.
A comprehensive discussion of compressible flow is beyond our scope, but
we will learn some key principles and use some of the results. For those
interested, and that have a background in compressible flow, derivations
of the key equations are provided in appendices. Chemistry is beyond our
scope, and fortunately is not necessary for initial performance analysis.

10.1 Thermodynamics Review

We begin by reviewing some terms and concepts from thermodynamics.
These include equations of state, the first and second laws of
thermodynamics, specific heats, and isentropic relations.

10.1.1 Properties and Equations of State

We need to add a few additional fluid properties to those we have already
been using (p: pressure, ρ: density, T: temperature).

v: is the specific volume (volume per unit mass). It is not a new
quantity, just an alternative to density: v � 1/ρ.
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e: is the specific internal energy (internal energy per unit mass)

h: is specific enthalpy (enthalpy per unit mass) and is given by:

h � e + pv (10.1)

s: is specific entropy (entropy per unit mass)

The above quantities (including pressure, density, and temperature) are a
function of state. This means that these properties are related and if any
two of them are specified, all the others can be determined. For example:

e � f (p , T) (10.2)

or
h � f (e , v) (10.3)

and so on. These relationships are called equations of state.

I suspect this is part of the reason why compressible flow (rocket
science) is perceived as highly complicated. A given formula can
be expressed in a large variety of ways depending on the needs of
the current analysis. There are publications dedicated to tabulating
some of these variations (for example, this NASA publication). Don’t
be scared off by the apparent complexity. There is no need to learn
all the variations, rather if one understands the core relationships,
the important equations can be derived and rearranged to the form
needed.

The most well-known equation of state is the ideal gas law, which assumes
that intermolecular forces are negligible:

p � ρRT (10.4)

where R is the specific gas constant. The specific gas constant is related to
the universal gas constant Ru by:

R �
Ru

Mw
(10.5)

where Mw is the molecular weight of the particular gas (or gas mixture).
For aircraft we were only concerned with air so we just used the specific
gas constant, but for rockets the molecular weight will vary with the
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propellants so we need to start from the universal gas constant. The value
for the universal gas constant is:

Ru � 8.314 J
K mol

(10.6)

Its value was empirically determined, but it can also be derived from
statistical mechanics.

10.1.2 Laws of Thermodynamics

The first law of thermodynamics is:

de � δq + δw (10.7)

In words it says that for a closed system the change in internal energy is
equal to the sum of the heat added (δq) and the work done on the system
(δw). Heat and work use a inexact differential (δ rather than d) because
they depend on the path and not just the state. For a fluid, the work done
on a control volume is from pressure:

δw � −pdv (10.8)

Substituting into the first law gives:

de � δq − pdv (10.9)

The second law of thermodynamics states that for a closed system the
entropy does not decrease in time:

ds ≥
δq
T

(10.10)

where the equality holds only for an ideal reversible process. If we
substitute this expression into the first law of thermodynamics (Eq. (10.9))
we have Gibbs equation:

de + pdv − Tds ≤ 0 (10.11)
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10.1.3 Specific Heats

Specific heat is the amount of heat needed to raise the temperature of a
unit mass of a fluid by a unit degree:

C �
δq
dT

(10.12)

There are two specific heats. The specific heat at constant volume is

Cv �

(
δq
∂T

)
v

(10.13)

and the specific heat at constant pressure is:

Cp �

(
δq
∂T

)
p

(10.14)

We can simplify these into more useful expressions using state variables.
Recall the first law of thermodynamics, using the expression for work on a
fluid:

de � δq − pdv (10.15)

At a constant volume we can see that the last term vanishes and thus:(
δq
∂T

)
v
�

(
∂e
∂T

)
v

(10.16)

Substituting this into the definition for Cv gives:

Cv �

(
∂e
∂T

)
v

(10.17)

Similarly, we can use the definition of enthalpy:

h � e + pv (10.18)

differentiate:
dh � de + pdv + vdp (10.19)

then substitute into the first law of thermodynamics (Eq. (10.9)):

dh − vdp � δq (10.20)
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When we take partial derivatives at constant pressure the second term
vanishes so: (

δq
∂T

)
p
�

(
∂h
∂T

)
p

(10.21)

Thus, the specific heat at constant pressure is given by:

Cp �

(
∂h
∂T

)
p

(10.22)

The ratio of specific heats is:

γ �
Cp

Cv
(10.23)

We’ve already been using this quantity though its value is no longer 1.4 for
most propellants.
Further simplification can be made for thermally perfect gases. A thermally
perfect gas has specific heats that are functions of temperature only. One
example of a thermally perfect gas is an ideal gas. It can be shown that for
an ideal gas, the internal energy is a function of temperature only.1

e � e(T) (10.24)

By extension, the enthalpy is only a function of temperature:

h � e + pv (10.25)
� e + RT (10.26)
� e(T) + RT (10.27)

⇒h � h(T) (10.28)

If the internal energy and enthalpy are only functions of temperature then
the partial derivatives in the specific heat formulas become ordinary
derivatives.

Cv(T) �
de
dT

(10.29)

Cp(T) �
dh
dT

(10.30)

1This is also true for a mixture of ideal gases, as long as they are not chemically reacting.
Actually it is true for any equation of the state of the form v � f (p/T), with an ideal gas
being the important practical case.
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One further level of simplification is a calorically perfect gas. A calorically
perfect gas has specific heats that are constant (i.e., independent of
temperature). In that case, the above expression can easiy be integrated
yielding:

e � CvT (10.31)

h � CpT (10.32)

For reference, air behaves like a calorically perfect gas until about 1000 K,
and after about 2500 K it no longer behaves like a thermally perfect gas and
starts to chemically react. For detailed rocket design a chemically reacting
flow model should be used, but for conceptual design we can develop
reasonable initial models using calorically perfect gas assumptions.
From the definition of enthalpy, the ideal gas law, and the definition of γ,
we can show that for a calorically perfect gas:

h � e + pv (10.33)
CpT � CvT + RT (10.34)

Cp − Cv � R (10.35)

1 − 1
γ
�

R
Cp

(10.36)

Cp �
γR
γ − 1

(10.37)

Cv �
R

γ − 1
(10.38)

10.1.4 Isentropic Relationships

An isentropic flow is one that is both adiabatic and reversible. Adiabatic
means there is no heat or mass transfer (so only work can change the
internal energy). Isentropic means constant entropy. It is an idealized
state, though often a good approximation for the flow in a rocket nozzle
after combustion.
We start with Gibbs equation (Eq. (10.11)) and assume isentropic flow
(ds � 0). Note also that the equality holds because isentropic flow is
reversible:

de
T

+
Pdv

T
� 0 (10.39)
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Using the definition of Cv for a calorically perfect gas (Eq. (10.31)) and the
ideal gas law:

Cv
dT
T

+ R
dv
v

� 0 (10.40)

Integrating both sides from state 1 to state 2 gives:

Cv ln T2
T1

+ R ln v2
v1

� 0 (10.41)

If we express Cv in terms of R (Eq. (10.38)) we have:

1
γ − 1

ln T2
T1

+ ln v2
v1

� 0 (10.42)

ln
(

T2
T1

)1/(γ−1)
+ ln v2

v1
� 0 (10.43)

ln
(

T2
T1

)1/(γ−1)
� − ln v2

v1
(10.44)

ln
(

T2
T1

)1/(γ−1)
� ln

ρ1

ρ1
(10.45)(

T2
T1

)1/(γ−1)
�
ρ1

ρ1
(10.46)

(10.47)

