
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2020-08-07

A Framework for Simulating and Analyzing Multi-UAV Persistent A Framework for Simulating and Analyzing Multi-UAV Persistent

Search and Retrieval with Stochastic Target Appearance Search and Retrieval with Stochastic Target Appearance

Ryan David Day
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Day, Ryan David, "A Framework for Simulating and Analyzing Multi-UAV Persistent Search and Retrieval
with Stochastic Target Appearance" (2020). Theses and Dissertations. 9222.
https://scholarsarchive.byu.edu/etd/9222

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F9222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholarsarchive.byu.edu%2Fetd%2F9222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/9222?utm_source=scholarsarchive.byu.edu%2Fetd%2F9222&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

A Framework for Simulating and Analyzing Multi-UAV Persistent Search and Retrieval

with Stochastic Target Appearance

Ryan David Day

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

John L. Salmon, Chair
Cammy K. Peterson

Tim W. McLain

Department of Mechanical Engineering

Brigham Young University

Copyright © 2020 Ryan David Day

All Rights Reserved

ABSTRACT

A Framework for Simulating and Analyzing Multi-UAV Persistent Search and Retrieval
with Stochastic Target Appearance

Ryan David Day
Department of Mechanical Engineering, BYU

Master of Science

In recent years, advances in small unmanned aerial vehicle (UAV) technology have
transformed the use cases of these aircraft from hobby flying to industrial and business
applications. These maneuverable, easily deployed tools can be retrofitted with a myriad of
sensors and equipment, which make them suitable to perform a variety of specialized tasks.
With increasing UAV capabilities, the function of small UAVs can be extended from pure
monitoring or surveillance to the dual objective of monitoring an environment for events and
addressing the events in some way. This thesis seeks to explore a subdomain of the dual
objective problem described, referred to in this thesis as the multi-UAV persistent search and
retrieval task with stochastic target appearance (PSR-STA), in which UAVs continuously
search an area over a long period of time for targets of interest, which appear according to
a probabilistic model, to retrieve and deliver them to a collector location.

The advent of high-speed computers and agent-based modeling theory enable the
simulation of multi-UAV PSR-STA. However, it can be complicated to combine parts of
multi-UAV PSR-STA such as motion models and multi-UAV coordination into one integrated
system, and even after they are combined successfully, it is difficult to analyze the system
except with simple comparison tools. This thesis 1) proposes a framework that builds a
foundation for understanding how to simulate and analyze multi-UAV PSR-STA through
prescribing important design decisions and methods for simulation and 2) identifies metrics,
analysis tools, and trends related to overall system effectiveness for multi-UAV PSR-STA.

A case study of multi-UAV park cleanup is implemented where many simulations
with input parameters chosen by a latin hypercube design of experiments are examined,
algorithms for choosing the locations of collectors and charging stations based on proba-
bilistic information are proposed, and the differences in effectiveness between four coverage
search patterns are analyzed. Measures are highlighted that provide insight into performance
variability over time and space. Line charts and the discrete Fourier transform are used to
understand temporal patterns inherent in the data. Principal component analysis is used
to analyze relevant spatial patterns in effectiveness, and a random forest surrogate model
with a profiler is used to explore the non-linear influence of input parameters on the spatial
patterns. The trellis chart or figure of figures method is presented for visualizing spatial
and temporal data across many simulations. A second set of experiments based on the park
cleanup case study are performed and examined to verify the benefits of these methods.

Keywords: multi-UAV search, UAV target retrieval, spatial analysis, temporal analysis

ACKNOWLEDGMENTS

First and foremost I would like to thank my wife, Catharine, for her continual support

and optimism throughout the thesis writing process. Her friendship and companionship has

been invaluable to me, impacting all areas of my life. I cannot express enough how much she

means to me. I would like to thank my parents for encouraging my curiosity and helping me

develop a love of learning, which led me to pursue a degree in a challenging field and enjoy

the process. My aunt and uncle, Judy and Justin, and their family have also been a great

support as I have worked to write this thesis.

Dr. John Salmon has been a great mentor and friend. His love of new ideas and

mastery of systems engineering has always inspired me. Without him I would not have this

wonderful opportunity to pursue a master’s degree. His encouragement and effort to help

me achieve the goal of completing this thesis has been invaluable to my progression as an

engineer, and his kind and hard working nature has made the experience one I will never

forget.

Dr. Tim McLain and Dr. Cammy Peterson have been a great help to me. Dr. McLain

was the professor for two of the most challenging and useful classes I took at BYU, design

of control systems, and autonomous systems, and his guidance in completing my thesis is

much appreciated. Dr. Peterson has always been so willing to meet with me and help me

with any challenges or questions that I have proposed to her.

Finally, my peers in my research lab have impacted my life for the better, includ-

ing Carsten Christensen and Landon Willey, who have been great friends and counselors

throughout my time as a research assistant, Spencer Bunnell, whose impassioned discussions

about predictive modeling and general engineering principles will always be remembered,

and Jon Sadler, who helped me build a foundation of good coding practices that led me to

become a proficient software engineer.

TABLE OF CONTENTS

TITLE PAGE . i

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

NOMENCLATURE . ix

Chapter 1 Introduction . 1

1.1 Problem Definition and Research Statement 1
1.2 Research Outcomes . 4
1.3 Document Organization . 5

Chapter 2 A Framework for Multi-UAV Persistent Search and Retrieval
with Stochastic Target Appearance in a Continuous Space . . . 7

2.1 Preface . 7
2.2 Introduction . 7
2.3 Related Works . 9

2.3.1 Target Search and Retrieval . 9
2.3.2 Persistent Surveillance . 9
2.3.3 Persistent Surveillance Analysis Methods 10

2.4 Methodology . 11
2.4.1 Simulation Design Framework Overview 11
2.4.2 Analysis Framework Overview . 14

2.5 Framework Implementation . 15
2.5.1 UAV Autonomy . 17
2.5.2 UAV Search Strategies . 19
2.5.3 Collector and Charger Placement Algorithm 22
2.5.4 User Interface and Simulation Exploration 26
2.5.5 System Analysis and Verification . 29

2.6 Discussion and Future Iterations . 32
2.7 Conclusion . 33

Chapter 3 Spatiotemporal Analysis of Multi-UAV Persistent Search and
Retrieval with Stochastic Target Appearance 34

3.1 Preface . 34
3.2 Introduction . 34
3.3 Related Works . 37

iv

3.4 Simulation Overview . 39
3.5 Temporal Analysis . 43
3.6 Spatial Analysis . 53
3.7 Discussion, Limitations, and Future Work 62
3.8 Conclusion . 64

Chapter 4 Conclusions . 65

4.1 Limitations and Future Work . 67
4.2 Final Remarks . 70

REFERENCES . 72

Appendix A Code . 81

A.1 Simulation Code . 81
A.1.1 UAV Code . 105
A.1.2 Visualization . 142
A.1.3 Collector Placement Algorithm . 159
A.1.4 DOE Generator . 161
A.1.5 Experiment Runner . 166

A.2 Chapter 2 Code . 181
A.3 Chapter 3 Code . 182

v

LIST OF TABLES

2.1 Continuous parameters with upper and lower limits for LHS DOE 28
2.2 Discrete parameters with associated levels for LHS DOE 28
2.3 Regression results for T r with confidence intervals (CI) 30
2.4 Search pattern comparison with Tukey HSD test with Confidence Intervals (CI) 30

3.1 Summary of analysis methods used in this research 36
3.2 Continuous parameters with upper and lower limits for LHS DOE 43
3.3 Parameters for two scenarios . 44
3.4 Parameters for experiments repeated 30 times 48
3.5 Parameters for DFT experiment analysis . 49
3.6 Parameters for comparison experiments . 54
3.7 PC scores of the average last searched heat maps from the UAV sweep displayed

in Fig. 3.15 . 61
3.8 Parameter importance for random forest model fit 63

vi

LIST OF FIGURES

2.1 Simulation design overview, where boxes represent elements and subelements,
and arrows represent subelement relationships, pointing to the parent element.
Bold text is the title of each element and additional text in the boxes are potential
design decisions for the respective element . 11

2.2 UAV autonomy state diagram for park cleanup 17
2.3 UAV deployment schedule for three UAV groups 19
2.4 Search patterns . 19
2.5 Lawnmower comparison before and after modified lane width. Outside border

represents the park boundaries . 22
2.6 Optimized positions with heat map of the distance from each grid cell to the

closest position in M . 23
2.7 Objective function minimized with different numbers of positions 24
2.8 Screenshot of interactive GUI . 25
2.9 Heat maps over time where the value of each grid cell is the time since the cell

was last searched by a UAV . 25
2.10 Results for simulation with 15 UAVs and γ = 12.36, note that the the locations

where collectors are present are searched more often since the UAVs search after
they deposit trash in the collector . 26

2.11 Correlations of log(outputs) . 28
2.12 Global lawnmower search pattern stack up effect over time 31

3.1 Time steps of simulation with 12 UAVs, four of them active, each patrolling in one
of four partitions according to the lawnmower pattern plotted in each partition,
where ti is the time step displayed. Eight other UAVs are charging, located on
charging stations. The ¤ represents a UAV, the t represents the collectors, the
6 represents the targets, and the : represents the chargers. The UAVs have
circles around them representing their target detection areas. 40

3.2 Heat maps, each corresponding to the respective subfigure in Fig. 3.1, with each
grid cell representing the amount of time since the grid cell was last searched by
a UAV (tLS) . 41

3.3 Screen capture of scenarios 1 and 2, note that in scenario 2 only the search pattern
for the first group of UAVs is shown, where group one has 9 UAVs, and groups
two and three have 8 UAVs . 45

3.4 Maximum time that a target in Ti has been present 45
3.5 Maximum value of tLS for grid cells in Gi . 46
3.6 Number of targets present in the simulation at each time step 47
3.7 Average of tLS for grid cells in Gi . 47
3.8 Number of targets in the simulation for three scenarios, each with 30 experiments

represented by different colors, with one experiment highlighted in red to show
an example scenario . 48

3.9 Average of tLS of grid cells in Gi for three scenarios, each with 30 experiments
represented by different colors, with one experiment highlighted in red to show
an example scenario . 49

vii

3.10 Charts describing outputs of a single simulation over time. Note that Fig. 3.10c
is on a different scale since its values are a higher order of magnitude than the
other figures . 50

3.11 DFT of the figures in Fig. 3.10. Note that Fig. 3.11a and 3.11b had no significant
signals above 3000 and so the x-axis range was limited from 0 to 3000 50

3.12 Figure of figures for the number of targets present at each time step with the
simulation colored according to the maximum value in each chart 52

3.13 Four superimposed example figures for the subfigure icons for Fig. 3.12 53
3.14 Baseline tLS heat map indicates the average time that an area was last searched

in seconds . 54
3.15 Differences from baseline experiment for tLS heat map. Fig. 3.15f is on a different

scale since the difference from the baseline is an order of magnitude higher than
Fig. 3.15a through Fig. 3.15e . 55

3.16 tLS heat maps of a sweep of number of UAVs from the scenarios shown in Fig.
3.14. Note that Fig. 3.16b is a repeated of Fig. 3.14 to facilitate comparisons . . 57

3.17 Figure of figures with the heat map of tLS as each data point. A different colorscale
is implemented to compare a wider range of values across the entire design space 58

3.18 First three PCA eigenvectors of average time last searched heat maps expressed
as heat maps with percent variation explained of each component in the captions 59

3.19 Scree plot of the cumulative percent variation of PCA for the first 8 PCs 60
3.20 Profiler visualization . 62

viii

NOMENCLATURE

P Park
lP Park side length
lA Area side length
γ Expected value for binomial distribution related to target appearance
NC Number of collectors
NR Number of charging stations
s UAV speed
TF UAV flight time
TR UAV recharge time
τc Time delay representing a UAV landing at a charging station
τto Time delay representing a UAV taking off from a charging station
τrt Time delay representing a UAV retrieving trash
τdt Time delay representing a UAV depositing trash in a collector
rd UAV detection radius
dUAV,t Distance from a UAV to a trash
dt,c Distance from a trash to a collector
dc,r Distance from a collector to a charger
C1 Constant factor accounting for uncertainty
C2 Constant factor accounting for uncertainty
dUAV,r Distance from a UAV to a charger
d(c, v) Distance between the centroid and a vertex of a polygon
d⊥max Longest perpendicular distance between the longest edge of a polygon and any of its vertices
dedge Constant that represents the distance from the edges of a polygon to the search pattern
dlane Constant that represents the distance between lanes in the lawnmower pattern
C3 Constant factor that adjusts dedge to make sure the whole space is covered
M Set of positions
Np Number of positions in M
davg Average distance from any point to its closest position in M
AP Area of a polygon
w(x, y) Weighting function with (x, y) being cartesian coordinate inputs
G Set of square grid cells of equal area
Gi Set of square grid cells at time step i
rg UAV detection radius in number of grid cells
lg Length of a grid cell
TS Simulation run time
Q Set of trash that appeared in the simulation over all time steps
T r Average time of trash retrieval
T t
r The amount of time from the appearance of trash t to its retrieval by a UAV
N t The average number of trash left out at each time step
Qi Set of trash left out at time step i
T v The average time any area in the simulation was last searched
tLS Time last searched
tLS Average time last searched

ix

Ti Set of all targets at time step i
tt Amount of time a target t has been present in the simulation since appearing

x

CHAPTER 1. INTRODUCTION

1.1 Problem Definition and Research Statement

In recent years, advances in small unmanned aerial vehicle (UAV) technology have

transformed the use cases of these aircraft from hobby flying to industrial and business

applications. These maneuverable, easily deployed tools can be retrofitted with a myriad of

sensors and equipment, which make them suitable to perform a variety of specialized tasks.

Many UAV applications relate to persistent monitoring or searching, which involve the UAV

flying through an area, using a video camera or other sensor devices mounted on the UAV

to detect changes in an environment or to search for objects of interest. Some real-world

examples of these applications include search and rescue [1], building inspection [2], and

military surveillance [3].

With increasing UAV capabilities, the function of small UAVs can be extended from

pure monitoring or surveillance to the dual objective of monitoring an environment for events

and addressing the events in some way. Examples of this are graffiti removal [4], where UAVs

must search a city for graffiti and paint over it, and pesticide application [5], where UAVs

must apply pesticide to pest-infested areas of an agricultural environment. These activities

often include events that appear according to some probabilistic pattern, such as pests

appearing more frequently in certain areas of a field of crops, or graffiti being more likely

to be created in specific parts of a city. The addition of addressing events after locating

them adds a new layer of complexity to UAV search, and new methods must be developed

to simulate and analyze these kinds of scenarios.

This thesis seeks to explore a subdomain of the dual objective problem described,

referred to in this thesis as the multi-UAV persistent search and retrieval task with stochastic

target appearance (PSR-STA), in which UAVs continuously search an area over a long period

of time for targets of interest, which appear according to a probabilistic model, to retrieve and

1

deliver them to a collector location. This task is an extension of the persistent surveillance

task, in which UAVs persistently monitor a known environment [6], with the search and

retrieval task, where agents must find targets in an area and deliver them to a predefined

location [7]. The surveillance task is extended by including stochastically appearing targets

that must be retrieved and delivered to a collector location upon discovery. An example of an

application that motivates the study of multi-UAV PSR-STA is litter removal, where litter is

discarded by people in an area [8] and retrieved and deposited into a trash bin by a UAV or

other autonomous agent [9,10]. A study prepared for the Environmental Protection Agency

estimated that west coast communities in the United States of America spend more than

$520,000,000 each year to combat littering, and hundreds of species of animals are affected

as the litter is eventually displaced to the ocean [11]. This emphasizes the need for studying

and understanding multi-UAV PSR-STA for successful deployment of UAVs to help with

this task, as their low cost and ability to interact with the environment without an operator

would help to improve communities and reduce cost through autonomous litter collection.

Extending persistent surveillance with the search and retrieval task reveals rich and

exciting research considerations that should be explored to design solutions for a given sce-

nario. First, UAV autonomy must be considered. This includes analyzing coordinated multi-

UAV search strategies and determining methods to enable persistent UAV operation beyond

the battery life of an individual UAV. Second, decisions regarding the number and locations

of battery recharging stations to aid persistent operation, and the number and locations

of collectors to facilitate effective target retrieval strategies must be considered. Previous

work has explored arbitrary numbers and locations for recharging stations [12, 13], or opti-

mized a chosen number of recharging locations for tasks without stochastic elements [14,15].

Multi-UAV PSR-STA motivates an augmentation of these methods to design a collector and

charger placement algorithm based on stochastic event information.

Metrics of interest must be defined and measured in a wide range of circumstances

to gain insight into how parameters influence system effectiveness in multi-UAV PSR-STA.

Since testing many variations of multi-UAV search scenarios in the real world is time and cost

prohibitive, a common methodology for understanding effectiveness in situations involving

UAVs is to create a computer simulation of the problem domain and run the simulation many

2

times, varying chosen parameters while recording outputs of interest in each simulation

[16–20]. After the simulation is run many times in different scenarios, potential causal

and corollary relationships can be established among the varied parameter inputs and the

effectiveness measures, and trends can be understood about which inputs are most influential

to the output metrics. From these relationships, conclusions can be drawn about which

parameters are most influential over a range of scenarios. Many who research areas related

to UAV search only use one or two metrics that summarize the effectiveness of a simulation

[21, 22]. This can be useful for comparing search performance of different search algorithms

in a specific scenario, where few input parameters are varied, and many insights into search

algorithm performance can be gained from this approach. However, if these patterns are

to be implemented in real-world situations, the search algorithms may need to be deployed

in many different scenarios with non-equal area sizes and with different types of UAVs,

which calls for more advanced analysis methods that take into account the multidimensional

parameter inputs.

The effectiveness of the UAVs in multi-UAV PSR-STA could vary through time and

space depending on the combination and levels of input parameters. Non-deterministic

search behavior is present even when UAVs follow a deterministic coverage search pattern

since UAVs must pause their search for a significant amount of time when both retrieving

targets and delivering targets to a collector location. The result of this non-deterministic

variance is that if one were to only use one or two aggregate measures of effectiveness for

understanding UAV search performance, information about time-based and space-based pat-

terns present in the simulation could be obscured. Detailed analyses that reveal information

about spatial and temporal variations and patterns inherent in the search behavior beyond

simple quantification of effectiveness are then desirable. These analyses will aid in the un-

derstanding of important multidimensional patterns, thus allowing for the characterization

of tradeoffs in the system that will inform educated decisions related to the implementation

of multi-UAV PSR-STA in real-world scenarios.

The advent of high-speed computers and agent-based modeling theory enable the

simulation of multi-UAV PSR-STA. However, it can be complicated to combine the different

parts of persistent surveillance and search and retrieval such as motion models, battery

3

life, and multi-UAV coordination into one integrated system. The components involved

in the system may involve varying levels of assumptions that could influence the results

of the simulations, and so must be carefully considered. Even when these elements are

integrated and simulated successfully, it is difficult to analyze the system except with simple

comparison tools. Groundwork should be laid for understanding which areas to focus on when

simulating multi-UAV PSR-STA, in addition to understanding relevant metrics and methods

of analysis to judge system effectiveness. Therefore, the research objective of this thesis

is to generate a framework that builds a foundation for understanding how to

simulate and analyze multi-UAV PSR-STA through prescribing important design

decisions and methods for simulation, and identify metrics, analysis tools, and

trends related to overall system effectiveness.

1.2 Research Outcomes

This thesis focuses on two primary areas that contribute to the accomplishment of

the stated objective. The first is understanding what design decisions must be made to

simulate multi-UAV PSR-STA. The first half of this thesis proposes a simulation framework

that outlines these important design decisions. An analysis framework highlighting analysis

areas to focus on with multi-UAV PSR-STA is also presented. A case study is implemented

with the framework as a guide to demonstrate the consequences of these design decisions.

As part of implementing the framework, methods are developed for collector placement and

charger placement based on probabilistic information.

The second area is determining how to analyze multi-UAV PSR-STA after it has been

successfully simulated, identifying important trends and patterns related to system effec-

tiveness. To do this, metrics that quantify effectiveness are identified. Exploratory analysis

methods for understanding the system behavior of a single simulation are presented, and

statistical and graphical techniques comparing simulations across a wide range of scenarios

are demonstrated. Furthermore, methods that allow one to identify spatial and temporal

trends common across multiple simulations are presented. A second case study is performed

to verify the benefits of these methods.

