2020-04-06

Galectin-1: A Potential Protein Therapy for Limb-Girdle Muscular Dystrophy 2B

Mary L. Vallecillo
Brigham Young University - Provo

Matthew S. Teynor
Brigham Young University - Provo

Jonard C. Valdoz
Brigham Young University - Provo

Spencer D. Hayes
Brigham Young University - Provo

P. Daniel Poulson
Brigham Young University - Provo, poulson.pd@gmail.com

See next page for additional authors

Follow this and additional works at: https://scholarsarchive.byu.edu/library_studentposters_2020

Part of the Life Sciences Commons

BYU ScholarsArchive Citation
https://scholarsarchive.byu.edu/library_studentposters_2020/28

This Poster is brought to you for free and open access by the Library/Life Sciences Undergraduate Poster Competition at BYU ScholarsArchive. It has been accepted for inclusion in Library/Life Sciences Undergraduate Poster Competition 2020 by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Authors
Mary L. Vallecillo, Matthew S. Teynor, Jonard C. Valdoz, Spencer D. Hayes, P. Daniel Poulson, Matthew F. Rathgeber, Sean R. Stowell, and Pam M. Van Ry
Galectin-1: A Potential Protein Therapy for Limb-Girdle Muscular Dystrophy 2B

Mary L Vallecillo\(^1\), Matthew S Teynor\(^1\), Jonard C Valdoz\(^1\), Spencer D Hayes\(^1\), P. Daniel Poulsón\(^1\), Matthew F Rathgeber\(^1\), Sean R Stowell\(^2\), and Pam M Van Ry\(^1\)

\(^1\)Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah
\(^2\)Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia

Introduction

- Limb-Girdle Muscular Dystrophy 2B (LGMD2B) belongs to a group of diseases called dystrophinopathies, caused by mutations in the DYSF gene.
- Dysferlin is an important muscle membrane protein involved in repair and regeneration after injury.
- LGMD2B causes muscle wasting, fat infiltration, and loss of ambulation in patients.
- Currently there is no cure and few treatment options.
- Galectin-1 is a small protein that interacts with glycosylated proteins. It shows efficacy in treating mouse models of Duchenne Muscular Dystrophy.
- Here we explore the ability of recombinant human Galectin-1 (rHsGal-1) to ameliorate disease pathologies and mechanisms of LGMD2B.

Hypothesis

Possible roles for Galectin-1 Protein Therapy in LGMD2B

- Absence of functional Dysferlin
- Membrane Damage
 - Unrepaired Membrane Damage
 - Reduced Myogenesis
 - Muscle Fibre Death
 - Muscles Degeneration

Hypothesis: Recombinant human galectin-1 (rHsGal-1) protein treatment will improve membrane repair of LGMD2B models thus increasing myogenesis, stabilizing muscle integrity, and decreasing disease manifestation.

Results

rHsGal-1 Synthesis and Purification

The DNA encoding for LGALS1 was cloned into the pET29B (+) vector and over expressed in BL21 (DE3) competent E. coli cells. The purity of galectin-1 was analyzed using western blot with anti-Galectin-1 and anti-His.

Increased Myogenesis

0.11µM rHsGal-1 is the optimal dose for increasing myogenic expression. Non-treated A/J - cells (NT) and A/J - cells treated with rHsGal-1, with doses ranging from 0.014µM to 0.22µM, were analyzed using anti-muscle antibody to determine the optimal dose of rHsGal-1 needed to increase myogenesis. We saw a 1.8 fold increase in myogenin, a transcription factor associated with late stages of myogenesis, expression at a dose of 0.11µM rHsGal-1 compared to NT.

Increased Membrane Repair

A/J - myotubes and myoblasts treated with rHsGal-1 have increased membrane repair capacity. Treated and non-treated A/J - myotubes were injured by UV laser in the presence of FITC-488 dye and the membrane repair capacity was quantified by measuring the change in fluorescent intensity with doses ranging from 0.054µM to 0.11µM rHsGal-1. An improvement after 10min of treatment indicates that the repair mechanism is independent of myogenesis. Likewise, we saw that rHsGal-1 closed faster and more completely than NT myoblasts. For particular interest, it qualitatively appears that cells treated with rHsGal-1 form myotubes in the wound area during the 4hrs after the injuries were removed, while non-treated cells do not. This helps to explain previous results that indicate rHsGal-1 can increase fusion and maturation of myotubes to muscle. Likewise, it shows that rHsGal-1 can increase migratory factors, which are linked to better in vivo muscle repair.

Conclusions

- rHsGal-1 increases myogenic regulatory factors and myotube formation.
- A/J - myotubes treated with rHsGal-1 have increased membrane repair capacity.
- The CRD of galectin-1 is responsible for increased membrane repair and dystrophin deficient myotubes.
- Wound healing in accelerated with rHsGal-1 treatment.
- Galectin-1 transcript levels are up regulated with rHsGal-1 treatment.
- NPe-R pathway is downregulated with rHsGal-1 treatment in a time sensitive manner.

Acknowledgements

We would like to thank Dr. James Moody for providing the pET29B (+) vector used to clone rHsGal-1. Dr. Edward Partridge for providing the A/J - and A/J - wild-type cell lines, and the Fitz B. Burns Cancer Lab for providing access to the confocal microscope.

We would also like to thank the BYU Department of Chemistry and Biochemistry for funding through Undergraduate Research Awards, the Ronald E. Hoffbauer Award, and the Garff M. Woodson Research Innovation Award, which made this project possible.