We can derive a similar expression for pressure if we replace the internal
energy with enthalpy in Gibbs equation. The end result is the isentropic
relationships:

p2

p1
�

(
ρ2

ρ1

)γ
�

(
T2
T1

)γ/(γ−1)
(10.48)

10.2 Compressible Flow Primer

Compressible flow is a deep subject spanning a course or two of its own.
While we can’t hope to cover much, we will introduce some fundamental
principles required to understand rocket behavior.
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10.2.1 Energy Equation

The energy equation for a fluid flow in differential form is given by:

ρ
∂hT

∂t
+ ρ ®V · ∇hT �

∂p
∂t

+ ρ Ûq (10.49)

where hT is called the total enthalpy (kind of like total pressure):

hT � h +
V2

2
(10.50)

If the flow is steady then the time derivative terms are zero, and if
adiabatic then Ûq � 0. This leaves:

®V · ∇hT � 0 (10.51)

which means that the total enthalpy is constant along streamlines. For a
rocket the flow through the nozzle all comes from one reservoir so all the
streamlines have the same total enthalpy, and thus total enthalpy is
constant everywhere in the flow:

h1 +
V2

1
2

� h2 +
V2

2
2

(10.52)

If heat is added between point 1 and 2 the equation can be modified as:

h1 +
V2

1
2

+ q � h2 +
V2

2
2

(10.53)

10.2.2 Area Velocity Relationship

In all of our nozzle analyses we will make use of the quasi-1D assumption
illustrated in Fig. 10.1. The x direction follows the centerline of the nozzle.
Each cross section is circular, and, in general, fluid properties (such as
density) vary throughout the cross section as a function of y and z.
However, if we use area-averaged properties:

ρ̄(x) � 1
A(x)

∫
ρ(x , y , z)dydz (10.54)

then we can treat the flow as one dimensional (only varying in the x
direction). We will drop the overbars for convenience with the
understanding that all fluid properties are area averaged.
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x

⇢(x, y, z)

⇢̄(x)

Figure 10.1: Fluid properties vary across each cross section, but if we use
area averaged properties we can treat the flow as one-dimensional. This is
called a quasi-1D assumption.

For a 1-dimensional flow, in additional to an energy balance that was
discussed in the previous section, we must also apply a mass and
momentum balance. A mass balance yields:

ρVA � const (10.55)

or equivalently
d(ρVA)

dx
� 0 (10.56)

An inviscid momentum balance yields (inviscid is a good approximation
outside of a very thin boundary layer, which could be thought of as a
slight reduction in the outer wall dimensions):

ρV
dV
dx

+
dp
dx

� 0 (10.57)

Combining the mass and momentum balance, and using the definition for
the speed of sound give the following equation:

(M2 − 1) 1
V

dV
dx

�
1
A

dA
dx

(10.58)

This is an illuminating equation that will give us some insight into the
behavior of compressible flows. As an example, let’s consider a diverging
nozzle (Fig. 10.2). For a diverging nozzle dA/dx is positive, and A is
always positive, so the entire right hand side of the equation is positive.
The velocity V is also positive. There are three possibilities for the Mach
number:
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Figure 10.2: A diverging nozzle

• Subsonic (M < 1): In this case the term in parenthesis is negative and
so dV/dx must also be negative. This is the behavior that is familiar
from an introductory fluids class: as the nozzle diverges the fluid
must slow down.

• Supersonic (M > 1): Now the term in parenthesis is positive and so
dV/dx must also be positive. This gives the perhaps surprising result
that a supersonic flow must accelerate through a diverging nozzle.

• Sonic (M � 1): Now the term in parenthesis is zero. This means that
dA/dx � 0, which implies that the area is a maximum or a minimum
in the nozzle. While either is possible mathematically, physically
only the minimum area solution is possible. The implications of this
will be discussed in more detail shortly.

The opposite behavior occurs for a converging nozzle (dA/dx < 0). For
subsonic flow the behavior is the familiar one: acceleration in a converging
nozzle, and deceleration in a diverging nozzle. However, for supersonic
flow the behavior is opposite: deceleration in a converging nozzle, and
acceleration in a diverging nozzle. While that may seem strange, it is just a
consequence of a mass and momentum balance. It is fortunate as this
behavior is what makes a nozzle work for propulsion.
Consider the converging-diverging nozzle shown in Fig. 10.3. An initially
subsonic flow will accelerate through the converging portion. If the speed
is high enough then the flow will become sonic at the throat and in the
diverging portion the flow will be supersonic and thus will continue to
accelerate through the diverging portion. Thus, the fluid can be
continuously accelerated through the nozzle and this is why rocket
nozzles are shaped the way they are.
Recall that we found that M � 1 can only occur at dA/dx � 0, or in other
words where the area is a minimum. Such a point is called the throat of a
nozzle. It is important to note that the presence of a throat does not mean
the flow is necessarily sonic. It means that if there is a sonic point, it must
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occur at the throat. A throat with a Mach number of 1 is said to be choked.
The reason is that, as discussed in Section 3.5, information in a supersonic
flow cannot travel upstream. So regardless of how the pressure decreases
downstream, the flow upstream of the throat cannot change and is said to
be frozen. The mass flow rate through the nozzle cannot increase any
further.

Figure 10.3: A converging-diverging nozzle with sufficient pressure ratio to
achieve supersonic flow.

Finally, we need to discuss the exit conditions of a nozzle. For subsonic
flow the exit pressure must equal the ambient pressure. For supersonic
flow this is no longer true. Again, in a supersonic flow information cannot
travel upstream, so the flow inside a nozzle with supersonic exit speeds
cannot know about the ambient pressure. In other words the exit pressure
is determined by the nozzle conditions and not the exterior atmosphere.
For a supersonic nozzle (i.e., most rockets) there are three exit possibilities
(Fig. 10.4). The exit pressure can be less than, equal to, or greater than the
atmospheric pressure. If the exit pressure is greater than atmospheric then
the nozzle is said to be underexpanded. The plume will expand quickly
once it exits the nozzle. Once in space, or high altitudes, where the
atmospheric pressure is essentially zero, the rocket will always be
underexpanded. This behavior can be seen in the exhaust plume of the
Saturn V rocket shown in Fig. 10.5.
If the exit pressure is equal to atmospheric pressure, then the rocket is
ideally expanded. This is the most efficient mode of operation for the rocket.
As this condition will generally only occur for one altitude, the rocket is
usually designed so that this occurs just after max-q where high thrust can
be used most efficiently. The last case occurs when the exit pressure is less
than atmospheric, and is said to be overexpanded. In this case the plume
will contract to compress the gas. This is typical behavior at low altitudes
where the atmospheric pressure is high (see here for example).
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Figure 10.4: Three types of exit conditions for a nozzle with supersonic
Mach numbers at the exit. Figuremodified fromone byHohum,Wikimedia
Commons, public domain.

Figure 10.5: Exhaust plume of SaturnV rocket in flight. Picture fromNASA,
Wikimedia Commons, public domain.
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10.3 Nozzle Sizing

In the following discussion we will use the nozzle shown in Fig. 10.6. The
subscript c refers to after combustion, t to the throat, and e to the exit.

Figure 10.6: A notional nozzle depicted station 1 upstream of combustion,
station c after combustion, station t at the throat, and station e at the exit.