In summary, the outcomes of this thesis for completion of the objective are:

4

1. Propose a framework that facilitates simulation design through the identification of

design decisions that should be made to successfully simulate multi-UAV PSR-STA

2. Implement a simulation model and necessary algorithms for successful study of multi-

UAV PSR-STA, including a method for placement of chargers and collectors dependent

on probabilistic information

3. Identify important metrics to characterize system effectiveness of multi-UAV PSR-STA

and identify trends related to these metrics

4. Examine many different simulations of multi-UAV PSR-STA to verify the usefulness

of the framework, metrics, and methods developed as a result of previous outcomes

1.3 Document Organization

The outcomes discussed in Section 1.2 are addressed in the subsequent chapters of

this thesis. Chapters 2 and 3 are separate, self-contained journal articles recently submitted

to peer-reviewed journals. In Chapter 2, the simulation and analysis framework is intro-

duced. Important design decisions for simulating multi-UAV PSR-STA are presented along

with related literature regarding these decisions, and general principles and simple metrics

are laid out for analyzing multi-UAV PSR-STA. A case study based on a UAV park cleanup

is performed, and to implement this case study, methods are demonstrated that 1) facili-

tate persistent UAV operation, and 2) provide a methodology for determining charger and

collector placement based on probabilistic information. Four different multi-UAV search

patterns are examined, and their performances are compared in different scenarios. Analysis

techniques are used to spot deficiencies in search patterns and understand trade-offs in the

system.

Chapter 3 extends the analysis techniques and metrics presented in Chapter 2 for the

purpose of recognizing and quantifying spatiotemporal trends of overall system effectiveness.

Techniques of dimensionality reduction and graphical comparison are used for understanding

the temporal and spatial patterns inherent in individual simulations. Comparative analyses

for a wide range of scenarios are performed using similar methods. An additional set of

5

simulations based on the case study in Chapter 2 are performed, with the resultant data

analyzed for spatiotemporal trends and patterns.

Chapter 4 discusses the conclusions of this research, as well as limitations and possible

future work. Following Chapter 4 is Appendix A, which consists of the source code used for

this thesis.

6

CHAPTER 2. A FRAMEWORK FOR MULTI-UAV PERSISTENT SEARCH
AND RETRIEVAL WITH STOCHASTIC TARGET APPEARANCE IN A
CONTINUOUS SPACE

2.1 Preface

This chapter introduces a framework for multi-UAV PSR-STA. Design decisions are

introduced for understanding how to successfully simulate multi-UAV PSR-STA. Tools for

analyzing search algorithm effectiveness through statistical and graphical methods are pre-

sented. A case study of multi-UAV park cleanup is implemented to demonstrate the frame-

work, where algorithms for choosing the locations of collectors and charging stations based

on stochastic target appearance models are proposed, methods for continuous multi-UAV

operation over a long period time are demonstrated, and the differences in effectiveness

between four coverage search patterns are analyzed.

2.2 Introduction

Battery powered autonomous unmanned air vehicles (UAVs) are becoming prevalent

in many applications [23–25]. The primary focus of this chapter is to introduce a frame-

work for one such application, the persistent search and retrieval task with stochastic target

appearance (PSR-STA), in which UAVs intelligently and systematically search an area for

stochastically appearing targets of interest to retrieve and deliver them to a collector loca-

tion. This task is an extension of the persistent surveillance task, in which UAVs persistently

monitor a known environment [6], with the search and retrieval task, where agents must find

targets in an area and deliver them to a predefined location [7]. The surveillance task is

extended by including stochastically appearing targets that must be retrieved and delivered

to a collector location upon discovery. Examples of this problem domain are environmental

sample collection or litter removal.

7

Extending persistent surveillance with the search and retrieval task reveals rich and

exciting research questions that should be answered to design solutions for the problem.

First, UAV autonomy must be considered. This includes choosing coordinated multi-UAV

search strategies and determining methods to enable persistent UAV operation beyond the

battery life of an individual UAV. Secondly, deciding the number and locations of battery

recharging stations to aid persistent operation, and the number and locations of collectors

to facilitate effective target retrieval strategies must be considered. Previous works have

considered arbitrary numbers and locations for recharging stations [12, 13], or optimized a

chosen number of recharging locations for tasks without stochastic elements [14, 15]. Multi-

UAV PSR-STA motivates an augmentation of these methods to design a collector and charger

placement algorithm based on stochastic event information.

The advent of computer simulations and agent-based models enable the simulation

of multi-UAV PSR-STA. However, it can be complicated to combine the different parts of

persistent surveillance and search and retrieval such as motion models, battery life, and

multi-UAV coordination into one integrated system. Even when these elements are inte-

grated and simulated successfully, it is difficult to analyze the system except with simple

comparison tools. A framework is introduced for PSR-STA that helps facilitate simulation

design and analysis. Design decisions that should be made to successfully simulate PSR-

STA are introduced. Methods are described for solving challenges related to UAV autonomy,

charger placement, and collector placement. Tools are presented for analyzing search algo-

rithm effectiveness and understanding how different parameters influence the outcome of

a simulation. The example of a multi-UAV park cleanup scenario is used to demonstrate

the framework and show examples of how to understand and design solutions for problems

related to PSR-STA. Four different multi-UAV search patterns are examined, and their per-

formance is compared in different scenarios. Analysis techniques are used to spot deficiencies

in search patterns and understand trade-offs in the system.

8

2.3 Related Works

2.3.1 Target Search and Retrieval

Foraging and multi-foraging, the study of agents that must find resource locations,

collect them, and deposit them at a specific location, is an example of a coordinated search

and retrieval task [7, 26–28]. Foraging takes place in an unknown environment and empha-

sizes decentralized communication schemes between agents to achieve tasks with minimal

interference between agents and minimal communication [29]. The effectiveness of foraging

is most influenced by information exchange and exploration vs. exploitation tradeoffs [30]

since the agents do not usually share global information [31]. Though multi-foraging includes

target search and retrieval, it takes place in an unknown environment, and so the problem do-

main focuses on individual exploration, local communication, and task allocation strategies

that coalesce into effective emergent behaviors, a bottom-up approach [32]. In PSR-STA, the

environment is known, which allows for centrally coordinated search patterns, a top-down

approach.

Others have studied the problem of UAV cooperative autonomous search and retrieval

of small objects in uneven terrain, but focus on coverage patterns for a single search in an

environment [33] and complex real world implementation problems such as identifying and

grasping objects [34,35].

2.3.2 Persistent Surveillance

Persistent surveillance, also known as persistent coverage, involves visiting areas re-

peatedly to complete tasks or monitor changes in an environment. Many formulate these

kinds of problems as repeatedly visiting waypoints [36, 37]. This transforms the problem

into a variant of the traveling salesman problem (TSP), which has many heuristic solu-

tions [38, 39]. If the problem cannot be defined as a TSP, a solution is to partition the area

and assign a UAV to search each partition [40]. Since each UAV has its own partition to

patrol, it is easy to deploy multiple UAVs while avoiding potential collisions. These parti-

tions range from simple square or hexagonal grids [41] to Voronoi partitions [42]. The UAVs

deploy local searching patterns in each partition [43], and additional algorithms are used

9

to determine which partition each UAV will visit based on energy efficiency [44] and other

criteria.

Modeling UAV recharging for continuous operation adds another layer of complexity

to the problem. In variations of the persistent surveillance problem that include battery

recharging, a common solution is to first model one or more charging stations in arbitrary

locations that the UAVs repeatedly visit to recharge. The UAV search strategy is then

optimized based on the charging station locations and the area of interest [12, 13, 45–48].

Other solutions simultaneously optimize charging station placement and search patterns

with a genetic algorithm or a heuristic search technique [14,15,49,50].

2.3.3 Persistent Surveillance Analysis Methods

Many techniques have been developed for analyzing persistent surveillance. One way

is to run many different simulations, varying input parameters of interest [12, 13]. The

parameter combinations can be decided with a design of experiments (DOE) methodology

such as Latin Hypercube [16], or Monte Carlo Sampling [51]. During these simulation runs,

outputs of interest are measured and recorded. The effect of the parameters on the outputs

of interest can be understood by making a surrogate model of one of these outputs using

the simulations runs, and exploring the surrogate model behavior [16]. Another analysis

method is to use tools based on agent-based modeling to identify emergent behaviors in the

simulations [52].

When persistent surveillance is defined as visiting discrete waypoints, connected in a

graph, one metric of interest is time since each waypoint was last visited [53]. This metric

can be weighted by a numerical value representing the importance of each waypoint [21]. In

the case of a continuous space, the area can be divided up into grid cells each containing the

value of time since last visit. When the UAV visits the cell, its time is reset to zero [6]. If the

detection model is probabilistic, the cell value can be a measure related to the probability

of a target existing in the cell instead of the time last visited [54].

It is often useful to compare metrics of interest graphically for analysis. Aggregate

outcome parameters are often compared using bar or line charts, sometimes with confidence

intervals included [55]. Heat maps can also be useful for displaying spatial data. The area of

10

Simulation Environment

Battery Charge Method
Inductive charge

Battery swap
Battery Life

Recharge time
Fly time

Multi-UAV Interactions
Task allocation

Communication between UAVs

Flight Dynamics & Control
Motion model

Autopilot

Maneuver Models
Dock at charging station

Disconnect from charging
Retrieve target
Deposit target

Search Methods
Space Coverage

Real-time optimization

Target Detection

Obstacle Detection &
Avoidance

Chargers
Maximum UAV capacity

Mobility
Location

Target Appearance

Obstacles
Stationary

Moving

Collectors
Maximum target capacity

Location

UAVs

Size and
Characteristics of

SpaceA

B

C

D

E

F

G

H

N

K

L

M

J

Figure 2.1: Simulation design overview, where boxes represent elements and subelements,
and arrows represent subelement relationships, pointing to the parent element. Bold text is
the title of each element and additional text in the boxes are potential design decisions for
the respective element

interest can be divided into grid cells, each with a value representing an output at that space,

represented on a color scale. Li et al. compared average visit time heat maps to compare

two different search strategies [49]. These heat maps showed how one strategy visited an

important area more often than another strategy. Others use 3D bar charts or surface plots

to explain similar data, but these should be avoided since they can be misleading when used

for comparison [56].

2.4 Methodology

This framework for the persistent search and retrieval is split into two sections: The

first addresses how to design and simulate the problem domain, and the other on how to

analyze it. Although decisions about the simulation design have large effects on the methods

of analysis, there are some common tools that can be used regardless.

2.4.1 Simulation Design Framework Overview

An overview of the framework’s design decisions that must be determined is shown

in Fig. 2.1. The UAVs form an important part of the simulation environment, but require

many more design decisions from other subcomponents of the environment. When different

11

elements from Fig. 2.1 are mentioned, they are labeled with the corresponding letter in the

text.

Simulation Environment Modeling

The simulation environment represents the physical space of interest for the search

and retrieval problem, where targets will stochastically appear and UAVs will search (Fig 1.

box A). It can be modeled by a series of vertices that form a 2D bounded polygon, or complex

3D data including elevation, terrain type, and weather conditions [57]. Obstacles can also be

represented in the environment (Fig 1. box D). These can include simple stationary obstacles

such as buildings or trees as well as moving obstacles such as humans, animals, or debris.

These decisions can introduce complications in UAV path planning and coordination, and so

are important to consider. Along with the static features, it is critical to model the process

by which targets appear in the simulation (Fig 1. box B), which is important because UAVs

will base their search behavior on the target appearance model [58], and determining the

search behavior is a primary research question to answer, as discussed in Sect. 2.2. One way

to simulate target appearance is by basing the model on time and spatial distributions [59],

but data from real world scenarios can also be used to inform the model. Other features to

model are chargers (Fig 1. box E) and collectors (Fig 1. box C). Collectors are locations

that are designated for UAVs to deposit targets and can require a maximum capacity of

targets. The charger locations, where UAVs can land and replenish their energy, can be

mobile [60] or stationary [48], and can charge UAVs (Fig 1. box F) inductively [61], with

a battery swapping methodology [62], or through many other methods [63]. These charger

design decisions can affect the UAV charging strategy, which can ultimately influence overall

system effectiveness.

UAV modeling

There are a myriad of types of UAVs that can be modeled for a multi-UAV task,

but common types are based on fixed wing and multi-rotor designs [64]. UAV behavior

modeling starts with the motion model (Fig 1. box G). This can range from a simple Dubins

12

model [65] to a more complex model that matches the specific behavior of a UAV [66]. For

more complicated models, autopilot, path following, and state estimation must be considered

to direct the behavior of the UAV [67].

Another element of the UAV is modeling the maneuvers (Fig 1. box H), or activities

performed other than simple flying between two points. There are four UAV maneuvers

identified with PSR-STA: docking at a charging station, resuming flying after energy replen-

ishment, retrieving a target, and depositing a target in a collector location. Docking at a

charging station depends on the type of charging station. A battery swap station may involve

a specific docking method where a system at the station swaps the battery in the UAV [62].

Inductive charging stations may require modeling how a UAV lands with an orientation on

a charging pad that allows for wireless energy transfer [68]. Retrieving a target involves

descending and picking up an object [69]. If the targets could be heavier than the maxi-

mum payload of the UAV, then multiple UAVs picking up a target could be modeled [70].

Depositing a target may be similar to retrieving a target and could be approximated in a

similar manner to the retrieval model.

For target detection (Fig 1. box N), detailed models of camera based [71] detection

can be included, as well as simpler models such as approximating sensor functionality as

seeing everything in a radius. These models can depend on distance from the target, speed,

attitude, altitude, and other parameters. Obstacle detection and avoidance (Fig 1. box K)

is a related element to target detection, since similar detection models can be shared for

detecting obstacles and targets. Obstacle avoidance can involve algorithms such as potential

fields or D* [72], planning around obstacles with an online optimization algorithm at each

time step [73], and cooperative obstacle avoidance [74].

Another important UAV element to model is its limited flight time based on energy

capacity (Fig 1. box J). This could range from a simple linear model of flight time where

there is always a constant amount of time for flying after refueling to a complex non-linear

model with rates of energy depletion depending on speed, payload [75], or the maneuver

being performed [76,77].

Motion models, maneuvers, target and obstacle detection, and limited flight time all

influence a critical design decision: UAV autonomous behavior. Search methods must be

13

modeled to find stochastically appearing targets (Fig 1. box M). These can be implemented

as deterministic space coverage algorithms [78] or real-time optimized search algorithms

[79]. They can be informed by knowledge of a known target appearance distribution [58] or

recalculated at each time step based on learned information about where targets appear [80].

Multi-UAV interaction and coordination such as task allocation between UAVs [81] and

communication constraints [82] can also be considered (Fig 1. box L). All of these elements

contribute to the multi-UAV PSR-STA and are important design decisions that can affect

analysis.

2.4.2 Analysis Framework Overview

In any analysis framework, goals and metrics of effectiveness must be defined. With

persistent surveillance, one overall goal may be to minimize the amount of time for target

retrieval, or to minimize the amount of targets in the area at one time. In some cases the

goal may be to keep these metrics at steady state values. Different practical implementations

of the problem domain will produce variations on these goals based on factors such as noise

restrictions and energy efficiency, but all will likely be related to the amount of time targets

are present or the number of targets in the simulation.

Regardless, two important factors to understand are how effective the UAV auton-

omy strategy is for achieving a goal, and how many resources such as UAVs, chargers, and

collectors it takes to service a situation with a given appearance frequency of targets. These

factors both influence effectiveness, but are independent of each other. If the UAVs have a

terrible search strategy, but there are many more UAVs than needed to retrieve and deposit

targets, goals could be met. Likewise, UAVs could have a proven optimal search strategy,

but if there are not enough UAVs to retrieve and deposit all the targets that appear, goals

would not be met. In real world scenarios it is often advantageous to meet a goal with the

fewest resources necessary, or to meet a goal within a budget, and so it is important to

understand how UAV autonomy strategy and resource requirements influence effectiveness.

DOE and statistical tests can help illuminate how parameters of interest affect goal metrics.

Different types of surrogate models such as linear regression can be employed with

each simulation run as a data point to understand the practical and statistical significance of

14

different parameters on the metrics of effectiveness. Parameter estimates can be examined,

or optimization techniques can be used on these models to find optimal parameters to meet

a goal. Graphical visualizations can also help to reveal patterns and understand trends

including line charts, which help visualize values over time, and heat maps, which help

visualize spatial patterns that can be hard to understand from simple aggregate values.

2.5 Framework Implementation

This research implements the framework with a case study of a multi-UAV park

cleanup to demonstrate how to use the design framework to model a scenario, introduce

algorithms that solve common problems arising in this problem domain, and present analysis

tools that help to understand the effectiveness of UAV search patterns. In multi-UAV park

cleanup, trash targets appear and UAVs search the park to retrieve the trash and deposit

it in collector locations. The simulation environment is a square park P , such that P ⊂ R2

with origin (0, 0), side length lP in meters. A square shape was chosen as most parks can

reasonably be generalized into a combination of square shapes, and thus results from a square

park can be generalized to a larger set of parks with irregular shapes. The trash targets are

generated through an assumption of littering by humans, and so the amount and location

of where trash appears can vary considerably depending on the park. For this case study, it

was assumed that the trash stochastically appears in P over time according to a binomial

distribution with an expected value of γ, with units of trash per hour. The location of the

target is chosen with a spatially uniform random distribution inside P upon arrival. This

simplification can be made more sophisticated with different distributions used for the arrival

rate and the location of arrival, but the uniform distribution was implemented to simplify

the modeling of littering while still having an adjustable parameter, γ, that influences how

often trash appears in the park.

Inside P there are a number of collector locations NC with unique positions, desig-

nated as places where UAVs can deposit found trash. There are also a number of charging

stations NR in P , each with multiple inductive charging pads that the UAVs can land on

to recharge. The stations are assumed to be connected to a power grid, and so have a con-

stant supply of power. Furthermore, each station was assumed to have been set up with

15

enough pads to charge the UAVs that landed on them for the duration of a simulation. This

assumption was made because it was presumed that information about which UAVs will

charge on which station is taken into account with choosing how many pads to allocate to

each charging station.

UAVs are modeled as agents with a speed and a heading, as described by Dubins [65].

The UAV was assumed to be a quadcopter, with parameters based on the specifications of

the DJI phantom 4 Pro. The nominal UAV speed s was set at three meters per second. The

flight time TF was set at 30 minutes. The recharge time from a depleted battery to a full

battery TR was set at one hour. There were four unique maneuvers other than searching

that the UAVs had to perform to complete their tasks: 1) Docking to charge, 2) Taking

off after charging, 3) Retrieving trash, and 4) Depositing trash in a collector. All of these

maneuvers were modeled as constant time delays so that complicated dynamics would not

have to be implemented in the simulation, since this is beyond the scope of this case study.

Assuming a robust control model, landing and taking off from a charging location should

take a near constant amount of time. A delay of one second was added to represent model

acceleration decrease and increase from s when the UAV is landing at the charging station

τc and taking off τto. Retrieving trash and depositing trash were modeled as 5 second delays

(τrt and τdt respectively) after reaching trash and collector locations so that the modeling

could be independent of any trash retrieval method such as grasping with an arm, scooping

or other similar specific techniques.

Detection is often modeled as a probabilistic phenomenon [83,84]. For the case study,

however, trash detection was modeled as the UAVs always being able to always detect trash

within a circle centered on itself with radius rd and could not detect trash outside this

distance. This simplification was made so that non-probabilistic search patterns could be

studied. Finally, the UAVs did not avoid each other, it was assumed they flew at slightly

different altitudes when crossing paths, and there were no obstacles considered in the park.

Therefore, no avoidance algorithms were necessary.

16

Perform
searching
behavior

Go to trash
Deposit
trash in
collector

Retrieve
trash

Go to closest
charger

Charge

Reach trash

Go to
nearest
collector

Finish retrieving trash

Reach collector

Finish
charging

Start Decide to
 charge

Reach
charger

Finish
depositing
trash

Detect trash with
enough energy to
complete task

Detect
closer
trash

Figure 2.2: UAV autonomy state diagram for park cleanup

2.5.1 UAV Autonomy

The decision making process for each individual UAV is represented by the state

diagram shown in Fig. 2.2. A UAV starts at the beginning of a simulation on an arbitrary

charging pad. It takes off and immediately starts searching the park with a specific searching

strategy. If the UAV sees trash less than rd away during the search, it evaluates an inequality

to see if it has enough battery power to travel to the trash, retrieve it, deposit it, and make

it to a charging station if necessary. This condition is represented in Eq. 2.1, where dUAV,t is

the distance from the UAV to the trash, min(dt,c) is the closest distance from the trash to any

collector, min(dc,r) is the closest distance between any charger and the closest collector to the

trash, Te is the elapsed flight time since take off, s is the UAV speed, and C1 a constant factor

added to account for any uncertainty in these parameters or numerical limitations. Since

17

these terms are all known in this scenario, C1 was set to one to account for any numerical

computational errors. The assumption that the distances can be calculated accurately stems

from the assumption that a UAV has an internal map of the park and a good estimate of

where the trash is from its sensors.