The analyses of this chapter use what is called an ideal rocket. Some of the
assumptions of an ideal rocket include: adiabatic outside of the
combustion chamber, isentropic outside of the combustion chamber,
calorically perfect ideal gases, chemical equilibrium, and no shock waves.
These assumptions are more reasonable than they may seem at first, are
accepted practice for initial design, and predict actual measured
performance within about 1–6% [1]. For detailed design, correction factors
or thermochemical analyses are used.
The analyses of this section require a background in compressible flow. As
that background is not expected at this stage, all of the derivations are
placed in Section A.4 and only the results are discussed in this chapter. In
the following equations we will also make the assumption that the Mach
number in the combustion chamber is negligibly small so that total
quantities are equal to static quantities. This error is small (quantified in
the appendix), and is a typical assumption for initial rocket design. The
assumption is not necessary if the concept of total pressure and total
temperature for a compressible flow is understood, but the level of error
doesn’t justify further diversion.

10.3.1 Exit Velocity

As derived in Section A.4.1, the exit velocity of a rocket can be estimated as:

Ve �

√√√
2γ
γ − 1

Ru

Mw
Tc

[
1 −

(
pe

pc

) (γ−1)/γ]
(10.59)
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where Tc is the temperature in the combustion chamber and pe/pc is the
pressure ratio from combustion to exit. We see that for high exit velocity it
is desirable to have a high combustion temperature and a low molecular
weight for the propellants. The pressure ratio and the ratio of specific
heats (γ) play a less significant role. Solid rockets have a lower exit
velocity as they have both a relatively high molecular weight and a lower
combustion temperature. They partially make up for that deficiency with
a higher mass flow rate (recall that thrust is the product of mass flow rate
and effective exit velocity). However, overall solid rockets tend to be less
efficient.

10.3.2 Throat Size

The throat must be large enough for the required mass flow rate. As
derived in Section A.4.2 the smallest throat area to sustain a given
propellant mass flow rate ( Ûm f ) is given by:

At �
Ûm f

pc

√√
RuTc

Mwγ

(
γ + 1

2

) γ+1
γ−1

(10.60)

where pc , Tc is the pressure and temperature in the combustion chamber.

10.3.3 Combustion Chamber Sizing

Next, we need to determine how large the combustion chamber should be
relative to the throat (Fig. 10.7). In Section A.4.3 we derive the total
pressure loss that occurs in the combustion chamber as a function of the
area ratio between the combustion chamber and the throat. This function
is plotted in Fig. 10.8.

Figure 10.7: Depiction of crossx-sectional area of combustion chamber (Ac)
and cross-sectional area of throat (At).
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Ideally the total pressure ratio is one, which means there is no total
pressure loss. A smaller total pressure ratio means there is more entropy,
decreased efficiency, and less thrust. We can see that as the combustion
area (relative to the throat area) becomes larger that the total pressure ratio
approaches one. As that area ratio becomes larger then the flow can
accelerate to Mach one at the throat from a slower initial Mach number in
the combustion chamber. A lower Mach number in the combustion
chamber will experience less total pressure losses. However, the tradeoff is
that making the combustion chamber larger adds more weight and drag.
From the figure we can see that there are diminishing returns, and that the
results are relatively insensitive to the propellant (γ of 1.1 and 1.6 covers a
reasonable range of propellants). Based on these tradeoffs, most rockets
settle on an area ratio of about three (Ac/At � 3).

Figure 10.8: Total pressure ratio across combustion chamber for different
propellantmixtures as a function of the combustion chamber cross-sectional
area relative to the throat area.

10.3.4 Exit Area Sizing

The remaining cross-sectional area to determine is the exit area.
Determining the ratio of the exit area relative to the throat area is one of
the most critical parameters for rocket nozzle design. It is called the nozzle
expansion ratio and is important enough that it has its own symbol:

ε �
Ae

At
(10.61)
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In Section A.4.4 we derive how the thrust coefficient of the rocket varies as
a function of nozzle expansion ratio. This relationship is plotted in
Fig. 10.9, where the thrust is normalized by total pressure in the
combustion chamber and the area of the throat. The figure shows that a
propellant mixture with low γ is desirable, and that large expansion ratios
are necessary for high thrust. As a reference, the space shuttle main
engines have a large expansion ratio of 77 (Fig. 10.10).

Figure 10.9: Thrust coefficient of a rocket as a function of the nozzle expan-
sion ratio for two different propellants.

As discussed in the last section, ideal performance occurs when the exit
pressure equals the atmospheric pressure pe � p∞. If we determine the
design altitude where we want to optimize performance (generally just
after max-q) then we can determine the pressure ratio pc/pe required
assuming ideal expansion at our design altitude (pe � p∞). Then, as
derived in Section A.4.4 the Mach number at the exit can be determined
from this pressure ratio by:

Me �

√√√√√
(

pc

pe

) γ−1
γ

− 1
 2
γ − 1

(10.62)

The requisite expansion ratio to achieve that exit Mach number is then
given by:

ε �
Ae

At
�

1
Me

[
2

γ + 1

(
1 +

γ − 1
2

M2
e

)] (γ+1)
2(γ−1)

(10.63)
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Figure 10.10: Space shuttle main engine. Picture from NASA, Wikimedia
Commons, public domain.

We have now determined all the requisite cross-sectional areas of the
nozzle, and now need to determine the lengths/shapes of the nozzle.

10.4 Lengths

A notional nozzle with typical convergence and divergence angles is
shown in Fig. 10.11. The acceleration of the subsonic flow through the
converging section is relatively insensitive to the length or nozzle shape.
Thus, these parameters are less important for initial design, and a typical
angle of 60◦ will be assumed.
The performance of the nozzle is much more sensitive to the shape of the
diverging section. Ideally, the exit angle (15◦ in Fig. 10.11) should be small
so that streamlines are relatively straight and flow separation does not
occur. However, the smaller the exit angle then the longer the nozzle has
to be to reach the desired exit area and the more weight that is added.
The divergence of the nozzle also causes a loss in the exit velocity and thus
in the thrust. For a conical nozzle, if the streamlines were to remain
straight then the exit area would be the red projected area shown in
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Figure 10.11: Typical equivalent angles for the converging and diverging
portions of a rocket nozzle. Figure adapted fromHorsePunchKid, Wikime-
dia Commons, CC BY-SA 3.0.

Figure 10.12: Depiction of the increase in area normal to the streamlines
caused by flow divergence.
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Fig. 10.12, which is:
Astrai ght � πr2 (10.64)

However, because the streamlines must diverge to follow the conic shape,
the actual exit area is the spherical shape shown in blue. Its area can be
found from integrating in spherical coordinates as:

Aspherical � 2πR2(1 − cos θ) (10.65)

Because this area is larger, for a given mass flow rate, the exit velocity is
less than the ideal case and thus the thrust is reduced. We can calculate
exactly how much the thrust is reduced by computing the area ratio
between these two scenarios.

λ �
Astrai ght

Aspherical
�

πr2

2πR2(1 − cos θ) (10.66)

From the figure we see that sin θ � r/R. Thus:

λ �
sin2 θ

2(1 − cos θ) (10.67)

If we use the trig identity sin2θ + cos2 θ � 1 and simplify we have the
divergence loss factor:

λ �
1 + cos θ

2
(10.68)

where θ is the exit angle. This factor is plotted in Fig. 10.13. We see that an
exit angle of 15◦ corresponds to about a 2% loss in thrust.2 However, this is
not the primary limiting factor. After 20◦ flow separation becomes
increasingly likely. Typical, nozzles have exit angles between
approximately 12◦–18◦ [1].
For a conical nozzle, if we know the angles shown in Fig. 10.11 and the
areas of the ends, then from geometry we can compute the requisite
lengths. The length of the converging section is:

Lcon �
rc − rt

tan θcon
(10.69)

and the length of the diverging section is:

Ldiv �
re − rt

tan θdiv
(10.70)
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Figure 10.13: Plot of the reduction in the exit velocity as a function of the
spreading angle in the diverging section of a nozzle.