TF − Te ≥
dUAV,t + min(dt,c) + min(dc,r)

s
+ τrt + τdt + τc + C1 (2.1)

If Eq. 2.1 is satisfied, the UAV sets the trash target as its goal and flies towards it.

If a UAV detects closer trash on its way to the target, it evaluates Eq. 2.1 again with the

position of the closer trash, and if the inequality is satisfied, the UAV updates its goal to

this closer trash target. Once the UAV reaches the trash, it retrieves it during τrt. The UAV

then travels to the closest collector and deposits the trash in the collector on arrival, after

which it sets out again to search according to its specified searching strategy.

While the UAV is searching, it evaluates Eq. 2.2 at each time step, where min(dUAV,r)

is the distance between the UAV and the closest charging station, converted to time of flight

to the station by dividing it by the nominal UAV speed, τc is the time it takes to land on

the charging station and C2 is a safety constant, similar to C1. C2 was also set to one second

for this case study. If Eq. 2.2 is true, the UAV returns to the closest charging station. After

traveling to and landing on the charging pad, the UAV proceeds to charge until full and then

returns to search.

TF − Te <
min(dUAV,r)

s
+ τc + C2 (2.2)

If all the UAVs were deployed at the same time, after searching for TF their energy

would be depleted at the same time and they would all need to recharge simultaneously.

During the period of recharging there would be no UAVs to search the park and retrieve

targets. To avoid this situation, the UAVs are split up into deployment groups that start

searching at staggered times. This guarantees that at least some UAVs will be deployed at

all times. The number of groups is dependent on the ratio of the recharge time to the fight

time and with Tr = 60 and TF = 30, the ratio is 2. This means that two groups of UAVs are

required to search the area in the time it takes one group of UAVs to recharge. Therefore, a

minimum of three groups of UAVs are needed in total to have UAVs continually deployed.

18

Figure 2.3: UAV deployment schedule for three UAV groups

(a) Global lawnmower (b) Partitioned lawnmower

Figure 2.4: Search patterns

Given one UAV group has full energy, one group is charging with half energy, and the other

has just returned from searching, the UAV group with full energy can search until the its

group’s energies are depleted. After this, the group with half energy will have full energy

and can take the place of the group with no energy, and the cycle can repeat. A visualization

of this scheduling process is shown in Fig. 2.3.

2.5.2 UAV Search Strategies

As part of this case study, four search strategies were implemented and evaluated.

The first, called random bounce, consists of each UAV proceeding on a straight line until it

reaches the edge of the environment, then choosing a random angle facing towards a different

edge of the environment and heading in a straight line in that direction. This is repeated

19

for as long as the UAV is searching. In the second search strategy, called global lawnmower,

the UAVs follow a lawnmower path through the entire park as shown in Fig. 2.4a. They are

initialized to start their searches on the path with equal distances between them as measured

on the path length of the lawnmower pattern to spread evenly out.

With the third search algorithm, called partitioned lawnmower, the area is partitioned

into subdivisions. The number of subdivisions is equal to the number of UAVs patrolling

as seen in Fig. 2.4b. Finally, in the fourth strategy, named partitioned bounce, the area is

likewise partitioned into subdivisions but the UAVs follow the strategy of random bounce

within their partitions. The partitions were created through a Voronoi diagram with Voronoi

vertices being the points chosen with the algorithm explained in section 2.5.3.

The algorithm to generate the lawnmower pattern for global lawnmower and par-

titioned lawnmower was based on an algorithm (labeled “algorithm A” in the referenced

paper) by Di et al. [85] and modified to be dependent on rd. The algorithm was designed

to function in convex polygons since for global lawnmower, the lawnmower pattern is in

a square, and for partitioned lawnmower, the partitions are always convex due to Voronoi

regions always being convex [86]. One major change to the original algorithm is that if the

distances from all the vertices to the midpoint were less than 2rd, a spiral pattern was used

since the lawnmower algorithm had a high probability of not covering the whole area in these

situations. The algorithm is referenced in Algorithm 1, where d(c, v) is the distance between

the centroid and a vertex, d⊥max is the longest perpendicular distance between the longest

edge and any vertex, dedge is the distance from the edges to the search pattern, and dlane is

the distance in between each long pass over the area.

Galceran et al. mention critical points that are not covered in the lawnmower pattern

if dedge is rd and dlane = 2rd in a square [87]. This can be fixed by dividing dedge and dlane by
√

2, which guarantees this distance is always covered in a square, at the cost of adding extra

lanes. Fig. 2.5 illustrates this change. If the convex polygon is not a square shape, critical

points could be inclined on a slope such as in the patterns in Fig. 2.4b. In this situation,

even with a multiplicative correction term of 1√
2

applied to dedge and dlane, there will still

be uncovered critical points. In this case an extra term C3, that can contain a value such

that 0 < C3 ≤ 1, was multiplied to dedge to adjust it so that the whole space is covered.

20

Algorithm 1: Search Pattern Generation for a Convex Polygon

Input: rd, set of vertices ~V for a simple convex polygon, centroid of polygon c
Output: Ordered list of waypoints for search pattern
if d(c, v) < (2rd), ∀v ∈ ~V then

Construct Spiral Pattern;

for v ∈ ~V do
if d(c, v) < rd then

insert c into point set if not already exists;
else

direction ← c−v
d(c,v) ;

point to add ← (v + rd∗direction);
insert point into point set;

end

end

else
Construct Lawnmower Pattern;
emax ← Longest edge;

d⊥max
← max (d⊥(emax, v),∀v ∈ ~V) ;

dedge = C3 ∗ rd√
(2)

;

dlane = 2∗rd√
(2)

;

Nlanes = 1 +Round(
(d⊥max−2∗dedge)

dlane
);

~t← tangent direction of emax facing inside polygon;
Vcurr ← vertices of emax;
for i← 1 to Nlanes by 1 do

if i = 1 then

Vcurr += dedge ∗ ~t
else

Vcurr += dlane ∗ ~t
end
lV ← line connecting Vcurr;
lI ← line formed from intersection points with polygon when lV is extended infinitely;
m← midpoint of lI ;
if length(lI) > 2 ∗ dedge then

PtoAdd ← endpoints of lI translated towards m by dedge;
if i mod 2 = 0 then

Add PtoAdd1 then PtoAdd2 to point set;
else

Add PtoAdd2
then PtoAdd1

to point set;
end

else
Add m to point set;

end

end

end
return point set;

21

(a) Original pattern with critical areas
uncovered (i.e. not searched by a UAV)

(b) Modified lane width with critical ar-
eas covered (with the cost of overlap)

Figure 2.5: Lawnmower comparison before and after modified lane width. Outside border
represents the park boundaries

Adjusting dedge is advantageous rather than adjusting dlane, so that extra lanes will not have

to be added to accommodate the extra critical points. C3 was experimentally set at 0.6 to

make sure the area was covered across all the full range of park sizes and UAVs search radius

values. One drawback to this approach is that there is a small possibility points might not

be covered, but in all cases that were evaluated the area was negligible.

2.5.3 Collector and Charger Placement Algorithm

During the course of the simulation, UAVs will travel to collectors and chargers

many times and therefore it is important to optimally place them so that less time will be

spent depositing targets and travelling to charging stations and more time spent searching

for targets. Consider a square space with a set of positions, M, containing a number of

positions Np, each defined in R2 within the park. Since a UAV flies to the closest collector

after picking up trash, and flies to the closest charging station with low energy, the charger

and collector positions should be placed in a way than minimizes the average distance from

the locations where these events will likely occur to their closest positions in M.

The average distance from any point to its closest position of interest inM weighted

by the probability of events occurring in certain locations, davg, can be defined as an in-

tegral davg = 1
AP

∫ lP
0

∫ lP
0
w(x, y) min(d((x, y),M))dxdy, where AP is the area of the park,

22

Figure 2.6: Optimized positions with heat map of the distance from each grid cell to the
closest position in M

min(d((x, y),M) is the Euclidean distance from a point defined by coordinates (x, y) to the

closest position in M, and w is a weighting function the depends on the probability of the

event happening at that location.

Since targets appear with a uniform random distribution, and appear according to

a binomial distribution with an expected value of γ trash per hour, w(x, y) is constant and

can be pulled out of this integral. The probability of a UAV deciding to charge for a certain

location can be complicated to model since it is dependent on the UAV search path and the

stochastic nature of the target appearance model, but a conservative estimate is to treat the

whole area with equal probability as with the target appearance model. This assumption

will be made for the purposes of this case study, and so davg can be considered equivalent

for charger and collector placement. This integral can be evaluated discretely by dividing up

the area into grid cells and calculating the distance from each grid cell to its closest position

of importance, and taking the average of these distances. If the spatial probability of an

event occurring were to be different than a uniform distribution, w(x, y) could be discretely

23

Figure 2.7: Objective function minimized with different numbers of positions

approximated in each grid cell and multiplied with the distance of the grid cell to its closest

position of importance.

An optimization problem was formulated to choose M to minimize the objective

function. This is shown in Eq. 2.3 where the area is divided into a set of square grid cells G

of equal area, with min(d(g,M)) being the minimum Euclidean distance from the centroid

of a grid cell to any charger or collector position in M.

minimize
M

f(M) =
1

|G|
∑
g∈G

min(d(g,M))

subject to 0 ≤ mx ≤ lP , ∀m ∈M,

0 ≤ my ≤ lP , ∀m ∈M

(2.3)

A two-step optimization was performed to minimize this objective function. First,

an initial solution was found with a differential evolution algorithm from scipy’s optimize

package [88]. In this first step, |G| was defined as 900 grid cells, equivalent to a 30 by 30 grid,

to reduce computation time for the initial approximate solution. After the approximate solu-

tion was found a convex minimization algorithm, the SLSQP method from scipy’s optimize

24

package [89], with a much finer grid discretization was used with the initial approximate

solution as a starting point to find the local minimum in that area.

Examples of resulting position placement from optimizing the objective function are

shown in Fig. 2.6. The objective function values from this optimization with increasing Np

are shown in Fig. 2.7 for a park with lP = 100 m. This generally follows an exponential

slope downwards, with larger decreases seen when Np is closer to zero, and smaller decreases

with increasing Np. However, if the area of the park AP is large, depending on the cost,

adding an extra position even with a high nominal Np may be worth the decrease in average

distance.

Figure 2.8: Screenshot of interactive GUI

(a) ti = 1100 (b) ti = 1150 (c) ti = 1200

Figure 2.9: Heat maps over time where the value of each grid cell is the time since the cell
was last searched by a UAV

25

(a) Partitioned lawnmower search pat-
tern

(b) Average time since last searched
heat map

Figure 2.10: Results for simulation with 15 UAVs and γ = 12.36, note that the the locations
where collectors are present are searched more often since the UAVs search after they deposit
trash in the collector

2.5.4 User Interface and Simulation Exploration

A graphical user interface (GUI) was created for visualization of simulation behavior,

along with charts for exploratory analysis. A screen shot of the GUI is shown in Fig. 2.8.

The left section of the GUI shows the park, a 2D square, with UAV agents symbolized by

the gray four pointed symbol. The circle around each UAV represents the boundary of its

detection area dependent on rd. The search patterns of each UAV group are plotted; in Fig.

2.8 the partitioned lawnmower patrol paths are displayed. The other elements positions are

as shown in the left section, and represented by the legend in the middle. The right side of

the GUI has an adjustable line chart that displays how a specified value changes over time.

In Fig. 2.8, the chart is set as the number of trash in the simulation at each time step, which

can be examined to quickly know at what time steps the number of trash in the simulation

was high. The slider bar and buttons can then be used to navigate to those time steps and

understand the patterns or behaviors that caused the high values.

Optional heat maps can be toggled on and off in the left section of the GUI, used

to visualize spatial information. One heat map displays data dependent on when the UAV

last searched a grid cell from a set of equal area grid cells G in P . Whenever a grid cell in

G was less than a number of cells away from the UAV while it was searching, meeting the

equality described to Eq. 2.6, it was reset to zero, and all other cells add one to their value

26

at each time step. In Eq. 2.6, rg is the detection distance converted to number of grid cells,

xg is the number of horizontal grid cells from the grid cell containing the UAV, and yg is the

number of horizontal grid cells from the grid cell containing the UAV. The grid cell radius,

rg is resultant from Eq. 2.5, where lg is the length of a grid cell, or the ratio of the the park

length, lP and the number of cells in a row of cells,
√
|G|. rd

lg
was rounded since rd

lg
is usually

not an integer, and one was added to make sure that the UAV wouldn’t miss grid cells that

were actually searched.

lg =
lP√
|G|

(2.4)

rg = Round(
rd
lg

) + 1 (2.5)

√
(x2g + y2g) ≤ rg (2.6)

Three selected times from the full time series of these heat maps are shown in Fig.

2.9. From these heat map visualizations, the areas of the park that have not been searched

for a long period of time can be identified by the lighter hues. The time history for this heat

map is recorded for each grid cell, which enables a heat map display of the average last search

time for each cell over the entire simulation, providing a high-level output metric of how the

UAVs performed overall. An example of such a heat map is shown in Fig. 2.10b with the

associated scenario separated into Fig. 2.10a for clarity. In Fig. 2.10b the locations where

the UAVs crossed their partition from the end to the beginning of their lawnmower patterns

have a lower average search time because these segments overlap areas already searched in

the lawnmower pattern. Four lighter spots can also be seen around the collector positions,

since UAVs start searching for trash immediately upon depositing trash into the collectors,

and γ was high enough, in this example, so that there were frequent visits to each collector.

It can also be seen that the overall partition in the center is lighter, which suggests it takes

less time for the UAV in that partition to cover its space, on average, and correlates to a

smaller area as compared to the outer partitions. These hue differences identify areas for

improvement in the lawnmower and partitioning algorithms, since ideally there would be no

overlap with the lawnmower pattern and the partitions would be equal area.

27

�

�

�

�

/R
J�
$Y
J�
7L
P
H�
7U
DV
K�
/H
IW�
2
XW
�

��
�
�
�

/R
J�
$Y
J�
7U
DV
K�
��7
VW
HS
�

�
�
�
�
�

/R
J�
$Y
J�
9L
VLW
�7
LP
H�
(D
FK
�&
HO
O�

U ������

U ������

� � � �

U ������

U ������

�� � � � �

U ������

U ������

� � � � � ��

Figure 2.11: Correlations of log(outputs)

Table 2.1: Continuous parameters with upper and lower limits for LHS DOE

Parameter
Lower
Limit

Upper
Limit

Unit

NC 1 10 Collectors
NR 1 10 Chargers
NUAV 3 27 UAVs
lP 200 800 Meters
γ 10.8 108.0 Trash/Hour
rd 10 50 Meters

Table 2.2: Discrete parameters with associated levels for LHS DOE

Parameter Setting
Search Pattern - Random Bounce

- Global Lawnmower
- Partitioned Bounce
- Partitioned Lawnmower

Charger Placement - Optimized
- Random

Collector Placement - Optimized
- Random

28

2.5.5 System Analysis and Verification

A design of experiments was created and executed to understand the impact of search

pattern and other parameters on effectiveness. The latin hypercube sampling (LHS) tech-

nique, which uniformly samples the design space [90], was chosen to generate parameter

values for each simulation. Nine parameters were chosen as variable inputs to the simula-

tion, shown in Tab. 2.1 and Tab. 2.2. The simulations were run for TS = 42000 seconds,

corresponding to about one business day of operation for a park, 11.66 hours, with a time

step of one second. 5000 experiments, repeated twice, each with different random seeds

which caused trash to appear at the same rate but in different places, were performed for a

total of 10000 simulations.

A number of aggregate outputs measured in each simulation were chosen to quantify

effectiveness. The first of these measures relates to the set of trash Q that appeared in

the simulation over all time steps as the average time of trash retrieval, T r, defined as

T r = 1
|Q|

∑
t∈Q T

t
r , where T t

r is the amount of time from the appearance of trash t to its

retrieval by a UAV. The second effectiveness metric explored, also related to Q, was the

average number of trash left out at each time step, N t, defined as N t = 1
TS

∑TS

i=1 |Qi|, where

Qi is the set of trash left out at time step i. The third metric chosen was the average time any

area in the simulation was last searched, T v. This is defined in T v = 1
|G|TS

∑
g∈G

∑TS

i=0 T
g,i
v ,

where G is the set of discretized grid cells, similar to Eq. 2.3, and T g,i
v is the amount of time

since cell g had been searched last by a UAV at time step i. The value of the cell is reset

to zero time (since last searched) with the same methodology introduced for calculating the

heat maps in Fig. 2.9.

Examining the correlation of the outputs over all simulation performed in Fig. 2.11

revealed that the log of the outputs were all highly correlated with r-values higher than 0.9

and p-values of less than 0.0001. This shows that the outputs under question are highly

related. Multiple linear regression was applied to the log(T r) using JMP, a statistical pro-

gram, to understand how the input variables affected this output and to validate model

assumptions. The parameters chosen for the regression model were the first order effects

included in the DOE, and the (NUAV)2 second-order effect. The R-squared value calculated

from the fit of this model was 0.92. A rich model of all parameters and their second order

29

Table 2.3: Regression results for T r with confidence intervals (CI)

Term Estimate p-Value Lower 95% CI Upper 95% CI
Intercept 2,387.485 <.0001 2,253.526 2,529.407
Optimized Collector Placement 0.813 <.0001 0.800 0.826
Optimized Charger Placement 0.981 0.0231 0.966 0.997
NR 0.996 0.0123 0.994 0.999
NC 0.934 <.0001 0.931 0.936
NUAV 0.752 <.0001 0.748 0.756
(NUAV)2 1.005 <.0001 1.005 1.006
rd 0.969 <.0001 0.968 0.969
lP 1.005 <.0001 1.005 1.005
γ 1.011 <.0001 1.011 1.012
Search Pattern[Partitioned Bounce] 0.758 <.0001 0.741 0.776
Search Pattern[Partitioned Lawnmower] 0.600 <.0001 0.586 0.614
Search Pattern[Random Bounce] 0.723 <.0001 0.707 0.740

Table 2.4: Search pattern comparison with Tukey HSD test with Confidence Intervals (CI)

Level Comparison Level Est. Ratio Lower 95% CI Upper 95% CI p-Value
Global Lawnmower Partitioned Lawnmower 1.667 1.618 1.718 <.0001
Global Lawnmower Random Bounce 1.383 1.343 1.425 <.0001
Global Lawnmower Partitioned Bounce 1.319 1.280 1.359 <.0001
Partitioned Bounce Partitioned Lawnmower 1.264 1.227 1.303 <.0001
Random Bounce Partitioned Lawnmower 1.205 1.170 1.242 <.0001
Partitioned Bounce Random Bounce 1.049 1.018 1.081 0.0002

effects was fitted, but it only increased the R-squared value of the original fit by 0.03, and

so the simplified model was deemed sufficient and kept for subsequent analysis. In this fit

there is a strong correlation between each parameter and log(T r), implying that for each

unit increase in a parameter there is a multiplicative increase in T r with a magnitude unique

to each parameter and expressed by the estimates in Tab. 2.3. γ, lP , and rd all had a

significant practical effect on T r. This helped to verify the model, since these variables have

strong intuitive correlations with effectiveness. Bigger parks from increased lP require more

time for UAVs to search, higher γ causes UAVs to spend more time retrieving trash targets,

which leave less time to search, and smaller values of rd lead to longer travel distances and

more time to search a full park or a partition. Increased trash retrieval times and travel

distances increase T r, which is reflected with multiplicative effects on T r greater than 1.0

with γ and lP , and less than 1.0 with rd for unit increases in those parameters.

30

(a) ti = 300 (b) ti = 20300 (c) ti = 40300

Figure 2.12: Global lawnmower search pattern stack up effect over time

Although the linear regression results describe the comparative effects of each search

pattern on T r compared to the reference level, global lawnmower, Tukey’s honestly signif-

icant difference (HSD) test was performed to adjust p-values and confidence intervals for

multiple comparisons [91]. The results of this test are shown in Tab. 2.4. According to

the results it is highly suggestive that random bounce, partitioned bounce, and partitioned

lawnmower patterns had a larger reductive effect on T r compared to the global lawnmower

search pattern. Tukey’s HSD test also strongly suggests that the partitioned lawnmower has

a larger reductive effect on T r compared to random bounce and partitioned bounce, and

that there is a small but statistically significant difference between how random bounce and

partitioned bounce affected T r.

Examining global lawnmower more closely revealed why it performed much worse than

the other patterns. When a UAV detects trash as it traverses the global lawnmower pattern,

it retrieves and deposits it, and then returns to the same place on the global lawnmower

pattern that it started on when it detected the trash. During that time of retrieval and

deposit, UAVs following along the same path will decrease the distance gap between them so

that when the first UAV returns, the UAVs will be much closer to the first as they continue

the search. Over time, this behavior causes the UAVs to stack on top of each other as seen

in Fig. 2.12 and effectively reduces the percentage of the park that is searched at each time

step. With higher γ, this was even more pronounced. To avoid the stacking phenomenon,

an optimized strategy would need to be developed for the global lawnmower search pattern

that intelligently decides where UAVs should return to search after retrieving a target. A

31

first order strategy could include a return to the projected point further down the path had

the UAV not detected any trash.

2.6 Discussion and Future Iterations

One interesting result from the system analysis was that the number of charging

stations and whether they were placed randomly had a small influence on UAV effectiveness.

NR had a small reductive effect of 0.996 on T r for each charger added, and the estimate of

the effect between optimized and non-optimized charger placement on T r was 0.9815. This

could be attributed to the size of the parks being studied. In every scenario examined, each

UAV was able to patrol their area multiple times before having to charge. Since the UAVs

only travel between their search areas and charging stations twice every 30 minutes, it follows

that the distance to any individual charger would not have a large influence on effectiveness.

This could have been a bigger factor if a significant portion of the flight time was used to

fly to and from charging stations and partitions due to large park sizes and short TF .

The number and placement of the collector stations, however, made a significant

impact on effectiveness metrics. It is strongly suggestive that optimized collector locations

helped lower T r, with a p-value of less than 0.0001 and a multiplicative effect of 0.934 on

T r for each collector added. Placing collectors with the optimized locations also had a

0.813 multiplicative effect on T r compared to a random collector placement. Along with the

collectors, each additional UAV had a 0.752 multiplicative reduction in T r, which was a large

practical difference compared to other parameters. The second-order effect of (NUAV)2 with

an estimate of 1.005 shows that the benefits of adding a UAV slightly decrease as more UAVs

are added to the scenario, but overall there were large benefits for each UAV added. These

observations lead to the conclusion that if resources are constrained for charger, collector,

and UAV acquisition in park trash retrieval, resources should be put first to UAVs, then

to collectors, and chargers last, and that chargers and collectors should always be placed

according to the optimized methodology discussed in Sect. 2.5.3 as opposed to randomly.

Many elements of the simulation design framework (refer to Fig. 2.1) not included

in the experiment would likewise influence effectiveness. More constraints on the maneuver

models and risk of failure during the maneuvers would mean less efficient searching and less

32

time to find targets. Avoiding obstacles such as humans, animals, or trees would also increase

search time. More realistic object detection models that involve probabilistic detection would

make planning search patterns more difficult since it is not guaranteed to find a target

in a searched area. A real-time optimization algorithm could be more effective than the

deterministic search patterns presented since a real-time algorithm makes decisions about

where to search based on global information, rather than following a pre-planned pattern.

However, this method would increase computational costs and is left for future studies.

Multi-UAV interactions including sharing of information during return and drop-off segments

could have increased effectiveness of the system. Thus, if UAVs had memory of previous trash

seen and could communicate this to other UAVs, this could greatly increase the effectiveness

of the system, assuming the communication is reliable. If this knowledge were incorporated

in the searching strategy, this could cause even greater improvements. In the future, these

elements should be considered and the cost-benefit trade-off of each feature examined for

PSR-TSA.

2.7 Conclusion

In this chapter a framework for exploring the multi-UAV persistent search and re-

trieval task with stochastic target appearance was presented and discussed. The use of

graphical and statistical analysis techniques were demonstrated to verify and evaluate sys-

tem effectiveness. A case study was executed, with comparison testing of four search pat-

terns within the constraints of the framework. Statistical methods showed the partitioned

lawnmower search pattern performed the best compared to other search patterns, and the

influence of various parameters on overall effectiveness metrics suggested that increasing the

number of UAVs is, initially, the best investment strategy over increasing charger or collector

locations for typical park sizes.

33

CHAPTER 3. SPATIOTEMPORAL ANALYSIS OF MULTI-UAV PER-
SISTENT SEARCH AND RETRIEVAL WITH STOCHASTIC TARGET AP-
PEARANCE

3.1 Preface

The probabilistic nature of multi-UAV PSR-STA task introduces non-deterministic

elements in the multi-UAV search behavior that can make it difficult to analyze. Measures

that summarize the effectiveness of a multi-UAV PSR-STA scenario with one value can

be useful for an initial analysis, but may not be enough to fully understand the situation

since these measures do not adequately capture the variations of effectiveness over the area

and time period of the scenario. This chapter analyzes multi-UAV PSR-STA with methods

based on dimensionality reduction techniques and graphical comparison that are capable of

analyzing temporal and spatial trends in multi-UAV search effectiveness across a range of

scenarios. For temporal analysis, line charts are used for graphical comparison of temporal

patterns over a range of scenarios, and the discrete Fourier transform is used to identify

shared temporal signals. For spatial analysis, principal component analysis and a random

forest surrogate model with a profiler is used to explore the non-linear influence of input

parameters on spatial patterns. A trellis chart or figure of figures is used for graphical

comparison of both temporal and spatial patterns. Temporal and spatial measures tailored

for multi-UAV PSR-STA are introduced that enable these analysis techniques. This chapter

builds on the methods developed in chapter 2.

3.2 Introduction

Groups of small, autonomous, battery powered unmanned air vehicles (UAVs) are

increasingly used in many application areas [23, 92]. One such area is the persistent search

and retrieval task with stochastic target appearance (PSR-STA) [93]. In this scenario, UAVs

34

search an area for stochastically appearing targets of interest to retrieve and deliver these

targets to a collector location. An example of an application that motivates the study of

multi-UAV PSR-STA is litter removal, where litter is dislodged by wind or discarded by

people in an area [8] and retrieved and deposited into a trash bin by a UAV or other au-

tonomous agent [9]. A study prepared for the Environmental Protection Agency estimated

that west coast communities in the United States of America spend more than $520,000,000

each year to combat littering, and hundreds of species of animals are affected as the litter

is eventually displaced to the ocean [11]. This emphasizes the need for studying and un-

derstanding multi-UAV PSR-STA for successful deployment of UAVs to help with this task,

as UAVs relative low cost and ability to interact with the environment without an operator

would help to improve communities and reduce cost through autonomous litter collection.

Since testing many variations of multi-UAV search scenarios in the real world is time

and cost prohibitive, a common methodology for understanding the effectiveness of a UAV

search task is to create a computer simulation of the problem domain and run the simulation

many times according to a Monte Carlo approach or other simulation exploration technique,

varying chosen parameters while recording outputs of interest in each simulation [16–20].

Potential causal and corollary relationships can then be established among the inputs and

the outputs, and trends can be understood about which inputs are most influential to the

responses. From these analyses, conclusions can be made about which parameters have the

largest impact on effectiveness over a range of scenarios. This approach is an efficient way to

compare search algorithms, providing understanding into how parameters influence overall

search effectiveness and enabling many other insights into search algorithm performance.

However, if these patterns are to be implemented in real world scenarios, detailed analyses

that reveal information about spatial and temporal variations and patterns inherent in the

search behavior beyond simple quantification of effectiveness are desirable.

When search patterns follow a deterministic path, spatial and temporal pattern anal-

ysis is not as important since metrics of effectiveness are easily defined and UAV behavior is

deterministic. With multi-UAV PSR-STA, non-deterministic search behavior is present even

with deterministic coverage search patterns since UAVs must pause their search for a sig-

nificant amount of time when retrieving targets and delivering them to a collector location.

35

Table 3.1: Summary of analysis methods used in this research

Type of Analysis Methods Used

Temporal analysis
-Discrete Fourier transform
-Line chart examination

Spatial analysis
-Principal component analysis
-Random forest surrogate model with a profiler
-Heat map examination

Temporal and spatial analysis -Trellis charts (figure of figures)

Because of the delays in searching due to retrieving and delivering targets, the multi-UAV

search behavior does not follow an easily understood deterministic pattern, which motivates

the need to understand spatiotemporal variations in effectiveness in multi-UAV PSR-STA.

The location and number of resources such as collectors [93] and chargers [14] can also influ-

ence search effectiveness, which further complicates analysis. Some research has compared

time or spatial trends dependent on UAV search algorithms [49] and target appearance

models [55] for individual simulations. This work extends the exploration of spatiotemporal

trends for individual simulations in identifying and comparing trends over a wide range of

scenarios and parameters for multi-UAV PSR-STA.

It can be difficult to (1) identify spatial and temporal patterns resultant from UAV

search and (2) attribute the influence of varied input parameters to these patterns since

spatial and temporal patterns exist in high-dimensional spaces. This research aims to identify

and analyze patterns existent in multi-UAV PSR-STA over time and space by characterizing

high-dimensional spatiotemporal data in understandable and comparable lower dimensions,

extending metrics developed in [93] for spatiotemporal analysis, and presenting graphical

techniques to compare trends common among many scenarios. A summary of the analysis

methods used in this research is given in Tab. 3.1. Further introduction and explanation of

each method are given in sections 3.5 and 3.6.

This work builds on previous research of a framework and basic analysis methods

for multi-UAV PSR-STA by Day and Salmon [93]. It applies the problem specification and

algorithms from the previous work and reintroduces the metrics of effectiveness established

in the previous chapter, broadening their scope for use in identifying spatiotemporal trends.

36

3.3 Related Works

Research related to UAV search uses various metrics of effectiveness and analysis

methods to understand the behavior of the search algorithms. One metric discussed is

refresh time [94], also known as the time since an area was last visited. To measure this

metric, the area is discretized into square grid cells, and at certain intervals in the simulation,

the time since each grid cell was last visited by a UAV is recorded [49]. The criteria for when

a UAV has visited or searched a grid cell can be difficult to define, since a UAV’s detection

area is not always aligned with the arbitrary grid structure imposed for measurement. Some

techniques only count the grid cells as visited when the cell is completely covered by the

UAV’s detection area [95]. Others define the cells to be the same size as the detection area

of the UAV, and similarly only are counted as visited when the UAV detection area fully

overlaps the specific grid cell [6]. Waharte et al. proposed measures that account for when

a UAV’s search area is mostly in one cell, but overlaps other cells [96], but admitted that

their strategy was inferior to the best strategy, which was to introduce new grid cells that

matched the grid structure of overlaps at each time step. This best strategy was determined

to be computationally infeasible.

A related metric to refresh time is to have the value of each grid cell set at a constant

non-zero value if they are covered by the UAV search area and have the other uncovered cell

values decay linearly at each time step according to a constant, as was applied by Gainer et

al. [46], to examine relationships between coverage and UAV operation. Another metric of

effectiveness is to record the maximum value of the refresh time of any cell at each time step,

with specific subsections of interest having their own maximum refresh time, which can be

plotted to understand the oscillatory nature of persistent UAV search [97]. When the search

is probabilistic, the metric of information gained or the probability of detection [54] can be

considered, as well as a measure called awareness that is related to information entropy [98].

There are also many domain specific related measures of effectiveness such as the size of

burnt land for a forest fighting mission [16], the number of targets tracked over time for

a search and track task [46], and the average delay when a stochastically appearing target

appears and when it is observed in a mobile sensing task [55].

37

As mentioned in Sec. 3.2, a common way to analyze a scenario is to perform many

simulations, varying the parameters of interest, and then analyzing the resultant data in

bulk from the scenarios [18, 51]. If domain specific measures of effectiveness exist, these

can be examined to understand which parameters are most influential on effectiveness. One

way to examine the input parameters is to plot the output of interest in relation to an input

parameter, with box plots or confidence intervals showing the range of outputs from multiple

simulations for the input [22]. Multiple line plots could also be simultaneously plotted for

different levels of a parameter of interest [99]. This is useful when the number of input

parameters are sufficiently low, but patterns can remain overlooked if these plots are the

only methods used to visualize higher dimensional data. To examine an output variable that

is affected non-linearly, by multiple input variables, a common strategy is to fit a surrogate

model to this output with the different simulation parameters as the inputs, and then exercise

a profiler tool to understand how the inputs affect the outputs [16]. This profiler displays the

non-linear effects on the output from the reference level. It can be dynamically explored to

understand how trends change depending on differing parameter values in the design space.

Another similar method is to compare effect plots, which are profilers but shown at certain

levels [17]. While these are not tools for summarizing the entire design space, they are

effective for understanding non-linear trends and to identify areas for further exploration.

Heat map comparison can likewise be used for comparing simulations, which allows

one to investigate the spatial differences in search pattern coverage. Moon et al. use heat

maps to compare the actual amount of targets in an area with sensed targets in the same

area for different search methods [80]. Li et al. utilized a summary heat map to show which

grid cells were visited more frequently over the course of a scenario dependent on the search

pattern [49]. Lanillos et al. used 3D terrain charts representing detection probability to show

how different search strategies affect the detection probability [54]. These methods work well

for comparing effectiveness spatially when only varying search methods. It can be difficult,

however, to attribute the differences of variations in other inputs than just the search pattern.

Improving methods is needed for visualizing and understanding these differences for further

exploration and analysis.

38

One limitation with heat map visualization techniques and refresh time metrics is

they often have a large cell size, similar to the search area of the UAVs [6], which only

captures a small portion of the full behavior of UAV search, showing a broad general summary

of where the UAVs visited and masking specific effects of the search algorithm such as if

the UAVs missed the edges of an area while searching. This is because once the cells are

sufficiently small, some of the techniques used for heat maps in other research would become

computationally intractable [96]. This research reintroduces a method originally presented

in [93] for updating the refresh time, known in this research as the last searched time (tLS),

for each grid cell when the grid cells are much smaller than the UAV search/detection area

in a computationally tractable way, which enables the spatial analysis techniques presented

in this research.

3.4 Simulation Overview

The setup of the problem is based on the framework from the case study discussed

by Day and Salmon [93], where multiple groups of UAVs work together to retrieve targets

that generate according to a binomial distribution over time with an expected value (γ) for

the number of targets appearing per hour. The target has an equal chance of appearing in

any part of the area. The UAVs search the area and when they find targets, modeled as the

target found with a circle with the UAV as the center with detection radius rd. The UAVs

then fly to the target, retrieve it, and then travel to the closest collector location and deposit

it there. Upon depositing the target they return to search the area of interest. Since the

UAVs have limited battery life, they return to charging stations when their state of charge

is sufficiently low and recharge their battery. When the UAVs are fully charged, they take

off from the charging station and resume searching. The recharging time, TR, was set at

one hour, and the flight time, TF was set at 30 minutes to approximately match currently

available technology such as the DJI Phantom 4 Pro [100]. Multiple groups of UAVs are

needed to continuously cover the area because of their limited battery life, and three groups

were used because of the ratio of TR to TF as explained in [93].

The locations for the chargers and collectors are dependent on the number of chargers

and collectors in the simulation, and the configurations for each number of chargers and

39

(a) ti = 450 (b) ti = 465 (c) ti = 480

Figure 3.1: Time steps of simulation with 12 UAVs, four of them active, each patrolling in
one of four partitions according to the lawnmower pattern plotted in each partition, where
ti is the time step displayed. Eight other UAVs are charging, located on charging stations.
The ¤ represents a UAV, the t represents the collectors, the 6 represents the targets, and
the : represents the chargers. The UAVs have circles around them representing their target
detection areas.

collectors are the same as used in [93], calculated with a differential evolution algorithm [88]

with an objective function based on the target distribution model for collector placement and

the probability of the UAVs losing power at a certain location for charger placement. The

UAVs search according to the partitioned lawnmower pattern, as this was determined to be

the best search pattern of those examined in [93]. In this pattern, the space is divided up into

sections depending on the number of UAVs in the group, with each UAV patrolling one of the

partitions. The UAVs each use a lawnmower pattern to search within their respective areas.

Further details about the physical UAV parameters and behavior, lawnmower generation

algorithm, and collector and charger placement strategies can be found in [93]. Snapshots

of a simulation are shown in Fig. 3.1, where a series of time steps are shown with the UAVs

following their lawnmower patterns in each partition to search for targets.

Overall effectiveness is characterized as minimizing the time that targets are in the

simulation after they appear and minimizing the average number of targets in the simulation

at one time. UAV search effectiveness is quantified with the average time it takes for each

section of the area to be searched. To help with visual identification of search effectiveness,

one can use a heat map that visualizes when areas of the map were last searched, previously

discussed in [93], and referred to as the time last searched (tLS) heat map. This heat map is

constructed by first dividing the area of interest into square cells of equal size, with G being

40

(a) ti = 450 (b) ti = 465 (c) ti = 480

Figure 3.2: Heat maps, each corresponding to the respective subfigure in Fig. 3.1, with each
grid cell representing the amount of time since the grid cell was last searched by a UAV (tLS)

the set of all cells resulting from this division. For the experiments performed in this research,

the maps were divided into square grid cells with a 75 × 75 grid, and therefore G contained

5625 grid cells. This discretization was chosen as a good balance between computational

expense and detail. At each time step, cells that were not currently in the detection radius

of the UAVs were increased by one (i.e. one time step), while cells in the detection radius of

the UAVs were reset to zero. Cells were counted as inside the detection radius of the UAV

if the inequality in Eq. 3.3 was satisfied, which is an inequality representing the Euclidian

distance in grid cells from the cell wherein the UAV is located, where xg is the horizontal

number of cells away from the UAV’s grid cell position, yg is the vertical number of cells,

and rg is the grid cell radius. The equation for grid cell radius is shown in Eq. 3.1 and Eq.

3.2, where lA is the length of the area, lg is the length of a square grid cell, and rd is the

detection radius in unit length.

lg =
lA√
|G|

(3.1)

rg = Round(
rd
lg

) + 1 (3.2)

√
(x2g + y2g) ≤ rg (3.3)

Since the ratio of rd to lg was not usually a whole number of cells away from the UAV,

it was rounded and then increment by one (i.e. radius increased by one cell) so that no cells

that were in reality inside the radius would be counted as outside. This decision results

41

in that all cells that were fully covered by the actual detection radius would be counted

as searched. If this were not the case, cells that were covered could be considered missed,

which gave erroneous results when trying to understand which parts of the area were not

covered as often as others. More specifically, some cells would be shown as never having been

searched for the whole simulation, when in reality they had been searched many times. The

drawback to this approach is that some cells that were only half covered are counted as fully

covered, but the discretization was small enough with a 75 × 75 grid and the partitioned

lawnmower search pattern robust enough such that other small portions of half counted cells

were searched. The corresponding tLS heat maps to each subfigure in Fig. 3.1 are shown in

Fig. 3.2. The circle representing the UAV target detection area in Fig. 3.1 is approximately

discretized in Fig. 3.2, and the value of the grid cells in the UAV target detection areas are

set to zero since the UAVs are currently searching that space. Since the UAVs are following

a cyclical lawnmower pattern, the grid cells directly ahead of the UAV’s velocity vector have

the lowest values.

No matter what cell a UAV resides in, the same relative grid cells will be in range

since the cell radius is the same for all grid cells (see Eq. 3.3), and so once the grid cell the

UAV resides in is identified, the other grid cells in the UAV detection radius are immediately

known. This is useful because no calculations are needed to know which grid cells are in

a UAVs target detection area. The only calculation that must be performed is the one

determining the grid cell the UAV was in, which takes a fraction of the time it would take

to calculate which grid cells are in range of the UAV with a distance metric based on the

actual position. This caused the metric to be computationally tractable even when the grid

cells were small.