Conical nozzles are simple, but they are not the most efficient. The most
commonly used shape for rocket nozzles, is the bell (or Rao) nozzle. This
shape is optimized to minimize total pressure losses and direct the flow so
that streamlines are nearly parallel at the exit. The length of a bell nozzle is
typical defined relative to a conical nozzle with a 15◦ exit angle. For
example, an 80% bell nozzle means that it has 80% of the length of a 15◦
conical nozzle with the same area ratios (Fig. 10.14). Length in this case
refers to the distance from the throat to the exit.

Figure 10.14: The length of a bell nozzle is referenced to a 15◦ conical nozzle,
with the same area ratios.

2Actually this term should only be multiplied against the actual exit velocity (first term
in Eq. (9.1)), rather than the total thrust, but this is a small difference.
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The length of the combustion chamber is more variable and is generally
based on past designs. However, as a estimate one can use the
characteristic mixing length defined as:

L∗ �
Vc

At
(10.71)

which is the ratio of the volume of the combustion chamber to the area of
the throat. A typical value for L∗ is 0.8–3.0 m [1]. However, this provides
only a rough guideline to sizing as proper combustion chamber sizing
depends on the pressure, propellant, etc.
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CHAPTER11

Orbital Mechanics

Orbital mechanics is the study of the motion of spacecraft or rockets in
space. Aerodynamics has little to no role here—gravity is the main force at
work. The study of orbital mechanics usually encompasses a full semester.
In this chapter we will only hit a few highlights to give a flavor of the topic.

11.1 Gravity

Newton’s equation for the gravitational force between two objects is given
by:

F �
GMm

r2 (11.1)

where r is the distance between the objects, M and m are the masses of the
two objects, and

G � 6.674 × 10−11 Nm2

kg2 (11.2)

is the universal gravitation constant. We use the notation of capital M and
lowercase m, because for our application one mass is usually large (e.g.,
earth, or another celestial body), and the other mass is comparatively small
(e.g., a spacecraft).
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In vector form the equation is expressed as:

®F � −GMm
r2 r̂ (11.3)

which shows that the gravitational force acts along the line joining the
center of gravity of the two objects (r̂). The negative sign is necessary
because the force is attractive (opposite the direction of r̂). Newtonian
gravitation, and other aspects of classical physics, have been supplanted
by Einstein’s general theory of relativity, however the extra accuracy of
general relativity is negligible for our applications and so we will stick
with the classical theory of gravity.
Gravity is a conservative force, or in other words it is path independent.
This means that only the relative positions between two objects matter. In
contrast, friction is path dependent and so is a nonconservative force. For
a conservative force we can define an associated potential function and a
potential energy. Potential functions are useful because they reduce a
three-dimensional vector function (e.g., force of gravity) into a
one-dimensional scalar function (e.g., gravitational potential energy). The
potential energy that a body of mass m experiences in a gravitational field
created by M is:

U � −GMm
r

(11.4)

Notice that the potential energy is negative and approaches zero as you
move infinitely far away from the object (r →∞). The form of potential
energy gives rise to the concept of gravity wells. As r becomes small the
potential energy becomes highly negative like falling into a well (until you
reach the surface of the object). A gravity well is depicted in Fig. 11.1. This
concept can help us understand why it takes a lot of energy to leave the
earth and reach to the moon, but not nearly as much energy on the return
trip. For example, Fig. 11.2 shows the potential energy of a 1,000 kg
spacecraft as it approaches the earth and the moon. Because the earth is
over 80 times more massive than the moon it has a much deeper gravity
well.
For our applications usually one of the bodies is earth and so it is often
convenient to combine G and M into one number where Me is the mass of
the earth:

µe � GMe � 3.986 × 1014m3

s2 (11.5)

204



Chapter 11. Orbital Mechanics A. Ning

Figure 11.1: Gravitational potentialwell around auniformlydense spherical
body. Figure from AllenMcC, Wikimedia Commons, CC BY-SA 3.0.

Figure 11.2: Potential energy of a 1,000 kg spacecraft as it approaches earth
and the moon. The energy is truncated once the radius of the body is
reached.
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This parameter is called the geocentric gravitational constant. The effective
mean radius of the earth is

Re � 6, 371 km (11.6)

Thus, an object on the surface of the earth experiences a force:

F �
GMe m

R2
e

(11.7)

For applications near the surface of the earth we typically lump all of the
constant values into the acceleration of gravity g:

F � m g (11.8)

where
gsl �

GMe

R2
e

(11.9)

Note, that using the values specified above will give a value that is close to
but not exactly the same as the standard gravity value: g � 9.80665 m/s2.
There are various factors that cause the discrepancy, but one is that the
earth is not perfectly spherical and so the “radius” of the earth is not
exactly well defined.
Often we need the acceleration of gravity at other locations besides at sea
level. We can always go back to Newton’s law of gravity to compute the
acceleration, but it is often convenient to perform the computation relative
to the acceleration of gravity at sea level. Using the same form as Eq. (11.9)
we can compute g for any altitude:

g �
GMe

(Re + h)2 (11.10)

where for convenience we have defined the radius of interest relative to the
radius of the earth. If we combine this equation with Eq. (11.9) we have:

g � gsl
R2

e

(Re + h)2 � gsl
1

(1 + h/Re)2
(11.11)

where the altitude h is zero starting from the radius of the earth. Note that
even at low earth orbit (about 2,042 km above the surface of the earth) the
acceleration of gravity is still significant (about 57% of the acceleration of
gravity at sea level).
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The concept of potential energy is convenient in answering many basic
orbital mechanics questions. For example, what is the escape velocity from
the surface of the earth? The escape velocity is the minimum speed needed
for a projectile object (no additional thrust after launch) to completely
escape from the gravitational influence of some body. From conservation
of energy we can equate an initial state where both potential and kinetic
energy exists, to a final state infinitely far away. If infinitely far away the
potential energy is zero, and if we are after the minimum speed to get
there then the final kinetic energy is zero:

1
2

mV2
escape −

GMe m
Re

� 0 (11.12)

We can now solve for the escape velocity (using values for the earth):

Vescape �

√
2GMe

Re
� 11, 186 m/s or 25,020 mph! (11.13)

Actually, the rotation of the earth (465 m/s at the equator) can reduce the
required speed a little if the launch is to the east in the direction of earth’s
rotation. This is why most rocket launch facilities are located close to the
equator where the surface rotation speed is largest, and in a location where
ocean is to the east. Escape velocity really corresponds to a projectile (the
speed required to launch an unpowered object into space), and so doesn’t
exactly represent the speed a rocket must obtain at launch. However, the
same energy balance can be used to estimate the ∆V required to obtain a
desired orbit, like the 9 km/s to low earth orbit that we used in Chapter 9.
Using the force of gravity we can answer the question: what velocity is
necessary to maintain a circular orbit? When in a circular orbit the force of
gravity is a centripetal force:

GMm
r2 �

mV2
orbit

r
(11.14)

Solving for the velocity required to maintain a circular orbit:

Vorbit �

√
GM

r
(11.15)

Notice that the orbit velocity is exactly a factor of 1/
√

2 less than (or about
71% of) the escape velocity for a given radius.
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11.2 Orbits