The tLS heat map is important to understand because the average of these heat maps

over all time steps is a good way to understand the spatial coverage for one simulation while

taking into account target retrieval and delivery, as discussed in [93]. Because the average

of these heat map models reveals the overall effect of UAVs pausing their search to retrieve

targets, it is a good measure for understanding the spatial variance inherent in UAV search

effectiveness for a single simulation run. This is opposed to metrics based purely on targets,

42

Table 3.2: Continuous parameters with upper and lower limits for LHS DOE

Parameter
Lower
Limit

Upper
Limit

Unit

Number of Collectors 1 10 Collectors
Number of Chargers 1 10 Chargers
Number of UAVs 6 30 UAVs
Area Length 200 800 Meters
Target Generation Rate 14.4 144.0 Targets/Hour
Target Detection Radius 10 50 Meters

which are influenced much more by randomness inherent in the simulation due to stochastic

target generation.

Previously, the authors examined tLS heat maps and used linear regression fitting

inputs on outputs of interest to understand how multiple parameters affected outcomes,

and how search patterns affected an aggregate outcome value. Three aggregate outputs

were used for the previous analysis that involved the number of targets that were left out

and the time it took for UAVs to search different parts of the area of interest. While

these metrics were good summary indicators of effectiveness, this research steps further to

understand and characterize non-linear spatial and temporal trends over time and space.

A design of experiments (DOE) was created according to the latin hypercube sampling

(LHS) methodology with parameter ranges shown in Tab. 3.2, used to further understand

spatiotemporal patterns in multi-UAV PSR-STA. 1000 simulations were executed each with

the equivalent of 3.5 days in simulation time. This period of time was chosen to guarantee

that steady state conditions were reached in the vast majority of simulations.

3.5 Temporal Analysis

As stated previously, an important extension of UAV search analysis is to identify

temporal trends. When exploring trends in a single simulation, simple line charts that quan-

tify a specific metric at each time step can be effective for identifying the time steps where

unusual behavior occurs in a single simulation. For use in illustrating this point, metrics

from two experiments from the DOE were analyzed. The parameters of these experiments

are shown in Tab. 3.3, and a snapshot of the scenarios is shown in Fig. 3.3.

43

Table 3.3: Parameters for two scenarios

Parameter Scenario 1 Scenario 2
Number of UAVs 15 25
Number of Collectors 9 1
Number of Chargers 5 10
Target Generation Rate 110.5 61.77
Target Detection Radius 27.6 12.22
Area length 373 640

In multi-UAV PSR-STA, unusual behavior could be if a group of UAVs are not effec-

tive at searching the whole area, possibly searching one part of the area much less frequently

than another, or if a target is left out for an unusually long amount of time. To identify if

any target was left out for a longer than average amount of time, a line chart that records the

time of the target that has been in the simulation the longest at each time step is suitable.

The value of this metric at time step i is defined as ∀t ∈ Ti,max (tt), where Ti is the set

of all targets at time step i, and tt is the amount of time a target has been present in the

simulation since appearing.

An example of two charts with this metric resulting from the two experiments with

parameters in Tab. 3.3 is shown in Fig. 3.4. In this figure, it is apparent that scenario 2

had targets that were left out for much longer than scenario 1. This is observed because the

UAVs in scenario 2 had a smaller target detection radius and a larger area than the UAVs in

scenario 1, and thus required more time for the whole area to be searched. In other words, it

took longer for UAVs to find a target and retrieve it in genearl once it appeared in scenario

2 than in scenario 1. For this reason, the oscillations in Fig. 3.4a are also much larger than

in Fig. 3.4b.

Sometimes there were sections of the area that are not searched as often, but the

targets, because of the stochastic appearance model, never appear in those sections. If only

the line chart shown in Fig. 3.4 were to be examined, inefficiencies in the UAV search pattern

could go undiagnosed. A line chart with the maximum tLS value from Gi, where Gi are the

grid cells at time step i, can be used to address this concern and visualize if any parts of the

area were not searched for a long time. An example of this chart is shown in Fig. 3.5b. In

44

(a) Scenario 1 at ti = 280 (b) Scenario 2 at ti = 80

Figure 3.3: Screen capture of scenarios 1 and 2, note that in scenario 2 only the search
pattern for the first group of UAVs is shown, where group one has 9 UAVs, and groups two
and three have 8 UAVs

(a) Scenario 1 (b) Scenario 2

Figure 3.4: Maximum time that a target in Ti has been present

this figure, the trends are similar to Fig. 3.4, which gives confidence that these metrics are

closely related for this simulation and no sections of the area are not searched as often.

From charts such as the ones displayed in Fig. 3.10, intuition can be built regarding

the uniformity of the UAV search patterns. If the profile is an increasing line instead of

oscillatory, this may indicate that there is one spot of the map that the UAVs never cover.

This could be because there are not enough UAVs to retrieve and deposit the amount of

targets that are being generated, or the search pattern does not cover part of the area. If

UAVs are able to keep up with the rate of target generation and the search pattern covers

every part of the area, however, the values on the chart should be oscillatory in nature. With

45

(a) Scenario 1 (b) Scenario 2

Figure 3.5: Maximum value of tLS for grid cells in Gi

these two tools, unusual or unexpected events related to UAV search and retrieval can be

spotted and examined quickly for an individual simulation and scenario.

In addition to identifying unusual events, determining which metrics are the best for

understanding overall effectiveness in multi-UAV PSR-STA is equally important. In [93],

the average time targets are left out, the average number of targets present, and the average

value of time last searched of all grid cells over all time steps were used to understand overall

effectiveness. These metrics of effectiveness are in reality summary measures of other metrics

that vary over time. By examining the other metrics over time, increased insight is gained

about the simulation and the original metrics of effectiveness. The average number of targets

present can be examined more closely by looking at the number of targets present at each

time step, shown in Fig. 3.6. Fig. 3.6b has a greater average value than Fig. 3.6a, and the

deviation from the mean is also greater. The metric that can be examined to understand

the average tLS of all grid cells over all time steps is the average tLS of the grid cells at each

time step. The value of this metric at time step i is defined as 1
|Gi|

∑
g∈Gi

tLS(g), where Gi is

the set of grid cells at time step i, and tLS(g) is the tLS value of grid cell g.

This metric over time is shown in Fig. 3.7. Although the average of Fig. 3.6 increased

almost fourfold, the average of Fig. 3.7 increased more than tenfold, which demonstrates

that despite the area of scenario 2 is not searched as often, the lower target generation rate

of scenario 2 caused the number of targets in the simulation to not increase proportionally

as much as seen in Fig. 3.7.

46

(a) Scenario 1 - Average: 5.77 (b) Scenario 2 - Average: 22.89

Figure 3.6: Number of targets present in the simulation at each time step

(a) Scenario 1 - Average: 134.34 (b) Scenario 2 - Average: 1351.60

Figure 3.7: Average of tLS for grid cells in Gi

To verify that the steady state behavior in one simulation is representative of many

scenarios, repeats of simulations with the same input parameters but different target appear-

ance locations were performed. Three simulations were chosen from the DOE for analysis,

with parameters shown in Tab. 3.3. Fig. 3.8 and 3.9 show comparisons for the number of

targets in the simulation and the average of the last searched grid cell values at each time

step, respectively, with output of every run superimposed on one another. In Fig. 3.8a and

3.8b, the overall oscillations of the number of targets were similar, with some small peaks

from some of the simulations. Fig. 3.8c had a much higher average number of targets in the

simulation than Fig. 3.8a and 3.8b, and there was more variation in the results, although

the maximum values of each simulation run were in similar range bands to one another. This

is important to note, as when one simulation had extreme behavior, it can be an indication

that the simulation will have similar results when tested again, with a wider variation. This

47

Table 3.4: Parameters for experiments repeated 30 times

Parameter Scenario 3 Scenario 4 Scenario 5
Number of UAVs 11 29 21
Number of Collectors 1 3 6
Number of Chargers 9 2 4
Target Detection Radius 42.78 36.32 13.8
Area Length 604 708 558
Target Generation Rate 68.68 126.55 131.46

(a) (b) (c)

Figure 3.8: Number of targets in the simulation for three scenarios, each with 30 experiments
represented by different colors, with one experiment highlighted in red to show an example
scenario

is opposed to the simulation with more consistent results, which had less variation. A similar

trend is shown in Fig. 3.9, but with a greater increase in variance from Fig. 3.9a and 3.9b

to 3.9c. While it is time prohibitive to run all experiments 30 times, this sample provides

confidence that for the situations where UAVs had a lower average number of targets present,

the trends revealed in the data can be used to extrapolate to other uniform target profiles,

and where simulations that perform poorly may need to be repeated.

If the UAVs’ detection areas cannot completely cover the search area at every time

step, which is the case for the scenarios tested in this research, there will be variation in which

spaces are covered at which times. Over time, this trend can be oscillatory in nature because

of the cyclical search pattern of the UAVs. Characterizing these oscillations numerically can

give valuable insight into characterizing and understanding search behavior in the simulation.

A strategy for doing this is by applying the discrete Fourier transform (DFT) to previously

mentioned time based metrics and analyzing the results of this transform [101]. The DFT

48

(a) (b) (c)

Figure 3.9: Average of tLS of grid cells in Gi for three scenarios, each with 30 experiments
represented by different colors, with one experiment highlighted in red to show an example
scenario

Table 3.5: Parameters for DFT experiment analysis

Parameter Scenario 6 Scenario 7 Scenario 8
Number of UAVs 24 30 25
Number of Collectors 9 6 1
Number of Chargers 5 8 10
Target Detection Radius 14.05 14.09 12.22
Area Length 277 600 640
Target Generation Rate 45.47 57.98 61.77

decomposes a signal into a series of sine waves with different frequencies and magnitudes.

If the decomposed sine waves are added together, the original signal is obtained. Because

the DFT quantifies which waves that compose the signal are the largest in amplitude, the

DFT can be used to identify the most significant signals that happen in the simulation. If

the amplitudes of the waves are plotted along with the frequencies, the most influential ones

can be easily identified and analyzed to make inferences about patterns.

Three simulations were chosen from the DOE, with parameters shown in Tab. 3.5 to

show their signals and DFT of the average of tLS heat map at each time step. The DFT

was calculated with the fast Fourier transform algorithm [102], implemented in the scipy

package in python. These simulations were chosen as highlights of different behaviors shown

across the design space. The average of tLS of Gi was chosen as the metric to analyze for

DFT, since it mitigates the effect of noise from stochastic target appearances, and makes it

49

(a) Average of tLS of grid cells
in Gi for 1

(b) Average of tLS of grid cells
in Gi for 2

(c) Average of tLS of grid cells
in Gi for 3

Figure 3.10: Charts describing outputs of a single simulation over time. Note that Fig. 3.10c
is on a different scale since its values are a higher order of magnitude than the other figures

(a) DFT 1 (b) DFT 2 (c) DFT 3

Figure 3.11: DFT of the figures in Fig. 3.10. Note that Fig. 3.11a and 3.11b had no
significant signals above 3000 and so the x-axis range was limited from 0 to 3000

easier for the DFT to identify the important temporal trends in effectiveness inherent in the

simulation.

The first noticeable difference between these charts is in Fig. 3.10c, which reflects

the increase in the average tLS of the grid cells at each time step. This is caused because

there are not enough UAVs to keep up with all the targets that are appearing, and so the

UAVs use all of their time retrieving and depositing targets and never are able to explore

the whole area. This is why the average value of tLS of Gi continuously rises. In both Fig.

3.10a and 3.10b, the UAVs service the area effectively, but the total average time is slightly

higher in Fig. 3.10b. This is reflected in similar signals between their DFTs, but with Fig.

3.11b having higher frequency domain magnitude than Fig. 3.11a

In Fig. 3.11a and 3.11b, there is a large signal close to 1780. This is postulated to

be related to the fact that the UAV groups switch every 30 minutes, or 1800 seconds, for

50

continuous coverage. Upon further inspection, the difference in 1800 and 1780 of 20 seconds

was found to be close to the average amount of time it took for UAVs to travel from any

location to a charging station at the end of their group’s cycle. When the UAV groups switch,

the first UAV group travels back to the chargers, and only after arrival at the chargers do

the next group of UAVs fly off to search for targets. During the short time between when

the first group returns and the second group starts searching there are no UAVs searching,

and so the average of tLS of Gi rises during these periods. The DFT provided an easy way to

identify this increase, where it would have been more difficult to discern by only examining

the time series charts in isolation. This observation brings attention to the fact that future

implementations should have some overlap between the UAV group going back to charge and

the next UAV group coming out to search. In this way, the second UAV group can search

the area while the first UAV group travels to the chargers.

While it is convenient to study the characteristics of individual simulations, a com-

pelling technique to understand broad trends over many simulations is by plotting the line

chart output of a simulation as a data point in a figure of figures. The line charts of the

1000 experiments performed in the DOE are plotted in 25 subfigures in Fig. 3.17, with the

individual smaller figures each representing one line chart on a log scale and colored based

on the max value according to the legend and example presented in Fig. 3.13. The com-

mon axes are removed for clarity. Each of the 25 subfigures contains the outputs from the

respective experiments classified within a subrange of target detection radii and subrange of

area length, segmented into five categories as designated at the top and left of the figure of

figures. Within each subfigure the x and y axis (i.e. bottom and left axes) are the number

of UAVs and target generation rate, respectively. From this figure, the temporal trends in

the data can be explored across four of the independent variables concurrently. The other

independent variables, such as number of collectors and chargers, can likewise be used in

place of the axes for additional insights. Typical outputs are plotted in figure 3.13, each

overlaid one on top of the other. In this two situations can be seen to have continually

increasing number of targets, and the other two are steady and oscillate in a certain range.

Use of this figure of figures, often called a trellis chart [103], is to discern general

and linear trends collectively, when observing individual line charts sequentially with other

51

Figure 3.12: Figure of figures for the number of targets present at each time step with the
simulation colored according to the maximum value in each chart

52

Figure 3.13: Four superimposed example figures for the subfigure icons for Fig. 3.12

means is cognitively challenging. For example, Fig. 3.17 demonstrates that as the target

detection radius increases and area length decreases, the line chart values are on average

lower (i.e. less targets in the simulation) than the ones with low target detection radius

and high area length for different numbers of collectors and chargers. The variance of these

figures also decreases with these same increases in target detection radius and decreases in

area length.

3.6 Spatial Analysis

In [93], it was established that the metric for average time last searched (hereby

referred to as tLS) is a good metric for understanding overall effectiveness in a simulation.

Understanding how this metric varies spatially can bring additional understanding to how

the input parameters influence overall effectiveness.

One method to gain a preliminary understanding of spatial trends is to sweep across

the dimensions and explore the differences between the spatial data sets. Comparing the

results to a nominal or previous output heat map, after changing an individual parameter

one at a time, provides a sense for how the parameters influence spatial effectiveness, and

53

Table 3.6: Parameters for comparison experiments

Parameter Baseline Modified
Number of UAVs 12 24
Number of Collectors 3 8
Number of Chargers 3 8
Target Generation Rate 40 70
Target Detection Radius 20 50
Area length 400 700

Figure 3.14: Baseline tLS heat map indicates the average time that an area was last searched
in seconds

differentiate which parameters affect overall effectiveness in a spatially invariant way as

opposed to parameters that cause a spatially localized impact on effectiveness.

One baseline scenario, sampled from approximately the middle of the design space

defined in Tab. 3.2, is compared to six other scenarios, in which a single parameter is

individually varied to observe the effects on the heat map of tLS. The specific values of

the modified parameters were chosen to be near the parameter limits of the DOE shown in

Tab. 3.2, and are specified in Tab. 3.6. The baseline heat map is shown in Fig. 3.14 with

the six other heat maps subtracted by the baseline heat map shown in Fig. 3.15 to more

easily identify the differences and effects of parameter changes on tLS with respect to this

baseline scenario. Each one reveals an interesting insight about the respective parameter and

54

(a) UAVs = 24 (b) Collectors = 8 (c) γ = 70

(d) Detection radius = 50 (e) Chargers = 8 (f) Area side length = 700

Figure 3.15: Differences from baseline experiment for tLS heat map. Fig. 3.15f is on a
different scale since the difference from the baseline is an order of magnitude higher than
Fig. 3.15a through Fig. 3.15e

can determine the influence on the spatial patterns observed. In Fig. 3.15a, the number of

UAVs was doubled from 12 to 24 resulting in a difference in the baseline heat map that was

generally negative, or in other words, with a doubling of the number of UAVs, the tLS was

reduced, as expected. More interestingly, it also shows small spots that were slightly higher,

(i.e. areas that saw an increase in the average last search time), likely due to the difference

in searching patterns after more UAVs could assume smaller partitions. The key takeaway

is that a non-uniform difference can be assumed from a change in the number of UAVs and

that spatially the impact will not be linear across the full area of the environment. Similarly,

in Fig. 3.15b, the collector positions before and after changing the number of collectors from

3 to 8 respectively are clearly shown as spots that have a positive or negative difference with

respect to the baseline. The locations around the three collectors in the baseline situation

are higher, since in the baseline scenario the UAVs traveled to the collectors more often.

Likewise, when the number of collectors were changed to eight the UAVs instead deposited

targets at the new collector locations, spreading the necessary visits across a larger number of

collectors compared to the baseline’s three. Because the average distance from any collector

55

to any point in the area was decreased, the rest of the area had an overall decrease in tLS.

The target generation increase in Fig. 3.15c caused much more traveling to the collectors,

which is reflected in the decreased visit time in the areas around the collectors. The rest of

the simulation, however, was not searched as often since the UAVs spent much more time

retrieving and depositing targets rather than searching the space. Changing the number of

chargers had negligible effects on the simulation.

When the detection radius of the UAVs increased in Fig. 3.15d, it took less time to

search the whole area, decreasing tLS across almost the entire area. Furthermore, since the

same amount of targets appeared during the simulation with the same number of UAVs, the

collector locations were visited a similar number of times resulting in a tLS similar to the

baseline scenario, with little or no reduction in tLS at the collector locations. On the other

hand, with a larger area or area length as shown in Fig. 3.15f, the UAVs take longer to travel

from one part of the area to another, and the average search time is greatly increased. From

comparing these difference figures, it can be seen the number of collectors and the target

generation rate changes caused localized spatial effects that were most significantly related

to the locations of the collectors. The spatial changes in the heat map induced by changing

the target detection radius, area size, and number of UAVs were more related to the UAV

search paths.

To confirm these observations for one of the input parameters (i.e. the number of

UAVs), simulations were performed with the number of UAVs swept from six to 30 UAVs

in increments of 6. The tLS heat map for each sweep is shown in Fig. 3.16, with the same

uniform scale for consistency. As identified previously, the general trend that more UAVs

decreases tLS overall continues. Although each number of UAVs has its own unique spatial

pattern in the tLS heat map correlated with the search pattern, the trend is well established

that tLS is consistently lowered along the sweep.

These methods are good for studying individual simulations, but another method

is desired for understanding how inputs affect broad spatial trends. This can be done by

plotting the heat maps of tLS in a figure of figures, or trellis chart, similar to Fig. 3.12, where

all 1000 simulations can be viewed concurrently at a high level. This is demonstrated in Fig.

56

(a) 6 UAVs (b) 12 UAVs (c) 18 UAVs

(d) 24 UAVs (e) 30 UAVs

Figure 3.16: tLS heat maps of a sweep of number of UAVs from the scenarios shown in Fig.
3.14. Note that Fig. 3.16b is a repeated of Fig. 3.14 to facilitate comparisons

3.17, with the same input parameters as examined in 3.12, with each heat map presented on

the same colorscale as indicated.

This figure of figures highlights several trends. First, it can be seen that increasing

area length and target generation rates lead to heat map values (i.e. average last time

searched) that are on average lower (i.e. shorter time to search the area on average). One

non-linear relationships is that increasing the number of UAVs seems to have a greater

effect on tLS with smaller area lengths and larger target detection radii, than increasing the

generation rate. In addition, there are distinct spatial patterns that appear, where changing

parameters can decrease the last searched time in some areas more than others. This is

related to the collector locations, where the locations near the collectors are searched more

frequently than other areas, as discussed previously.

It is of interest to understand how different sections of the tLS heat map specifically

change depending on changes in every input parameter values. Although individual models

for each grid cell can be used to understand how specific single cells depend on the parameter

space, when there are more than 10 or 20 cells, it is difficult to comprehend any larger

57

Figure 3.17: Figure of figures with the heat map of tLS as each data point. A different
colorscale is implemented to compare a wider range of values across the entire design space

patterns in the space. Thus, it is advantageous to identify the combination of grid cells that

vary the most and are correlated together, dependent on the input parameters. Parameter

reduction techniques, which identify combinations of parameters that are most relevant to

the scenarios examined, is one way to bypass the limitations of models for each grid cell.