We are primarily interested in the motion of one object around another
(e.g., a spacecraft around the earth). If the only force acting on these
objects is gravity, then the scenario is called the two body problem. For
two-body problems we can derive the orbit equation that describes all
possible trajectories.
The orbit equation can be derived from Newton’s laws of motion but the
vector math is fairly complex and it is easier (mathematically) to derive
from an energy perspective using Lagrange’s equation. Lagrange’s
equation may be unfamiliar to you, but it is commonly used in analyzing
complex dynamic systems. Lagrange’s equation defines the Lagrangian
function L as:

L � T −U (11.16)

where T is the kinetic energy and U is the potential energy. Lagrange’s
equation is:

d
dt

(
∂L
∂ Ûxi

)
− ∂L
∂xi

� 0 for i � 1, . . . n (11.17)

where xi are generalized coordinate directions.
In the following we will take the perspective of finding the motion of mass
m relative to mass M (which is usually what we want when M is large).
We already know that the potential energy of mass m is:

U � −GMm
r

(11.18)

we now just need its kinetic energy. In cartesian coordinates the kinetic
energy of mass m is (assuming motion in a plane, which is the case for the
two-body problem):

T �
1
2

m( Ûx2
+ Ûy2) (11.19)

Because we have used r in the previous equation it will be convenient to
define the kinetic energy in polar coordinates instead:

T �
1
2

m( Ûr2
+ (r Ûθ)2) (11.20)

Now we can form the Lagrangian:

L �
1
2

m( Ûr2
+ (r Ûθ)2) + GMm

r
(11.21)
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We have two coordinates: r and θ so we need to apply Lagrange’s
equation twice. First, we take derivatives with respect to θ:

d
dt

(
∂L
∂ Ûθ

)
− ∂L
∂θ

� 0 (11.22)

d
dt

(
mr2 Ûθ

)
� 0 (11.23)

This equation simply says that the angular momentum of the object
(mr2 Ûθ) is constant, which we already know to be true as there is no
external torque applied to the system.
The second equation uses Lagrange’s equation with our other coordinate r:

d
dt

(
∂L
∂ Ûr

)
− ∂L
∂r

� 0 (11.24)

d
dt
(m Ûr) − mr Ûθ2

+
GMm

r2 � 0 (11.25)

m Ür − mr Ûθ2
+

GMm
r2 � 0 (11.26)

Ür − r Ûθ2
+

GM
r2 � 0 (11.27)

(11.28)

Notice that the mass of the spacecraft (m) cancelled out. This is a
differential equation, with derivatives of both r and θ, that can be used to
describe the motion of the spacecraft. However, we can simply this
expression further by recalling from Eq. (11.23) that the angular
momentum is constant. As is convention, we define the the angular
momentum per unit mass:

h � r2 Ûθ (11.29)

The differential equation then simplifies to one only in terms of r:

Ür − h2

r3 +
µ

r2 � 0 (11.30)

where h, and µ � GM and both constants.
This differential equation has an analytic solution:

r �
h2/µ

1 + e cos(θ − θ0)
(11.31)
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where θ0 is a phase angle, and e is the eccentricity which can be exprsesed
as [1]:

e �

√
1 + 2

(
h
µ

)2 (T −U)
m

(11.32)

It turns out the orbit equation r(θ) is exactly of the same form as a conic
section in polar coordinates. What this means is that there are only a few
different possible trajectories for the spacecraft:

• If T < U the orbit shape is an ellipse

• If T � U the orbit shape is an parabola

• If T > U the orbit shape is an hyperbola

These three scenarios are visualized in Fig. 11.3. The parabola is just a
boundary case separating bounded orbits (ellipse) from unbounded orbits
(hyperbola). A circular orbit is the limiting case of an ellipse where the
eccentricity (e) is zero. Note that eccentricities cannot be negative.

Figure 11.3: The possible orbits for a two body problem.

The unknown constants h and e and θ0 can be determined from the
burnout conditions of the spacecraft. After burnout, the spacecraft is
unpowered and follows the path described by the orbit equation, at least
until there is another powered trajectory adjustment. Consider the
scenario depicted in Fig. 11.4. At burnout we need to know the radius
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Figure 11.4: Variables used to determine trajectory based on conditions at
burnout (end of powered phase).

from the center of the earth (or whatever object we are orbiting), the
latitude (θb), the speed (Vb), and any angle offset from the local horizon
(βb). From these parameters we can then compute the angular momentum
(which depends only on the perpendicular component of velocity because
it is a cross product):

h � r2 Ûθ � rVθ � rbVb cos(βb) (11.33)

the eccentricity (using Eq. (11.32)), and the phase angle by solving the
orbit equation for θ0:

θ0 � θb − cos−1
[(

h2

µrb
− 1

)
1
e

]
(11.34)

Figure 11.5 shows an example elliptical orbit around the earth, with the
parameters used defined in the caption.
Elliptical orbits (with circular as a special case) are the most common so
we will dive into elliptical orbits a bit deeper. The point of closest
approach during the orbit is called the periapsis (or perigee if the body being
orbited is earth), and the point on the orbit furthest away from M is called
the apoapsis (or apogee if orbiting earth). We have already showed that the
angular momentum is constant so that the quantity rVθ is constant
throughout the orbit. This means that the orbiting object is traveling
fastest at periapsis, and slowest at apoapsis.
More generally, we can compute the velocity at any point in the orbit
though it takes a bit more work to derive. We know that the total energy of
the orbit is conserved (written per unit mass below, since mass is constant):

V2

2
−
µ

r
� ε (11.35)
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Figure 11.5: An example orbit around the earth (in black) for an object with
a burnout speed of 9 km/s, and an altitude of 800 km above the earth, a
latitude of 30◦ and an inclination angle (β) of 5◦.

where ε is some unknown constant. In order to find a value for ε we just
need to evaluate the energy at some location where the energy state is
known. To do this, we will first evaluate the orbit equation at periapsis (rp)
and apoapsis (ra), where we will choose the phase angle to be zero (it can
be chosen arbitrarily) with periapsis at 0◦ and apoapsis at 180◦. The result
is:

rp �
h2/µ
1 + e

(11.36)

ra �
h2/µ
1 − e

(11.37)

Evaluating the energy equation at rp gives (after simplification):

ε � −
µ2

2h2 (1 − e2) (11.38)

This expression applies to any orbit (not just elliptic) because we evaluated
at periapsis and all of the orbits have a point of closest approach.
In the case of the ellipse we can simplify this using the geometry of an
ellipse. If we call the semimajor axis a then by definition:

2a � rp + ra (11.39)
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and using the definitions in Eqs. (11.36) and (11.37) and simplifying gives:

a �
h2

µ(1 − e2) (11.40)

Next, we substitute this value into the total energy (Eq. (11.38)) to give:

ε � −
µ

2a
(11.41)

which shows that the total energy of an ellipse is always negative as
expected. Plugging this into Eq. (11.35) gives:

V2

2
−
µ

r
� −

µ

2a
(11.42)

Finally, we can solve this for V to compute the speed at any point in the
elliptical orbit as a function of r:

V �

√
µ

(
2
r
− 1

a

)
(11.43)

Figure 11.6 illustrates the parameters that appear in this equation.

Figure 11.6: Depiction of the semimajor axis and velocity along the robit as
a function of radius.

For the case of a circle a � r and the expression simplifies to V �
√
µ/r,

which we found already in Eq. (11.15). As an aside: for a parabolic orbit we
know that the kinetic energy equals the potential energy so we can solve
for the velocity in a parabolic orbit as a function of r giving V �

√
2µ/r.