Principal component analysis (PCA) with random forest surrogate model profiling

is presented in this research to describe spatial variations of tLS among all the simulations

58

(a) PC1 - 76.2% (b) PC2 - 4.41% (c) PC3 - 3.43%

Figure 3.18: First three PCA eigenvectors of average time last searched heat maps expressed
as heat maps with percent variation explained of each component in the captions

tested, and understand how input parameters affect these variations. PCA identifies sets

of linear combinations of features that have the most variance in a dataset [104]. When

examining the tLS heat map, the features are defined as each individual tLS heat map grid

cell. Using PCA on a set of tLS heat maps reveals which grid cells linearly vary together

the most, which identifies important variational trends among all simulations. Each linear

combination of features is known as a principal component (PC), and the value of how much

each PC is present in an individual simulation can be quantified by a PC score [105], which

with the tLS heat map is calculated by multiplying the values of an individual heat map by

the weightings of a PC. When the PC score is used as an output parameter in a surrogate

model with explanatory input variables, then information about how the pattern defined by

a PC is affected by changing the input parameters can be understood.

PCA was performed on the values of heat maps for tLS for the experiments executed

in the LHS DOE described in section 3.4, with each individual tLS heat map included as the

data points, and each grid cell g ∈ G as the features, where G is the set of all grid cells in the

average last search heat map. Every simulation, regardless of the area size, was cast into a

75 × 75 grid to evaluate tLS, such that each simulation had the same comparable features to

satisfy the requirements of PCA [106]. Visualizations of the first three principal component

are shown in Fig. 3.18 with the associated percentage of variance in the design explained

for each component and presented in the scree plot for the first eight PCs in Fig. 3.19.

The first principal component (PC1) accounted for 76.2 percent of the variation,

and the next nine components accounted for another 19% of the variation. Because PC1

59

Figure 3.19: Scree plot of the cumulative percent variation of PCA for the first 8 PCs

explained so much variation, it can be concluded that PCA has significant explanatory power

in relation to the dataset. If the accounted variation for a component was much less, this

assumption may have been broken and other dimensionality reduction techniques should

have been explored.

The general pattern for PC1, seen in Fig. 3.18a is that all parts of the map are all

positively correlated. There is an important nuance to notice in this component, however,

which is that the outside edges of the area have higher values than the general middle area.

This means that while the value of the average last searched value raises with an increase

in PC1, it is correlated with a greater increase in the edges of the area than the parts in

the middle. The PC1 score for each heat map from the simulation sweep of the number of

UAVs in Fig. 3.16 was calculated to understand this trend. Tab. 3.7 show the scores for

each simulation. It can be observed in this table as the number of UAVs increased, the PC

score decreased. However, the decrease was smaller with increasing UAVs.

To quantify the impact of the input variables on PC1, the PC score of each simulation,

calculated by summing each value of the heat map multiplied by the weightings given to the

linear combination of the features in PC1, can be used as an output variable and fit to a

surrogate model of the input variables. This shows the influence of the input variables on

PC1, where PC1 is equivalent to the magnitude of the pattern in 3.18a. The surrogate model

60

Table 3.7: PC scores of the average last searched heat maps from the UAV sweep displayed
in Fig. 3.15

Number
of UAVs

PC score

6 69413.63
12 22890.03
18 14669.72
24 9370.50
30 7237.79

chosen was a random forest, due to its ability to model non-linear models while also having a

measure for feature importance [107]. 100 decision trees were used in the random forest. To

ensure the random forest had a good fit, 9.8% of the dataset, or 98 experiments out of the

1000, were held back for validation. The distribution of the PC1 scores was approximately

log normal, and so the regression was fit to log(PC1). A statistical software package, JMP,

was used to generate the random forest, with the output of 100 decision trees averaged to

make predictions. The R2 of the training set was 0.994, and the R2 of the validation set was

0.958, confirming the model possessed sufficient accuracy to use for exploratory analysis.

In Tab. 3.8, measures of importance are shown for each variable. The interested reader is

referred to [108] for a more detailed overview of feature importance for random forests, as it

is beyond the scope of this research. The mean decrease in the sum of squares error (SSE) of

an observation when the feature is used in a tree split is one important measure, with higher

values equating to more explanatory power attributed to the variable. The percent column

(expressed as a decimal) is the ratio of the SSE of a feature over the total SSE of all features,

such that the percent columns adds to 1.0. The most important features according to these

metrics were area length and number of UAVs, with other features having significant but

smaller explanations of the variance.

Since the fitting function is non-linear, it cannot be said how these variables affected

PC1 in a general positive or negative direction from feature importance alone. To understand

trends and patterns in the data, based on input variables, a profiler tool can be used to explore

how the variables affect PC1, with a snapshot of the profiler in action shown in Fig. 3.20.

The purpose of a profiler is to show the trendlines of how each variable affects the output

61

Prediction Profiler

6
9

12

15
Lo

g[
P

C
1

S
co

re
]

10.19236

2 4 6 8 10

2
Number of
Collectors

10 16 22 28

18
Number
of UAVs

2 4 6 8 10

6
Number of
Chargers

10 15 20 25 30 35 40 45 50

40
Target
Detection Radius

20 40 60 80 10
0

12
0

14
0

130
Target
Generation Rate

30
0

45
0

60
0

75
0

500
Area Length

Figure 3.20: Profiler visualization

(in this case log(PC1)) assuming the other input parameters are held constant. While it

is difficult to show all situations within a multi-dimensional data set, the profiler allows for

exploration in design spaces that give valuable insight into non-linear behavior of variables at

different parameter combinations. In Fig. 3.20, one non-linear behavior commonly observed

within the scenario space was that at higher target generation and area length, there was a

larger slope from 6 to 14 UAVs than the rest of domain. This is in agreement with the PC

score analysis related to Tab. 3.7. The number of chargers did not have a significant effect,

having a slope close to zero no matter what parameters were varied. Another observation

was that after increasing the number of collectors above four, there was a smaller decrease in

log(PC1) than the decrease from one to four collectors. If a cost metric were to be defined for

adding UAVs, collectors, and chargers, an optimization could be performed to find the best

balance between efficiency and cost for a given area with a set target generation rate and a

set area length. With these tools, important spatial patterns and their influencing metrics

can be examined and explored. Because of the non-linear design space, it is difficult to know

every nuanced way that input parameters affect the spatial patterns, but important trends

were discovered in design space regions of interest through applications of these methods.

3.7 Discussion, Limitations, and Future Work

Many broad trends were discovered throughout the analysis process. First is that for

many measures of effectiveness that varied spatially over time, as the average of the measures

over time increased, so did the frequency of their oscillations. This was hypothesized to

have to do with the oscillatory nature of the UAV search task. One important oscillation

62

Table 3.8: Parameter importance for random forest model fit

Term SSE Percent
Area length 1141.65 0.4482
Number of UAVs 719.21 0.2823
Target Detection Radius 333.58 0.1310
Target Generation Rate 190.24 0.0747
Number of Collectors 131.29 0.0515
Number of Chargers 31.27 0.0123
Total 2547.24 1.0

discovered from the DFT analysis was that many of the simulations had a signal from DFT

with a frequency close to 1780, which showed that there was a gap in searching between

when one group of UAVs come back to charge and the next one was deployed. The effect

of increasing UAVs, the area length, the target generation rate, and target detection radius

all had differing effects on the number of targets in the simulation at each time step, with

the number of UAVs being the most influential on decreasing the number of targets in the

simulation at each time step.

Many spatial trends were also analyzed in this research. Through comparing to a

baseline experiment, it was discovered that increasing the number of collectors and target

generation rate influenced spatial patterns in effectiveness related to the collector locations,

and increasing the number of UAVs, target detection radius, and area length influenced

spatial patterns related to the UAV patrolling pattern. Increasing the number of chargers

had a negligible influence on effectiveness. One reason this could be is because the amount

of time it took for a UAV to fly anywhere in the area of interest to a charger was much less

than the total flight time, which means that even if the chargers were not optimally placed,

it would not affect the overall tLS much. Another reason for this is because of the assumption

inherent in the simulation that the chargers had enough capacity to support any amount

of UAVs. If this assumption was changed, the number of chargers might have a significant

effect, since if a charger was full, the UAV would need to fly farther to reach a different

charger. This additional flight time could influence tLS significantly, especially if the area of

interest was large or non-convex.

63

The largest PC for the tLS heat map explaining 76.2% of the variation showed that

for the experiments examined, the values increased together, but it increased on the edges

more than the center areas for an increase in PC1. The profiling revealed that raising PC1

was associated with an increase in target detection radius and area length, and associated

with a decrease in the number of collectors and the number of UAVs, with chargers not

affecting PC1, confirming previous observations. The prediction profiler revealed that the

number of collectors did not make a significant difference in decreasing PC1 after more than

four collectors were present in the simulation.

The analysis tools presented lead to valuable knowledge about the nature of multi-

UAV PSR-STA. In the future, extensions to this research should be performed for increased

understanding. In particular, studying non-square areas of interest, more complex target

generation models, and uncertain target detection models will lead to further insight into

multi-UAV PSR-STA. Complex search algorithms that involve real-time optimization based

on these extensions should also be employed to increase UAV search effectiveness. Further-

more, tests with actual UAVs should be performed to validate these results.

3.8 Conclusion

This research presented spatial and temporal analysis on an implementation of multi-

UAV PSR-STA. Measures were highlighted which provided insight into performance vari-

ability over time, visualized in line charts, for a given simulation, and DFT was used to

further understand the temporal patterns inherent in the data. The trellis chart or figure

of figures method was presented for visualizing spatial and temporal data across the full

design space with many simulations. PCA was used to find the relevant spatial patterns

inherent over the simulations, and the random forest method with a profiler were used to

explore the non-linear influence of input parameters on the spatial patterns. These highlight

some methodologies and metrics for analyzing PSR-STA beyond simple aggregate values,

and served to increase understanding about which factors influence the effectiveness of UAV

search in multi-UAV PSR-STA.

64

CHAPTER 4. CONCLUSIONS

The intent of this thesis was to create a framework that builds a foundation for

understanding how to simulate and analyze multi-UAV PSR-STA, prescribing important

design decisions and methods for simulation, and identifying metrics and analysis tools for

understanding overall system effectiveness. Through fulfilling this intent, this thesis provides

understanding about design decisions and analysis methods that allow for the simulation

and analysis of real-world multi-UAV PSR-STA scenarios. The four outcomes of this thesis,

proposed in the introduction of this thesis, outline the process taken to understand and

analyze multi-UAV PSR-STA, fulfilling the intent of this thesis. These outcomes were to:

1. Propose a framework that facilitates simulation design through identifying design de-

cisions that should be made to successfully simulate multi-UAV PSR-STA

2. Implement a simulation model and necessary algorithms for successful study of multi-

UAV PSR-STA, including a method for placement of chargers and collectors dependent

on probabilistic information

3. Identify important metrics to characterize system effectiveness of multi-UAV PSR-STA

and identify trends related to these metrics

4. Examine many different simulations of PSR-STA to verify the usefulness of the frame-

work, metrics, and methods developed as a result of previous outcomes

In Chapter 2 a framework for simulating and analyzing the multi-UAV PSR-STA was

presented and discussed, addressing the first outcome. This framework presented important

design decisions for simulating multi-UAV PSR-STA, summarized in Fig. 2.1. An analysis

framework was also presented which identified two factors, UAV search effectiveness and the

65

influence of the amount of resources in a simulation, as important to analyze for understand-

ing system behavior. These frameworks pinpointed which areas require focus for effective

simulation and analysis of multi-UAV PSR-STA, fulfilling outcome one.

In the implementation of this framework in Chapter 2, unique algorithms and metrics

of effectiveness were developed. An algorithm for charger and collector placement based on

probabilistic information was developed. A general state diagram for UAV behavior was

introduced, along with relevant equations that specified UAV behavior that satisfied the

operational requirements for servicing PSR-STA. This fulfilled outcome two.

Three metrics were introduced in Chapter 2 that quantified effectiveness of a simu-

lation through assessing UAV search performance and measuring target statistics. Another

metric was introduced, visualized by a heat map, which allowed for insight into the spa-

tial variation in multi-UAV search coverage. A case study was executed, with comparison

testing of four search patterns within the constraints of the framework. Statistical methods

examining the UAV search effectiveness metric showed the partitioned lawnmower search

pattern performed the best compared to other search patterns, and the influence of various

parameters on overall effectiveness metrics suggested that increasing the number of UAVs is,

initially, the best choice to increase system effectiveness over increasing charger or collector

locations for typical park sizes. The global lawnmower pattern was found to have certain

deficiencies that should be addressed for optimal coverage. Through these analytical insights

and introduction of unique metrics, outcome three was addressed, while the simulation and

examination of various scenarios to discover these insights addressed outcome four.

In Chapter 3, additional metrics that further quantified temporal and spatial trends

were demonstrated, which provided insight into performance variability over time and space

respectively. Temporal analysis measures were highlighted which provided insight into per-

formance variability over time, visualized in line charts, for a given simulation, and the

discrete Fourier transform was used to further understand the temporal patterns present

in the data. Principal component analysis was used to find the relevant spatial patterns

in UAV search effectiveness inherent over the simulations, and the random forest surrogate

model with a profiler was used to explore the non-linear influence of input parameters on the

spatial patterns. The trellis figure of figures method was presented for visualizing spatial and

66

temporal data across many simulations. Chapter 3 highlighted some methodologies and met-

rics for analyzing multi-UAV PSR-STA, and served to increase understanding about which

factors influence the effectiveness of UAV search in multi-UAV PSR-STA, further addressing

outcomes three and four.

Through accomplishing outcomes one through four, a useful foundation of knowl-

edge was developed for simulating and analyzing multi-UAV PSR-STA. By understanding

the important design decisions, one can understand what assumption are required to suc-

cessfully simulate multi-UAV PSR-STA. By understanding relevant metrics and analyzing

those metrics with a variety of analysis techniques, one can gain an understanding of how to

thoroughly analyze multi-UAV PSR-STA.

4.1 Limitations and Future Work

One of the limitations of this study is that the scenarios presented were confined to an

agent-based simulation. This thesis did not perform live performance tests with real UAVs,

which could have served as a powerful validation test for the usefulness of this framework.

While this methodology revealed many preliminary insights about UAV search patterns,

more research should be completed with real-world tests to gain insight on multi-UAV PSR-

STA. The trends identified and information gained from this study, however, are valuable

for future realistic testing, and can provide preliminary inputs for decisions regarding which

UAV search strategies are most promising to test.

The assumptions in the scenarios tested were valid for the situations tested, but

changes in the assumptions could have changed the results of the analyses. The landing,

taking off, retrieving targets, and depositing targets were all modeled as constant time, but

they could also be modeled as non-constant time tasks, with the time changing depending

on the task performed. These assumptions could be adjusted to characterize the sensitivity

of model results to the time to perform these tasks. The UAV motion model was also simple,

chosen to reduce computational cost for the ability to simulate a larger number of scenarios,

which was necessary for some of the analysis techniques introduced. More complex motion

models could be implemented for additional understanding of the effect of complex motion

models on UAV search effectiveness.

67

An extension to the scenarios tested is to analyze scenarios with areas of interest

that are non-square shaped. This extension would require a UAV search pattern that could

cover non-convex areas, but the collector and charger placement algorithm would function

the same, with the placement being limited to inside the area. Another extension to this

problem is considering non-uniform target appearance models. In the research performed as

part of this thesis, the target appearance model was a binomial distribution, with a uniform

probability model, which allowed the use of lawnmower coverage patterns for UAVs since

targets had an equal chance of appearing anywhere in the area of interest. With a non-

uniform probability model, such as two independent normal distributions, or a model that

matches real-world behavior such as the littering tendencies of people at a particular park,

the problem domain could become more complex. In the case of park littering, agent-based

models of littering tendencies would need to be developed, perhaps from sociological studies.

Different classifications of people could be identified, such as bicyclists and pedestrians, and

their littering characteristics defined in the agent-based simulation. The UAVs could then

search and collect the litter while these agents are present in the park. Other important

issues to address when human agents are involved are to generate a strategy for human

avoidance and decide how the UAVs will discern between litter and a person’s belongings.

With these additions the probability map of where targets appear might not be known

initially, and so the UAVs could learn the probability distribution of the target appearance

that is resultant from any of these additions, and adjust their search patterns accordingly.

They could also adjust their search patterns at different times of day depending on if the

target appearance probability changes throughout the day. Some types of litter, such as

plastic bags, could be moved by the wind or other environmental factors, and this movement

could be included in the probabilistic target appearance model, influencing the multi-UAV

search patterns.

The search pattern would have to be adjusted in these situations to ensure that the

UAVs search areas that have a higher probability of target appearance more often than

others. There are some space transformation techniques that could be used to address these

non-uniform cases, involving stretching the lawnmower pattern to cover more important areas

more often than others [109]. However if the probability distribution is highly discontinuous

68

or varies throughout time, further research is needed, especially in the context of multi-

UAV search, since a space transformation technique may not be sufficient to cover the areas

proportionally according to importance. If partitioning the area for collision-free multi-

UAV search, the partitions should take into account the probability map by including equal

probabilities in each respective partition or by splitting high probability areas among many

partitions. As mentioned previously, these methods should also account for the changing

target generation patterns that will be present at different times of day. Further verification

tests of simulations, analyzed with the analysis tools presented in this thesis, can be used to

judge the efficacy of these methods.

Along with non-uniform target appearance models, adding probabilistic detection

models to the problem is another area for exploration. Most image recognition algorithms

have a rate of false positives [110], and so this would have to be taken into account in the

simulation when searching. This would change the primary metric used to identify spatial

patterns in this thesis from the last searched time, tLS, to one relating to probability, such

as the probability of a target existing in the area. This would need to be updated at each

time step using a Bayesian update for the grid cells in a UAVs detection area taking into

account rates of false positives [96], and a different update would be performed for grid cells

outside the detection area.

Another important multi-UAV search pattern that could be implemented in these

situations is an algorithm that makes real-time decisions about where to search instead of

relying on pre-computed paths like the lawnmower coverage pattern. This algorithm could

use probabilistic information about the likelihood of targets existing in certain areas to make

decisions. One such option is the receding horizon control [111], where each UAV looks a

number of time steps into the future and decides on the best path to take depending on

an objective function. The advantage of these kinds of methods is that UAVs can take

into account many complicated factors related to path planning that are captured in an

objective function. These complications arise when the practical problems related to multi-

UAV PSR-STA become more intricate and the simulation of multi-UAV PSR-STA increases

in fidelity. However, real-time optimization methods are computationally expensive, and so

69

would decrease the number of simulations able to be performed, which could inhibit the

ability to analyze multi-UAV PSR-STA for broad trends over a wide range of scenarios.

Allowing the UAVs to remember the locations of previously detected targets and

to communicate this information with other UAVs should also be considered. Including

these features introduces many interesting challenges. Consider the case where one UAV

sees four targets in its local area, and another UAV is searching in another area with no

targets present. Should the second UAV join the first UAV and help it collect the targets, or

should it continue to search in case more targets appear in its area? This is also known as

the exploration-exploitation tradeoff [20]. These dilemmas arise especially when the target

appearance model is unknown or is highly discontinuous. One strategy could be to have some

UAVs assigned to searching for targets, and other types of UAVs or ground robots assigned

to target retrieval, and through this strategy UAV search would not be interrupted. Further

research should be done to address these concerns in the context of multi-UAV PSR-STA.

A major difficulty arising in optimized search and consensus algorithms is that in

many of the algorithms, there are many tunable parameters that can influence UAV effec-

tiveness, but are difficult to choose since the outcome of changing the parameters cannot

be easily predicted. One use of the analysis methods presented in this thesis could be to

understand how changes in parameters affect the performance of the UAVs through time

and space for a wide range of scenarios. This could be useful when trying to deploy UAVs

for a task in various locations, as one combination of algorithm parameters could make the

UAVs more effective in one scenario, such as in a smaller area, whereas if the same parame-

ter combination was used in another scenario, adverse effects could occur such as the UAVs

missing the corners of an area. The analysis techniques demonstrated in this thesis could be

used to tune parameters and find different sets of parameters suitable for various situations,

as opposed to using a single set of parameters for all situations.