This is the escape velocity (Eq. (11.13)). Thus, another interpretation of the
escape velocity is the speed needed to reach a parabolic trajectory.
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11.3 Hohmann Transfer

We often would like to move the spacecraft from one orbit to another. For
example, Fig. 11.7 depicts the starting orbit of a spacecraft, called the
parking orbit, and a desired final orbit called the target orbit.

Figure 11.7: Depiction of the Hohmann transfer from a circular parking
orbit to a circular target orbit via an elliptical transfer orbit.

There are various types of orbit transfers, but the simplest is the Hohmann
transfer. The Hohmann transfer is the minimum energy transfer between
two coplanar circular orbits with a common center point (it can be
generalized to coplanar elliptical orbits). The transfer occurs along an
elliptical orbit as depicted in the figure. An impulsive increase in speed
transfers into the elliptical transfer orbit, and a second impulsive increase
in speed transfers into the target orbit. It may seem counterintuitive that
the spacecraft must speed up twice, because we know that the speed
required to maintain the larger circular orbit is less than that needed to
maintain the smaller circular orbit. The reason you need to speed up on
both transfers is that the spacecraft velocity decreases as it moves from
periapsis to apoapsis on the far side of the transfer ellipse.
We can compute the velocity required to maintain the circular parking
orbit from Eq. (11.15). We also can compute the velocity needed to enter
the elliptical transfer orbit at periapsis from Eq. (11.43). The difference in
velocities gives the required ∆V and from the rocket equation discussed in
Chapter 9 we can then find the necessary amount of propellant to
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complete the transfer. Similar calculations are then repeated for moving
into the target orbit. If performing the opposite maneuver, the ∆V would
be the same in both cases, except that the rockets would be fired opposite
to the direction of motion to slow the spacecraft down.
Hohmann transfers can also be used for interplanetary trajectories where
the sun, rather than the earth, is the central point of the orbit. In our solar
system the orbital planes of all planets are not exactly coplanar, but they
are fairly close. Another added difficulty of an interplanetary transfer is
that it is not enough just to get to the target orbit, we need to arrive at the
right moment so we can rendezvous with the planet along that orbit.
Thus, we have to wait for the right window of time to launch the
spacecraft. For example, a Hohmann transfer from earth to Mars is only
possible every 2.13 years [2]. Once the spacecraft reached Mars (in 258.8
days), it would have to wait at least 453.8 days to start the return journey
leading to a total minimum mission time of 2.66 years. Each return
window that was missed would add another 2.13 years to the mission [2].
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APPENDIXA

Supplementary Material

A.1 Skin Friction Coefficient for a Flat Plate with
Transition

In Chapter 3 we discussed how to estimate the skin friction coefficient for
both a laminar and turbulent flat plate boundary layer. However, most of
the time an airfoil is not fully laminar or fully turbulent but rather
transitions somewhere along the airfoil. Accounting for this in a rational
way is the subject of this section.
In the following derivation we will utilize the figure below. We start with a
laminar region that extends up to the transition location xt . The turbulent
boundary layer begins from there and continues to L. The turbulent
boundary layer begins with some thickness, but we can imagine tracing it
back to figure out where the turbulent boundary layer would have needed
to start in order to develop the same thickness at xt . We will call this the
effective distance xe , and it is defined as a distance upstream of the
transition location. The three regions that we will perform separate
calculations on are labeled as 1, 2, and 3.
Region 1 is the easiest. We simply use the laminar skin friction coefficient
acting over a distance xt .

C f 1 �
1.328√

Rext
(A.1)
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1
2

3

L

Figure A.1:

Region 3 is not as straightforward as we can’t just start the turbulent
calculation from the transition location. Our formulas are based on
starting from the beginning of the boundary layer. Thus, we first need to
calculate the effective distance xe .
The size of the boundary layer can be measured by its momentum
thickness θ (you will learn more about this if in an aerodynamics course).
The Blasius solution provides a formula for this thickness, which we will
evaluate over a distance xt

θl �
0.664xt√

Rext
(A.2)

This is the thickness of the boundary layer at the transition location. To
work backwards in the turbulent boundary layer we use a similar formula,
but instead use one for a turbulent boundary layer. The Schlichting
empirical formula for momentum thickness of a turbulent boundary layer
evaluate at a distance xe is [1]:

θt �
0.036xe

Re0.2
xe

(A.3)

These two momentum thicknesses must be equal. Since we can already
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compute θl we can now solve for xe :

θt �
0.036xe

Re0.2
xe

(A.4)

θl �
0.036xe

Re0.2
xe

(A.5)

θl �
0.036xe(
ρVxe
µ

)0.2 (A.6)

x0.8
e �

θl

(
ρV
µ

)0.2

0.036
(A.7)

x0.8
e �

θl

(
ρVL
µ

)0.2

0.036c0.2 (A.8)

(xe/c)0.8 �
(θl/c)Re0.2

L

0.036
(A.9)

xe

c
�

(
(θl/c)Re0.2

L

0.036

)1.25

(A.10)

Now that we know the effective distance we can compute the skin friction
coefficient for Region 3 using the Schlichting formula. The distance that
this acts over is L − xt + xe . We will call this x f (for fictitious since it
includes the dashed fictitious portion that is not actually turbulent).

C f 3 �
0.074
Re0.2

x f

(A.11)

We now need to deal with the overlapping Region 2, which we have
double counted. We just calculated the skin friction coefficient for all of
Region 3 but we need to subtract off Region 2. This is easy enough as it is
just a turbulent boundary layer acting over a distance xe .

C f 2 �
0.074
Re0.2

xe
(A.12)

We are now ready to put everything together. However, skin friction
coefficients can’t just be added as they are normalized over different areas.
It is the forces that we can add. Recall that

c f �
τ

q∞
(A.13)
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Thus the drag force acting over region j is

D j � C f j q∞x j(1) (A.14)

where x j is the distance that the skin friction acts over (with unit width
into the page). Once we add all the drag forces we would like to normalize
by the length L so that we have one final skin friction coefficient.

C f �
τ

q∞
(A.15)

�
Σ jD j/A

q∞
(A.16)

�
Σ jD j

cq∞
(A.17)

�

Σ jC f j q∞x j

cq∞
(A.18)

� Σ jC f j

x j

c
(A.19)

(A.20)

Thus, rather than sum the skin friction coefficients we need to sum the
skin friction coefficients times the area that act over. This is exactly the
same situation when adding drag coefficients that use different areas for
normalization.
The total skin friction coefficient is then

C f � C f 1

( xt

c

)
+ C f 3

( x f

c

)
− C f 2

( xe

c

)
(A.21)

The last thing to note is that if we are given the Reynolds number for one
length scale

Rec �
ρVc
µ

(A.22)

we can easily calculate it at another length scale as follows:

Rext �
ρVxt

µ
� Rec

xt

c
(A.23)
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Summary:

The final algorithm is as follows (which we do nondimensionally):
Given input:

xt

c
and Rec (A.24)

Reynolds number and skin friction coefficient over Region 1:

Rext � Rec
xt

c
(A.25)

C f 1 �
1.328√

Rext
(A.26)

Effective distance:
θ
c
�

0.664(xt/c)√
Rext

(A.27)

xe/c �

(
(θ/c)Re0.2

c

0.036

)1.25

(A.28)

Reynolds number and skin friction coefficient over Region 2:

Rexe � Rec(xe/c) (A.29)

C f 2 �
0.074
Re0.2

xe
(A.30)

Reynolds number and skin friction coefficient over Region 3:
x f

c
� 1 − xt

c
+

xe

c
(A.31)

Rex f � Rec
x f

c
(A.32)

C f 3 �
0.074
Re0.2

x f

(A.33)

Total skin friction coefficient

C f � C f 1

( xt

c

)
+ C f 3

( x f

c

)
− C f 2

( xe

c

)
(A.34)

A.2 Supersonic Wave Drag Equations

There is a lift-dependent and a volume-dependent component of wave
drag.
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Lift-dependent R.T. Jones derived the following expression for
combined vortex and wave drag due to lift of a minimum-drag ellipse with
a given aspect ratio [? ].

CD �
C2

L

πAR

√
1 + (M2 − 1)

(
πAR

4

)2

(A.35)

We want just the wave drag so we will subtract off the vortex drag
C2

L/(πAR) (we assume einv � 1 because that is consistent with the above
minimum-drag expression, which has an elliptic distribution of lift in all
directions).

CD c ,l �
C2

L

πAR


√

1 + (M2 − 1)
(
πAR

4

)2

− 1
 (A.36)

Supersonic wings are generally longer than they are wide. A better fit to
experimental data is observed if we use an equivalent ellipse based on
length and area rather than span and area (aspect ratio). The area of an
ellipse of length l and width b is

Sellipse �
πbl

4
(A.37)

We equate the gross area of the wing Sg with that of an equivalent ellipse
and then solve for the span in terms of gross wing area and length:

b �
4Sg

πl
(A.38)

Thus, we can express aspect ratio in terms of length and area, recalling
that aspect ratio is defined using the reference area:

AR �
b2

Sre f
(A.39)

�
b2Sg

Sre f Sg
(A.40)

�
16S2

g

π2l2Sg

Sg

Sre f
(A.41)

�
16Sg

π2l2

Sg

Sre f
(A.42)

(A.43)
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Substituting into the the wave drag expression

CD c ,l �
C2

Lπl2Sre f

16S2
g


√√√

1 + (M2 − 1)
(

4S2
g

πl2Sre f

)2

− 1

 (A.44)

For convenience let’s define the following terms:

β �

√
M2 − 1 (A.45)

(the only reason why we use a sqrt is because this is a common term used
in supersonic aerodynamic analysis and this is how it is defined).

r �
πl2

4Sg
(A.46)

Sr �
Sg

Sre f
(A.47)

then the expression becomes

CD c ,l � C2
L

r
4Sr


√

1 +

(
βSr

r

)2

− 1
 (A.48)

Volume Dependent For an elliptic wing with biconvex airfoil sections
R.T. Jones derived the following expression for supersonic
volume-dependent wave drag [9]:

CD c ,v �
t2

a2
(β2 + 2(a/e)2)
(β2 + (a/e)2)1.5 (A.49)

where a is the ellipse semiaxis in the flight direction, e is the orthogonal
semiaxis, and t is the maximum thickness in the center of the wing.
In terms of our typically used wing quantities a � c/2 and e � b/2 (where
c is the maximum chord at the center of the wing). Making the
substitutions yields:

CD c ,v � 4
( t

c

)2 (β2 + 2(c/b)2)
(β2 + (c/b)2)1.5 (A.50)
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however we again would like to eliminate span from the expression in
favor of the length parameter (c in this case).
We use the previous expression relating span to gross area and length (c),
but interchange with the variable l we used previously

CD c ,v � 4
( t

c

)2 (β2 + 2(l2π/4Sg)2)
(β2 + (l2π/4Sg)2)1.5

(A.51)

Using the new variable definitions simplifies the expression.

CD c ,v � 4
( t

c

)2 (β2 + 2r2)
(β2 + r2)1.5 (A.52)

Finally, in order to add this drag to the other we need to use the same
reference area. This volume-dependent drag is defined relative to the
gross area. Thus, we must multiply by Sg/Sre f so that it is normalized
relative to the same reference area.

CD c ,v � 4
( t

c

)2
Sr
(β2 + 2r2)
(β2 + r2)1.5 (A.53)

Fuselage Volume Wave Drag The Sears-Haack minimum drag solution
for a body of revolution with fixed length and diameter is

CD c ,v � 4π2
( r

l

)2
(A.54)

We make the substitution r � d/2 and because this drag is based on frontal
area, we need to multiply by the frontal area and divide by Sre f so that all
of our drag coefficients use the same reference area:

CD c ,v � 4π2 d2

4l2
πd2

4Sre f
(A.55)

or after simplifying:

CD c ,v �
π3

4
d2

(l/d)2Sre f
(A.56)
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A.3 Rocket Altitude

We start with Tsiolkovsky’s rocket equation:

∆V � C ln (MR) − gtb cos θ (A.57)

which gives the change in velocity over some time period. We would like
to integrate this equation once more to find a final altitude.
The final altitude will give given by:

h �

∫ tb

0
V cos θdt (A.58)

�

∫ tb

0
(V0 + ∆V) cos θdt (A.59)

�

∫ tb

0
(V0 + C ln (MR) − gt cos θ) cos θdt (A.60)

(A.61)

A numerical integration would be best, but for the purposes of creating a
simple closed-form expression we will assume that C, g, and θ are
constant during the integration interval. The mass ratio is never constant
so we must express in in terms of time t

MR �
m0

m0 − Ûmt
(A.62)

and we will assume that Ûm is constant. The integral then becomes:

h �

∫ tb

0
(V0 + C ln

(
m0

m0 − Ûmt

)
− gt cos θ) cos θdt (A.63)

�

∫ tb

0
V0 + C ln m0 − C ln(m0 − Ûmt) − gt cos θ) cos θdt (A.64)

� V0 cos θtb + C ln m0 cos θtb − g
t2

b

2
cos2 θ (A.65)

− C cos θ
[(

t − m0
Ûm

)
ln(m0 − Ûmt) − t

] tb

0
(A.66)

After a bunch of algebraic manipulations the expression simplifies to:

h �

[
V0 + C

(
1 − ln MR

MR − 1

)
− 1

2
gtb cos θ

]
tb cos θ (A.67)
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A.4 Rocket Nozzle Performance

Figure A.2: A notional nozzle depicted station 1 upstream of combustion,
station c after combustion, station t at the throat, and station e at the exit.

We use the same nozzle nomenclature depicted previously, but shown
again in Fig. A.2. The derivations in this section assume familiarity with
compressible flow. The only equation that may not be immediately
recognizable is the way the mass balance is defined. The equation for mass
flow rate is unambiguous, but when applied in a mass balance there are
various ways it can be expressed. As a mass balance is perhaps the most
important equation for nozzle analysis this will be derived first.
The mass flow rate is:

Ûm � ρVA (A.68)

However, for a compressible flow Mach numbers are more fundamental
than velocity. If we use the ideal gas law (p � ρRT), express velocity in
terms of the Mach number and the speed of sound we have:

Ûm �
p

RT
M

√
γRTA (A.69)

� pMA

√
γ

RT
(A.70)

(A.71)

Additionally, total pressures and temperatures are much more useful
quantities in a nozzle than static pressures and temperatures. The reason
is that for an adiabatic flow total temperature is constant, and for an
isentropic flow total pressure is constant (whereas temperature and
pressure are not constant). Using the definitions for total pressure and
total temperature gives:

Ûm �
ptA√

Tt

√
γ

R
M

(
1 +

γ − 1
2

M2
)− (γ+1)

2(γ−1)
(A.72)
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This expression is becoming complex, but we will make it easier to use
shortly. First, we define a new function that depends only on the Mach
number for a given fluid:

f (M) � M
[

2
γ + 1

(
1 +

γ − 1
2

M2
)] −(γ+1)