4.2 Final Remarks

This thesis introduced a framework that outlined design decisions, analysis metrics,

and methods for simulating and analyzing multi-UAV PSR-STA. Through the framework,

the initial hurdles of understanding the assumptions and design decisions that need to be

70

considered to simulate multi-UAV PSR-STA were overcome. Overall, the framework is a

useful tool as an initial reference in understanding the unique challenges that come with

simulating and analyzing multi-UAV PSR-STA. As UAVs gain additional functionality for

interacting with their environment and become more ubiquitous, multi-UAV PSR-STA will

gain importance as an area to be studied and understood. The spatial and temporal analysis

methods presented in this research will become increasingly useful, since with the complexity

of deploying UAVs in the modern world, detailed spatiotemporal information will be required

to understand and implement multi-UAV PSR-STA into various real-world scenarios.

There are many areas where multi-UAV PSR-STA will be applicable in the future as

technology advances, including search and rescue after a disaster, where UAVs must search

for and retrieve people to relocate them to a safe location after a disaster has occurred,

and litter cleanup, where UAVs search for litter to retrieve and deposit it in a trash bin. As

referenced in the introduction of this thesis, creating solutions to the problems and challenges

related to these areas is important and would improve the lives of many people. Though

theses problems and challenges do not have simple solutions, an effective approach to solve

them can stem from applying the framework and analysis methods for multi-UAV PSR-STA

introduced in this thesis to the area of interest. Through fulfilling the objective of this thesis

and creating a framework and analysis methods that can be applied to generate solutions to

real-world problems, another step is taken to better the world with the aid of UAVs.

71

REFERENCES

[1] Goodrich, M. A., Morse, B. S., Gerhardt, D., Cooper, J. L., Quigley, M., Adams,
J. A., and Humphrey, C., 2008. “Supporting wilderness search and rescue using a
camera-equipped mini UAV.” Journal of Field Robotics, 25(1-2), pp. 89–110. 1

[2] Mader, D., Blaskow, R., Westfeld, P., and Weller, C., 2016. “Potential of UAV-based
laser scanner and multispectral camera data in building inspection.” ISPRS - Inter-
national Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, XLI-B1, pp. 1135–1142. 1

[3] Manyam, S. G., Rasmussen, S., Casbeer, D. W., Kalyanam, K., and Manickam, S.,
2017. “Multi-UAV routing for persistent intelligence surveillance & reconnaissance
missions.” In 2017 International Conference on Unmanned Aircraft Systems (ICUAS),
IEEE, pp. 573–580. 1

[4] Nahar, P., Wu, K.-h., Mei, S., Ghoghari, H., Srinivasan, P., Lee, Y.-l., Gao, J., and
Guan, X., 2017. “Autonomous UAV forced graffiti detection and removal system based
on machine learning.” In 2017 IEEE SmartWorld, Ubiquitous Intelligence & Comput-
ing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud &
Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/S-
CALCOM/UIC/ATC/CBDCom/IOP/SCI), IEEE, pp. 1–8. 1

[5] Faiçal, B. S., Freitas, H., Gomes, P. H., Mano, L. Y., Pessin, G., [de Carvalho], A. C.,
Krishnamachari, B., and Ueyama, J., 2017. “An adaptive approach for UAV-based pes-
ticide spraying in dynamic environments.” Computers and Electronics in Agriculture,
138, pp. 210 – 223. 1

[6] Nigam, N., 2014. “The multiple unmanned air vehicle persistent surveillance problem:
A review.” Machines, 2(1), Jan, p. 13–72. 2, 7, 10, 37, 39

[7] Wei, C., Hindriks, K. V., and Jonker, C. M., 2016. “Dynamic task allocation for
multi-robot search and retrieval tasks.” Applied Intelligence, 45(2), pp. 383–401. 2, 7,
9

[8] Rangoni, R., and Jager, W., 2017. “Social dynamics of littering and adaptive cleaning
strategies explored using agent-based modelling.” Journal of Artificial Societies and
Social Simulation, 20(2). 2, 35

[9] Chiang, C.-H., 2015. “Vision-based coverage navigation for robot trash collection
task.” In 2015 International Conference on Advanced Robotics and Intelligent Systems
(ARIS), IEEE, pp. 1–6. 2, 35

72

[10] Bai, J., Lian, S., Liu, Z., Wang, K., and Liu, D., 2018. “Deep learning based robot
for automatically picking up garbage on the grass.” IEEE Transactions on Consumer
Electronics, 64(3), pp. 382–389. 2

[11] Stickel, B. H., Jahn, A., and Kier, B., 2012. The cost to West Coast communities of
dealing with trash, reducing marine debris. Prepared by Kier Associates for US Envi-
ronmental Protection Agency, Region 9, pursuant to Order for Services EPG12900098.
San Francisco, CA. 2, 35

[12] Scherer, J., and Rinner, B., 2016. “Persistent multi-UAV surveillance with energy and
communication constraints.” In 2016 IEEE International Conference on Automation
Science and Engineering (CASE), IEEE, pp. 1225–1230. 2, 8, 10

[13] Shakhatreh, H., Khreishah, A., Chakareski, J., Salameh, H. B., and Khalil, I., 2016.
“On the continuous coverage problem for a swarm of UAVs.” In 2016 IEEE 37th
Sarnoff Symposium, IEEE, pp. 130–135. 2, 8, 10

[14] Li, B., Moridian, B., Kamal, A., Patankar, S., and Mahmoudian, N., 2019. “Multi-
robot mission planning with static energy replenishment.” Journal of Intelligent &
Robotic Systems, 95(2), pp. 745–759. 2, 8, 10, 36

[15] Park, H., and Morrison, J. R., 2019. “System design and resource analysis for persistent
robotic presence with multiple refueling stations.” In 2019 International Conference
on Unmanned Aircraft Systems (ICUAS), IEEE, pp. 622–629. 2, 8, 10

[16] Ranque, P., Freeman, D., Kernstine, K., Lim, D., Garcia, E., and Mavris, D. Stochastic
Agent-Based Analysis of UAV Mission Effectiveness. 3, 10, 35, 37, 38

[17] Ruiwen, Z., Bifeng, S., Yang, P., and Qijia, Y., 2019. “Improved method for subsystems
performance trade-off in system-of-systems oriented design of UAV swarms.” Journal
of Systems Engineering and Electronics, 30(4), pp. 720–737. 3, 35, 38

[18] Muratore, M., Silvestrini, R. T., and Chung, T. H., 2014. “Simulation analysis of UAV
and ground teams for surveillance and interdiction.” The Journal of Defense Modeling
and Simulation, 11(2), pp. 125–135. 3, 35, 38

[19] Ravichandran, R., Ghose, D., and Das, K., 2019. “UAV based survivor search during
floods.” In 2019 International Conference on Unmanned Aircraft Systems (ICUAS),
IEEE, pp. 1407–1415. 3, 35

[20] Jin, Y., Liao, Y., Minai, A. A., and Polycarpou, M. M., 2005. “Balancing search
and target response in cooperative unmanned aerial vehicle (UAV) teams.” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 36(3), pp. 571–
587. 3, 35, 70

[21] Alamdari, S., Fata, E., and Smith, S. L., 2014. “Persistent monitoring in discrete
environments: Minimizing the maximum weighted latency between observations.” The
International Journal of Robotics Research, 33(1), pp. 138–154. 3, 10

73

[22] Ding, Y., Luo, W., and Sycara, K., 2019. “Decentralized multiple mobile depots
route planning for replenishing persistent surveillance robots.” In 2019 International
Symposium on Multi-Robot and Multi-Agent Systems (MRS), IEEE, pp. 23–29. 3, 38

[23] Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I.,
Othman, N. S., Khreishah, A., and Guizani, M., 2019. “Unmanned aerial vehicles
(UAVs): A survey on civil applications and key research challenges.” IEEE Access, 7,
pp. 48572–48634. 7, 34

[24] Shakeri, R., Al-Garadi, M. A., Badawy, A., Mohamed, A., Khattab, T., Al-Ali, A. K.,
Harras, K. A., and Guizani, M., 2019. “Design challenges of multi-UAV systems in
cyber-physical applications: A comprehensive survey and future directions.” IEEE
Communications Surveys & Tutorials, 21(4), pp. 3340–3385. 7

[25] Coffey, T., and Montgomery, J. A., 2002. “The emergence of mini UAVs for military
applications.” Defense Horizons(22). 7

[26] Winfield, A. F., 2009. “Towards an engineering science of robot foraging.” In Dis-
tributed Autonomous Robotic Systems 8. Springer, pp. 185–192. 9

[27] Bayındır, L., 2016. “A review of swarm robotics tasks.” Neurocomputing, 172, pp. 292–
321. 9

[28] Zedadra, O., Jouandeau, N., Seridi, H., and Fortino, G., 2017. “Multi-agent foraging:
state-of-the-art and research challenges.” Complex Adaptive Systems Modeling, 5(1),
p. 3. 9

[29] Darmanin, R. N., and Bugeja, M. K., 2017. “A review on multi-robot systems cate-
gorised by application domain.” In 2017 25th Mediterranean Conference on Control
and Automation (MED), IEEE, pp. 701–706. 9

[30] Pitonakova, L., Crowder, R., and Bullock, S., 2016. “Information flow principles for
plasticity in foraging robot swarms.” Swarm Intelligence, 10(1), pp. 33–63. 9

[31] Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M., 2013. “Swarm robotics: a
review from the swarm engineering perspective.” Swarm Intelligence, 7(1), pp. 1–41.
9

[32] Pitonakova, L., Crowder, R., and Bullock, S., 2018. “Information exchange design
patterns for robot swarm foraging and their application in robot control algorithms.”
Frontiers in Robotics and AI, 5, p. 47. 9

[33] Bähnemann, R., Schindler, D., Kamel, M., Siegwart, R., and Nieto, J., 2017. “A
decentralized multi-agent unmanned aerial system to search, pick up, and relocate
objects.” In 2017 IEEE International Symposium on Safety, Security and Rescue
Robotics (SSRR), IEEE, pp. 123–128. 9

[34] Spurný, V., Báča, T., Saska, M., Pěnička, R., Krajńık, T., Thomas, J., Thakur, D.,
Loianno, G., and Kumar, V., 2019. “Cooperative autonomous search, grasping, and

74

delivering in a treasure hunt scenario by a team of unmanned aerial vehicles.” Journal
of Field Robotics, 36(1), pp. 125–148. 9

[35] Loianno, G., Spurny, V., Thomas, J., Baca, T., Thakur, D., Hert, D., Penicka, R.,
Krajnik, T., Zhou, A., Cho, A., et al., 2018. “Localization, grasping, and transporta-
tion of magnetic objects by a team of MAVs in challenging desert-like environments.”
IEEE Robotics and Automation Letters, 3(3), pp. 1576–1583. 9

[36] Stump, E., and Michael, N., 2011. “Multi-robot persistent surveillance planning as
a vehicle routing problem.” In 2011 IEEE International Conference on Automation
Science and Engineering, IEEE, pp. 569–575. 9

[37] Semsch, E., Jakob, M., Pavlicek, D., and Pechoucek, M., 2009. “Autonomous UAV
surveillance in complex urban environments.” In 2009 IEEE/WIC/ACM International
Joint Conference on Web Intelligence and Intelligent Agent Technology, Vol. 2, IEEE,
pp. 82–85. 9

[38] Matai, R., Singh, S. P., and Mittal, M. L., 2010. “Traveling salesman problem: an
overview of applications, formulations, and solution approaches.” Traveling salesman
problem, theory and applications, 1. 9

[39] Bektas, T., 2006. “The multiple traveling salesman problem: an overview of formula-
tions and solution procedures.” Omega, 34(3), pp. 209–219. 9

[40] Cabreira, T., Brisolara, L., and R Ferreira, P., 2019. “Survey on coverage path planning
with unmanned aerial vehicles.” Drones, 3(1), p. 4. 9

[41] Kadioglu, E., Urtis, C., and Papanikolopoulos, N., 2019. “UAV coverage using hexag-
onal tessellation.” In 2019 27th Mediterranean Conference on Control and Automation
(MED), IEEE, pp. 37–42. 9

[42] Palacios-Gasós, J. M., Talebpour, Z., Montijano, E., Sagüés, C., and Martinoli, A.,
2017. “Optimal path planning and coverage control for multi-robot persistent coverage
in environments with obstacles.” In 2017 IEEE International Conference on Robotics
and Automation (ICRA), IEEE, pp. 1321–1327. 9

[43] Maza, I., and Ollero, A., 2007. “Multiple UAV cooperative searching operation using
polygon area decomposition and efficient coverage algorithms.” In Distributed Au-
tonomous Robotic Systems 6. Springer, pp. 221–230. 9

[44] Bentz, W., and Panagou, D., 2018. “Energy-aware persistent coverage and intruder
interception in 3D dynamic environments.” In 2018 Annual American Control Con-
ference (ACC), IEEE, pp. 4426–4433. 10

[45] Trotta, A., Di Felice, M., Montori, F., Chowdhury, K. R., and Bononi, L., 2018. “Joint
coverage, connectivity, and charging strategies for distributed UAV networks.” IEEE
Transactions on Robotics, 34(4), pp. 883–900. 10

[46] Gainer Jr, J., Dawkins, J., DeVries, L., and Kutzer, M., 2019. “Persistent multi-agent
search and tracking with flight endurance constraints.” Robotics, 8(1), p. 2. 10, 37

75

[47] Erdelj, M., Saif, O., Natalizio, E., and Fantoni, I., 2019. “UAVs that fly forever:
Uninterrupted structural inspection through automatic UAV replacement.” Ad Hoc
Networks, 94, p. 101612. 10

[48] Hartuv, E., Agmon, N., and Kraus, S., 2019. “Scheduling spare drones for persistent
task performance with several replacement stations.” In 2019 International Symposium
on Multi-Robot and Multi-Agent Systems (MRS), IEEE, pp. 95–97. 10, 12

[49] Li, B., Patankar, S., Moridian, B., and Mahmoudian, N., 2018. “Planning large-
scale search and rescue using team of UAVs and charging stations.” In 2018 IEEE
International Symposium on Safety, Security, and Rescue Robotics (SSRR), IEEE,
pp. 1–8. 10, 11, 36, 37, 38

[50] Ribeiro, R. G., Júnior, J. R., Cota, L. P., Euzébio, T. A., and Guimarães, F. G., 2019.
“Unmanned aerial vehicle location routing problem with charging stations for belt
conveyor inspection system in the mining industry.” IEEE Transactions on Intelligent
Transportation Systems. 10

[51] Palacios-Gasós, J. M., Montijano, E., Sagüés, C., and Llorente, S., 2016. “Distributed
coverage estimation and control for multirobot persistent tasks.” IEEE transactions
on Robotics, 32(6), pp. 1444–1460. 10, 38

[52] Singh, S., Lu, S., Kokar, M. M., Kogut, P. A., and Martin, L., 2017. “Detection and
classification of emergent behaviors using multi-agent simulation framework (WIP).” In
Proceedings of the Symposium on Modeling and Simulation of Complexity in Intelligent,
Adaptive and Autonomous Systems, MSCIAAS ’17, Society for Computer Simulation
International. 10

[53] Smith, S. L., and Rus, D., 2010. “Multi-robot monitoring in dynamic environments
with guaranteed currency of observations.” In 49th IEEE conference on decision and
control (CDC), IEEE, pp. 514–521. 10

[54] Lanillos, P., Gan, S. K., Besada-Portas, E., Pajares, G., and Sukkarieh, S., 2014.
“Multi-UAV target search using decentralized gradient-based negotiation with ex-
pected observation.” Information Sciences, 282, pp. 92 – 110. 10, 37, 38

[55] Yu, J., Karaman, S., and Rus, D., 2015. “Persistent monitoring of events with stochas-
tic arrivals at multiple stations.” IEEE Transactions on Robotics, 31(3), pp. 521–535.
10, 36, 37

[56] Szafir, D. A., 2018. “The good, the bad, and the biased: five ways visualizations can
mislead (and how to fix them).” Interactions, 25(4), pp. 26–33. 11

[57] Li, Z., Zhu, C., and Gold, C., 2004. Digital terrain modeling: principles and method-
ology. CRC press. 12

[58] Enright, J. J., Frazzoli, E., Pavone, M., and Savla, K., 2015. “UAV routing and
coordination in stochastic, dynamic environments.” Handbook of unmanned aerial
vehicles, pp. 2079–2109. 12, 14

76

[59] Enright, J., Frazzoli, E., Savla, K., and Bullo, F., 2005. “On multiple UAV routing with
stochastic targets: Performance bounds and algorithms.” In Aiaa guidance, navigation,
and control conference and exhibit, p. 5830. 12

[60] Seyedi, S., Yazicioğlu, Y., and Aksaray, D., 2019. “Persistent surveillance with
energy-constrained UAVs and mobile charging stations.” IFAC-PapersOnLine, 52(20),
pp. 193–198. 12

[61] Jung, S., and Ariyur, K. B., 2017. “Automated wireless recharging for small UAVs.”
International Journal of Aeronautical and Space Sciences, 18(3), pp. 588–600. 12

[62] Ure, N. K., Chowdhary, G., Toksoz, T., How, J. P., Vavrina, M. A., and Vian, J.,
2014. “An automated battery management system to enable persistent missions with
multiple aerial vehicles.” IEEE/ASME transactions on mechatronics, 20(1), pp. 275–
286. 12, 13

[63] Boukoberine, M. N., Zhou, Z., and Benbouzid, M., 2019. “A critical review on un-
manned aerial vehicles power supply and energy management: Solutions, strategies,
and prospects.” Applied Energy, 255, p. 113823. 12

[64] Hassanalian, M., and Abdelkefi, A., 2017. “Classifications, applications, and design
challenges of drones: A review.” Progress in Aerospace Sciences, 91, pp. 99–131. 12

[65] Dubins, L. E., 1957. “On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tangents.” American
Journal of Mathematics, 79(3), pp. 497–516. 13, 16

[66] Wu, L., Ke, Y., and Chen, B. M., 2018. “Systematic modeling of rotor-driving dy-
namics for small unmanned aerial vehicles.” Unmanned Systems, 6(02), pp. 81–93.
13

[67] Beard, R. W., and McLain, T. W., 2012. Small unmanned aircraft: Theory and
practice. Princeton university press. 13

[68] Cocchioni, F., Frontoni, E., Ippoliti, G., Longhi, S., Mancini, A., and Zingaretti, P.,
2016. “Visual based landing for an unmanned quadrotor.” Journal of Intelligent &
Robotic Systems, 84(1-4), pp. 511–528. 13

[69] Villa, D. K., Brandão, A. S., and Sarcinelli-Filho, M., 2019. “A survey on load trans-
portation using multirotor UAVs.” Journal of Intelligent & Robotic Systems, pp. 1–30.
13

[70] Parra-Vega, V., Sanchez, A., Izaguirre, C., Garcia, O., and Ruiz-Sanchez, F., 2013.
“Toward aerial grasping and manipulation with multiple UAVs.” Journal of Intelligent
& Robotic Systems, 70(1-4), pp. 575–593. 13

[71] Symington, A., Waharte, S., Julier, S., and Trigoni, N., 2010. “Probabilistic target
detection by camera-equipped UAVs.” In 2010 IEEE International Conference on
Robotics and Automation, IEEE, pp. 4076–4081. 13

77

[72] Radmanesh, M., Kumar, M., Guentert, P. H., and Sarim, M., 2018. “Overview of
path-planning and obstacle avoidance algorithms for UAVs: A comparative study.”
Unmanned systems, 6(02), pp. 95–118. 13

[73] Lin, Z., Castano, L., Mortimer, E., and Xu, H., 2020. “Fast 3D collision avoidance
algorithm for fixed wing UAS.” Journal of Intelligent & Robotic Systems, 97(3),
pp. 577–604. 13

[74] Zhang, L., Wang, J., Lin, Z., Lin, L., Chen, Y., and He, B., 2019. “Distributed coop-
erative obstacle avoidance for mobile robots using independent virtual center points.”
Journal of Intelligent & Robotic Systems, pp. 1–15. 13

[75] Torabbeigi, M., Lim, G. J., and Kim, S. J., 2020. “Drone delivery scheduling optimiza-
tion considering payload-induced battery consumption rates.” Journal of Intelligent
& Robotic Systems, 97(3), pp. 471–487. 13

[76] Dietrich, T., Krug, S., and Zimmermann, A., 2017. “An empirical study on generic
multicopter energy consumption profiles.” In 2017 Annual IEEE International Systems
Conference (SysCon), IEEE, pp. 1–6. 13