2(γ−1)
(A.73)

This expression is actually the ratio of the cross-sectional area of a
(potentially fictitious) location in the nozzle where the flow is sonic,
relative to the local cross-sectional area (A∗/A in compressible flow
nomenclature). This is really beside the point, we could make up any
function we wanted, but this ends up being a convenient choice. If we
substitute this choice for f (M) into the mass flow rate equation we can
express it as:

Ûm �
pTA
√

TT

√
γ

R

(
2

γ + 1

) γ+1
2(γ−1)

f (M) (A.74)

Usually we don’t care about the mass flow rate per se (although we will
use it once below). More generally, because the mass flow rate is constant
through the nozzle, we wish to equate the mass flow rate at two points in
the nozzle. Because the fluid doesn’t change, γ and R are constant and so
the mass balance simplifies to the following important equation:

pT1A1 f (M1)√
TT1

�
pT2A2 f (M2)√

TT2
(A.75)

This equation is rather simple to remember, though most of the complexity
is hidden in the function f (M). This function is defined above Eq. (A.73)
and is plotted in Fig. A.3. There is no need to memorize the function, but
the key points to remember are that f (1) � 1 (which ends up being
convenient as we often use the throat as one of our evaluation points), and
that the value of the function is always between 0 and 1. This equation will
either be used to compute f (M) for a given Mach number, or to solve for
the Mach number that corresponds to a given value of f (M). The latter
can be solved with a root-finding method or interpolating with a table.
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Figure A.3: Plot of the function f (M) used in the mass balance.

A.4.1 Exit Velocity

Applying conservation of energy from after combustion to the exit we
have:

hc +
V2

c

2
� he +

V2
e

2
(A.76)

Solving for the exit velocity:

Ve �

√
2(hc − he) + V2

c (A.77)

�

√
2Cp(Tc − Te) + V2

c (A.78)

�

√
2CpTc

[
1 − Te

Tc

]
+ V2

c (A.79)

(A.80)

Using the isentropic relationships between combustion to exit:

Ve �

√√√
2CpTc

[
1 −

(
pe

pc

) (γ−1)/γ]
+ V2

c (A.81)

We can express Cp in terms of R.

Ve �

√√√
2
γR
γ − 1

Tc

[
1 −

(
pe

pc

) (γ−1)/γ]
+ V2

c (A.82)

We express R in terms of the universal gas constant. The last term is small
compared to the first term and so we neglect it (which can be seen by
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expanding the term in terms of the Mach number). Physically, this means
that the velocity in the combustion chamber is relatively small.

Ve �

√√√
2γ
γ − 1

Ru

Mw
Tc

[
1 −

(
pe

pc

) (γ−1)/γ]
(A.83)

A.4.2 Throat Size

The nozzle throat must be large enough for the requisite mass flow rate.
The general formula for the mass flow rate for a compressible flow was
given previously in Eq. (A.72). If we apply this equation at the throat,
assuming that it is choked we have:

Ûm �
pTtAt√

Tt

√
γ

R

(
1 +

γ − 1
2

)− (γ+1)
2(γ−1)

(A.84)

We can now solve for the required throat area given the mass flow rate:

At �
Ûm

pTt

√
RTTt

γ

(
γ + 1

2

) γ+1
2(γ−1)

(A.85)

The flow is isentropic from after combustion to the throat so TTt � TTc and
pTt � pTc . Furthermore, like before, we assume that the velocity right after
combustion is negligibly small so that TTc � Tc and pTc � pc . Making
these substitutions and simplifying yields:

At �
Ûm

pc

√√
RuTc

Mwγ

(
γ + 1

2

) γ+1
γ−1

(A.86)

This is the smallest throat area that can sustain a given mass flow rate.

A.4.3 Combustion Chamber Sizing

We now determine an appropriate size for the combustion chamber area
relative to the throat area. Using a mass balance from c to t the flow is
isentropic and adiabatic so the mass balance simplified to:

Ac f (Mc) � At f (Mt) (A.87)
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The throat will be choked so f (Mt) � 1 and we can solve for the Mach
number at the end of the combustion chamber for a given area ratio:

f (Mc) �
At

Ac
(A.88)

We can now compute the total pressure loss across the combustion
chamber from 1 to c. There is heat addition between these two stations so
we need to use the Rayleigh line equations:

pTc

pT1
�

1 + γM2
1

1 + γM2
c

[
1 +

γ−1
2 M2

c

1 +
γ−1

2 M2
1

] γ
γ−1

(A.89)

The speed at station 1 is essentially zero so the expression simplifies to:

pTc

pT1
�

1
1 + γM2

c

[
1 +

γ − 1
2

M2
c

] γ
γ−1

(A.90)

This equation allows us to quantify the total pressure loss in the
combustion chamber as a function of the area ratio between the throat and
the combustion chamber.
This equation can also justify our assumption that the Mach number in the
combustion chamber is low. As discussed in Chapter 10 because of the
total pressure losses a typical area ratio is Ac/At � 3. From the above mass
balance this corresponds to a Mach number in the combustion chamber of
approximately Mc � 0.2. This means that the total temperature differs
from the static temperature by less than a percent, and total pressure and
static pressure differ by less than a few percent. For students with a
compressible flow background it would be better just to use the total
pressure/temperature values as it really isn’t much harder. However, the
small error is justifiable for the audience of this text as it allows students
without a compressible flow background to use familiar static quantities.

A.4.4 Exit Area Sizing

We start with a mass balance from the throat to the exit. It is isentropic
and adiabatic between these stations, and the Mach number at the throat is
one, so the area ratio is just a function of the exit Mach number:

At � Ae f (Me) (A.91)

⇒ ε �
Ae

At
�

1
f (Me)

(A.92)
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Now we just need to determine the requisite exit Mach number for a
desired pressure ratio. From the definition of total pressure:

pTe

pe
�

(
1 +

γ − 1
2

M2
e

) γ
γ−1

(A.93)

We can solve this for Me :

Me �

√√√√√
(

pTe

pe

) γ−1
γ

− 1
 2
γ − 1

(A.94)

Because the flow is isentropic from c to e then pTe � pTc . Furthermore, we
can make the same approximation as before, assuming the Mach number
at c is low so that pTc ≈ pc . With that approximation we have:

Me �

√√√√√
(

pc

pe

) γ−1
γ

− 1
 2
γ − 1

(A.95)

To see the effectiveness of large expansion ratios let us determine the
performance in terms of thrust coefficient. Recall that the thrust is given
by:

T � Ûm f Ve + (pe − p∞)Ae (A.96)

We will normalize the thrust by the total pressure in the combustion
chamber pTc ≈ pc and the area of the throat.

CT �
Ûm f Ve + (pe − p∞)Ae

pcAt
(A.97)

Thus mass flow rate, using properties at the exit is, m f � ρeVeAe , giving a
thrust coefficient of:

CT �
ρeV2

e Ae + (pe − p∞)Ae

pcAt
(A.98)

Factoring out some common terms:

CT �
Ae

At

pe

pc

(
ρeV2

e

pe
+ 1 −

p∞
pe

)
(A.99)
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The speed of sound is:

a �

√
γp
ρ

(A.100)

Making the substitution for pe/ρe gives:

CT �
Ae

At

pe

pc

(
γV2

e

a2
e

+ 1 −
p∞
pe

)
(A.101)

If we assume ideal expansion then p∞ � pe and the equation simplifies to:

CT �
Ae

At

pe

pc
γM2

e (ideal expansion) (A.102)
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