[77] Prasetia, A. S., Wai, R.-J., Wen, Y.-L., and Wang, Y.-K., 2019. “Mission-based energy
consumption prediction of multirotor UAV.” IEEE Access, 7, pp. 33055–33063. 13

[78] Vasquez-Gomez, J. I., Marciano-Melchor, M., Valentin, L., and Herrera-Lozada, J. C.,
2020. “Coverage path planning for 2D convex regions.” Journal of Intelligent & Robotic
Systems, 97(1), pp. 81–94. 14

[79] Mitchell, D., Chakraborty, N., Sycara, K., and Michael, N., 2015. “Multi-robot persis-
tent coverage with stochastic task costs.” In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE, pp. 3401–3406. 14

[80] Moon, B. G., and Peterson, C. K., 2018. “Learned search parameters for cooperating
vehicles using gaussian process regressions.” In 2018 International Conference on
Unmanned Aircraft Systems (ICUAS), IEEE, pp. 493–502. 14, 38

[81] Khamis, A., Hussein, A., and Elmogy, A., 2015. “Multi-robot task allocation: A review
of the state-of-the-art.” In Cooperative Robots and Sensor Networks 2015. Springer,
pp. 31–51. 14

[82] Bethke, B., How, J., and Vian, J., 2009. “Multi-UAV persistent surveillance with
communication constraints and health mangement.” In AIAA Guidance, Navigation,
and Control Conference, p. 5654. 14

[83] Hansen, S., McLain, T., and Goodrich, M., 2007. “Probabilistic searching using a
small unmanned aerial vehicle.” In AIAA Infotech@ Aerospace 2007 Conference and
Exhibit, p. 2740. 16

[84] Bidstrup, C. C., Moore, J. J., Peterson, C. K., and Beard, R. W., 2019. “Track-
ing multiple vehicles constrained to a road network from a UAV with sparse visual

78

measurements.” In 2019 American Control Conference (ACC), IEEE, pp. 3817–3822.
16

[85] Di Franco, C., and Buttazzo, G., 2016. “Coverage path planning for UAVs photogram-
metry with energy and resolution constraints.” Journal of Intelligent & Robotic Sys-
tems, 83(3-4), pp. 445–462. 20

[86] Dobrin, A., 2005. “A review of properties and variations of voronoi diagrams.” Whit-
man College, pp. 1949–3053. 20

[87] Galceran, E., and Carreras, M., 2013. “A survey on coverage path planning for
robotics.” Robotics and Autonomous systems, 61(12), pp. 1258–1276. 20

[88] Storn, R., and Price, K., 1997. “Differential evolution–a simple and efficient heuristic
for global optimization over continuous spaces.” Journal of global optimization, 11(4),
pp. 341–359. 24, 40

[89] Kraft, D., 1994. “Algorithm 733: TOMP–fortran modules for optimal control calcu-
lations.” ACM Transactions on Mathematical Software (TOMS), 20(3), pp. 262–281.
25

[90] Forrester, A., Sobester, A., and Keane, A., 2008. Engineering design via surrogate
modelling: a practical guide. John Wiley & Sons. 29

[91] Abdi, H., and Williams, L. J., 2010. “Tukey’s honestly significant difference (HSD)
test.” Encyclopedia of Research Design. Thousand Oaks, CA: Sage, pp. 1–5. 31

[92] Tsouros, D. C., Bibi, S., and Sarigiannidis, P. G., 2019. “A review on UAV-based
applications for precision agriculture.” Information, 10(11), p. 349. 34

[93] Day, R., and Salmon, J. A framework for multi-UAV persistent search and retrieval
with stochastic target appearance submitted. 34, 36, 39, 40, 42, 46, 53

[94] Acevedo, J. J., Arrue, B. C., Maza, I., and Ollero, A., 2015. “Distributed cooperation
of multiple UAVs for area monitoring missions.” In Motion and Operation Planning
of Robotic Systems. Springer, pp. 471–494. 37

[95] George, J., Sujit, P., and Sousa, J. B., 2011. “Search strategies for multiple UAV search
and destroy missions.” Journal of Intelligent & Robotic Systems, 61(1-4), pp. 355–367.
37

[96] Waharte, S., Symington, A., and Trigoni, N., 2010. “Probabilistic search with agile
UAVs.” In 2010 IEEE International Conference on Robotics and Automation, IEEE,
pp. 2840–2845. 37, 39, 69

[97] Ramasamy, M., and Ghose, D., 2017. “A heuristic learning algorithm for preferen-
tial area surveillance by unmanned aerial vehicles.” Journal of Intelligent & Robotic
Systems, 88(2-4), pp. 655–681. 37

79

[98] Zhang, R., Song, B., Pei, Y., Tang, W., and Wang, M., 2017. “Agent-based analysis of
multi-UAV area monitoring mission effectiveness.” In AIAA Modeling and Simulation
Technologies Conference, p. 3151. 37

[99] Saeed, A., Abdelkader, A., Khan, M., Neishaboori, A., Harras, K. A., and Mohamed,
A., 2019. “On realistic target coverage by autonomous drones.” ACM Transactions
on Sensor Networks (TOSN), 15(3), pp. 1–33. 38

[100] Phantom, D. pro/pro+ user manual. 2018 https://dl.djicdn.com/downloads/

phantom_4_pro/Phantom+4+Pro+Pro+Plus+User+Manual+v1.0.pdf Accessed: 2020-
06-29. 39

[101] Jaffe, D. A., 1987. “Spectrum analysis tutorial, part 1: the discrete Fourier transform.”
Computer Music Journal, 11(2), pp. 9–24. 48

[102] Cooley, J. W., and Tukey, J. W., 1965. “An algorithm for the machine calculation of
complex Fourier series.” Mathematics of computation, 19(90), pp. 297–301. 49

[103] Cleveland, W. S., 1993. Visualizing data. Hobart Press. 51

[104] Song, F., Guo, Z., and Mei, D., 2010. “Feature selection using principal component
analysis.” In 2010 international conference on system science, engineering design and
manufacturing informatization, Vol. 1, IEEE, pp. 27–30. 59

[105] Jolliffe, I. T., 1990. “Principal component analysis: a beginner’s guide—i. introduction
and application.” Weather, 45(10), pp. 375–382. 59

[106] Wold, S., Esbensen, K., and Geladi, P., 1987. “Principal component analysis.” Chemo-
metrics and intelligent laboratory systems, 2(1-3), pp. 37–52. 59

[107] Liaw, A., Wiener, M., et al., 2002. “Classification and regression by randomForest.”
R news, 2(3), pp. 18–22. 61

[108] Grömping, U., 2009. “Variable importance assessment in regression: linear regression
versus random forest.” The American Statistician, 63(4), pp. 308–319. 61

[109] Nolan, P., Paley, D. A., and Kroeger, K., 2017. “Multi-UAS path planning for non-
uniform data collection in precision agriculture.” In 2017 IEEE Aerospace Conference,
IEEE, pp. 1–12. 68

[110] Gaszczak, A., Breckon, T. P., and Han, J., 2011. “Real-time people and vehicle de-
tection from UAV imagery.” In Intelligent Robots and Computer Vision XXVIII: Al-
gorithms and Techniques, Vol. 7878, International Society for Optics and Photonics,
p. 78780B. 69

[111] Yao, P., Wang, H., and Ji, H., 2017. “Gaussian mixture model and receding horizon
control for multiple UAV search in complex environment.” Nonlinear Dynamics, 88(2),
pp. 903–919. 69

80

https://dl.djicdn.com/downloads/phantom_4_pro/Phantom+4+Pro+Pro+Plus+User+Manual+v1.0.pdf
https://dl.djicdn.com/downloads/phantom_4_pro/Phantom+4+Pro+Pro+Plus+User+Manual+v1.0.pdf

APPENDIX A. CODE

A.1 Simulation Code

run park sim.py

1 from time import time

2 import random

3 import sys

4

5 from parkcleanup.parkcleanup.simulation.park_cleanup_simulation import ParkCleanupSimulation

6 from parkcleanup.parkcleanup.builders.sim_model_builder import SimModelBuilder

7 from parkcleanup.parkcleanup.builders.drone_builder import DroneBuilder

8 from parkcleanup.parkcleanup.visualization.matplotlib_plotter import MatplotlibPlotter

9 from parkcleanup.parkcleanup.dataloggers.sim_data_logger import SimDataLogger

10 from collector_placement_algorithms.placement_data_utils import load_avgmin_config

11

12 def main():

13 # This script sets up a simulation and runs it

14 print("Starting simulation calculations")

15 start = time()

16 random.seed (55555)

17

18 bounds = 300

19 num_collectors = 8

20 num_chargers = 5

21 collector_coords = load_avgmin_config(num_collectors , bounds).tolist ()

22 charging_station_coords = load_avgmin_config(num_chargers , bounds).tolist ()

23

24 trash_per_hour = 150

25 trash_spawn_rate = trash_per_hour /3600

26 sim_model_builder = (

27 SimModelBuilder ()

28 .set_park_bounds(bounds)

29 .init_collectors(collector_coords)

30 .init_rechargers(charging_station_coords)

31 .set_random_trash_generation_on(trash_spawning_rate=trash_spawn_rate)

32)

33 drone_builder = (

34 DroneBuilder(bounds)

35 .set_starting_position_random ()

81

36 .set_speed (3)

37 .set_fly_time (1800)

38 .set_recharge_time (3600)

39 .set_trash_detection_radius (20)

40 .set_object_found_distance (3)

41 .set_constant_trash_dropoff_delay (5)

42 .set_constant_trash_pickup_delay (5)

43 .set_charging_params(

44 set_out_for_seen_trash_while_charging =1.0,

45 emergency_recharge_level =0.05,

46 return_to_charge_from_patrolling =0.05

47)

48 .set_number_of_drones_to_init (15)

49 .set_starting_position_on_coordinates(charging_station_coords)

50 .set_start_delay ()

51 .set_search_method_partitioned_lawnmower ()

52)

53 drones = drone_builder.commit ()

54

55 sim_model_builder.init_drones(drones)

56 sim_model = sim_model_builder.commit ()

57 sim = (

58 ParkCleanupSimulation(sim_model)

59)

60

61 sim.run_sim(total_time_steps =5000, data_logger=SimDataLogger (10,75, False))

62 end = time()

63

64 # Set plotting settings

65 plotter = (

66 MatplotlibPlotter ()

67 .show_trash_detection_radius_circle ()

68 .set_drone_color_change_for_battery_level ()

69 .show_drone_search_patterns ()

70 .show_outputs ()

71)

72

73 print("Time from initialization to model calculations: " + str(end -start))

74 plotter.interactive_plot_data(sim)

75

76 if __name__ == "__main__":

77 main()

park cleanup simulation.py

1 from time import time

2 import random

3 import sys

4 from random import random as rand

82

5 from copy import copy

6

7 from scipy.spatial import distance_matrix

8 import numpy as np

9

10 from parkcleanup.parkcleanup.model.agents.person import Person

11 from parkcleanup.parkcleanup.model.agents.drone import Drone

12 from parkcleanup.parkcleanup.model.objectives.collector import Collector

13 from parkcleanup.parkcleanup.model.objectives.trash import Trash

14 from parkcleanup.parkcleanup.tools.helper import sign

15 from parkcleanup.parkcleanup.model.agents.drone import DroneStateType

16

17 class ParkCleanupSimulation:

18 def __init__(self , sim_model):

19 self.sim_model = sim_model

20 self.num_time_steps = None

21 self.random_seed = None

22 self._sim_has_finished = False

23 self.trash_id_counter = 0

24

25 def run_sim(self , total_time_steps , data_logger=None , seed_for_run=None):

26 if self._sim_has_finished:

27 raise Exception("Simulation has already been run")

28 if seed_for_run is None:

29 seed_for_run = random.randrange(sys.maxsize)

30 random.seed(seed_for_run)

31 self.random_seed = seed_for_run

32 num_time_steps = total_time_steps

33 self.num_time_steps = num_time_steps

34

35 if data_logger is not None:

36 self.data_logger = data_logger

37 data_logger.update_initial_information(self)

38

39 self._initialize_drone_states ()

40 for index in range(0, num_time_steps):

41 self.sim_model.curr_time_step = index

42 self._step()

43 if data_logger is not None:

44 data_logger.update(index , self.sim_model)

45 self._sim_has_finished = True

46 data_logger.update_final_information(self)

47

48 def has_run(self):

49 return self._sim_has_finished

50

51 def _initialize_drone_states(self):

52 # This allows the drones to set themselves up based on the sim_model

83

53 for drone in self.sim_model.all_drones:

54 drone._set_state(drone._state_type , self.sim_model)

55

56 def _step(self):

57 if self.sim_model.persons_on:

58 self._update_persons ()

59 self._update_drones ()

60 self._update_trash ()

61

62 def _update_trash(self):

63 for trash in self.sim_model.all_trash:

64 trash.time_left_out += 1

65 if self.sim_model.random_trash_generation_on:

66 self._randomly_generate_trash ()

67

68 def _calculate_distance_to_drop_off(self , x, y):

69 distances_from_collectors = distance_matrix(self.sim_model.collector_coords , [[x, y]])

70 closest_collector_distance = min(distances_from_collectors).item (0)

71 closest_collector = self.sim_model.collector_coords[np.argmin(distances_from_collectors)]

72 distances_from_chargers = distance_matrix(self.sim_model.charger_coords , [closest_collector])

73 closest_charger_distance = min(distances_from_chargers)

74 # Add 3 for safety buffer

75 return closest_charger_distance + closest_collector_distance + 30 + 3

76

77 def _randomly_generate_trash(self):

78 if rand() < self.sim_model.trash_spawning_rate:

79 random_x = rand()*self.sim_model.park.bounds

80 random_y = rand()*self.sim_model.park.bounds

81 distance_to_drop_off = self._calculate_distance_to_drop_off(random_x , random_y)

82 new_trash = Trash ([random_x ,random_y], distance_to_drop_off , self.sim_model.curr_time_step ,

self.trash_id_counter)

83 self.trash_id_counter += 1

84 self.sim_model.all_trash.append(new_trash)

85

86 def _update_persons(self):

87 if rand() < self.sim_model.person_spawning_rate:

88 speed = self.sim_model.person_params [0]

89 trash_percent_threshold = self.sim_model.person_params [1]

90 found_distance = self.sim_model.person_params [2]

91 max_path = self.sim_model.person_params [3]

92 new_person = Person(speed , trash_percent_threshold , found_distance , self.sim_model.park ,

max_path)

93 self.sim_model.all_persons.append(new_person)

94 self.sim_model.data_logger.total_persons += 1

95 for index , person in enumerate(self.sim_model.all_persons):

96 person.update ()

97 if person.throws_trash ():

98 distance_to_drop_off = self._calculate_distance_to_drop_off (* person.position)

84

99 self.sim_model.all_trash.append(Trash(person.position , distance_to_drop_off))

100 if person.finished ():

101 del self.sim_model.all_persons[index]

102 if not self.sim_model.all_persons:

103 self.sim_model.all_persons = []

104

105 def _update_drones(self):

106 self.sim_model.update_drone_info ()

107 # Update the drone objectives

108 for drone in self.sim_model.all_drones:

109 drone.update(self.sim_model)

sim model.py

1 from scipy.spatial import distance_matrix

2

3 class SimModel(object):

4 ’’’

5 The purpose of this class is to store the state of the simulation at each

6 time step. It should not be populated with historical data that grow over

7 time so that the simulation can be run with a near constant amount of RAM if

8 desired. Data logging should be delagated to another class.

9 ’’’

10 def __init__(self):

11 # Use SimModelBuilder for initialization

12 self.all_drones = None

13 self.all_persons = []

14 self.all_trash = []

15

16 self.random_trash_generation_on = None

17 self.trash_spawning_rate = None

18

19 self.persons_on = None

20 self.person_params = None

21 self.person_spawning_rate = None

22

23 self.all_collectors = None

24 self.all_drones = None

25 self.all_rechargers = None

26

27 self.park = None

28

29 self.drone_coords = None

30 self.trash_coords = None

31 self.person_coords = None

32 self.collector_coords = None

33 self.charger_coords = None

34 self.drone_to_drone = None

35 self.drone_to_person = None

85

36 self.drone_to_trash = None

37 self.drone_to_collector = None

38

39 self.times_left_out = None

40 self.times_left_out_positions = None

41 self.trash_ids = None

42 self.start_times = None

43

44 self.curr_time_step = None

45 self.potential_fields_on = None

46

47 def update_drone_info(self):

48 # Find all distances to objects around the drones

49 drone_coords = [drone.position for drone in self.all_drones]

50 person_coords = []

51 trash_coords = []

52 drone_to_trash = []

53 drone_to_person = []

54 drone_to_drone = []

55 if self.potential_fields_on:

56 drone_to_drone = distance_matrix(drone_coords , drone_coords).tolist ()

57 if len(self.all_persons) != 0:

58 person_coords = [person.position for person in self.all_persons]

59 drone_to_person = distance_matrix(drone_coords , person_coords).tolist ()

60 if self.there_is_trash_in_model ():

61 trash_coords = [trash.position for trash in self.all_trash]

62 drone_to_trash = distance_matrix(drone_coords , trash_coords).tolist ()

63 for index , trash in enumerate(self.all_trash):

64 trash.distances_to_drones = [one_drone_to_all_trash[index] for one_drone_to_all_trash in

drone_to_trash]

65 self.update_temp_info(drone_coords , trash_coords , person_coords , drone_to_drone , drone_to_person ,

drone_to_trash)

66

67 def update_temp_info(self , drone_coords , trash_coords , person_coords , drone_to_drone , drone_to_person

, drone_to_trash):

68 self.drone_coords = drone_coords

69 self.trash_coords = trash_coords

70 self.person_coords = person_coords

71 self.drone_to_drone = drone_to_drone

72 self.drone_to_person = drone_to_person

73 self.drone_to_trash = drone_to_trash

74 self.times_left_out = []

75 self.times_left_out_positions = []

76 self.trash_ids = []

77 self.start_times = []

78

79 def record_trash_pickup_event(self , trash):

80 self.trash_ids.append(trash.id)

86

81 self.start_times.append(trash.start_time)

82 self.times_left_out.append(trash.time_left_out)

83 self.times_left_out_positions.append(trash.position)

84

85 def there_is_trash_in_model(self):

86 return len(self.all_trash) != 0

87

88 def there_are_people_in_model(self):

89 return len(self.all_persons) != 0

90

91 def drones_have_trash(self):

92 has_trash = [drone.has_trash for drone in self.all_drones]

93 return (True in has_trash)

sim model builder.py

1 from random import random as rand

2

3 from parkcleanup.parkcleanup.simulation.sim_model import SimModel

4 from parkcleanup.parkcleanup.model.objectives.collector import Collector

5 from parkcleanup.parkcleanup.model.objectives.charge_station import ChargeStation

6 from parkcleanup.parkcleanup.model.park.park import Park

7 from parkcleanup.parkcleanup.tools.helper import random_position_in_bounds

8 from collector_placement_algorithms.placement_data_utils import load_avgmin_config

9

10 class SimModelBuilder(object):

11 def __init__(self):

12 self._random_trash_generation_on = None

13 self._trash_spawning_rate = None

14 self._park_bounds = None

15 self._person_params = None

16 self._person_spawning_rate = None

17 self._persons_on = None

18 self._all_collectors = None

19 self._all_rechargers = None

20 self._all_drones = None

21

22 def set_random_trash_generation_on(self , trash_spawning_rate):

23 if trash_spawning_rate < 0 or trash_spawning_rate > 1.0:

24 raise ValueError("Trash spawning rate not in range")

25 self._random_trash_generation_on = True

26 self._trash_spawning_rate = trash_spawning_rate

27 return self

28

29 def set_persons_on(self , walking_speed , litter_rate , found_objective_distance , num_paths_to_walk ,

spawning_rate):

30 if litter_rate > 1.0 or litter_rate < 0:

31 raise ValueError("Person litter rate must be between zero and one")

32 if found_objective_distance <= 0:

87

33 raise ValueError("Found objective distance must be positive and nonzero")

34 if walking_speed <= 0:

35 raise ValueError("Walking speed must be positive and non zero")

36 if not isinstance(num_paths_to_walk , int) and not num_paths_to_walk.is_integer ():

37 raise TypeError("Paths to walk must be int")

38 if num_paths_to_walk < 1:

39 raise ValueError("Num paths to walk must be positive and non -zero")

40 self._person_params = [walking_speed , litter_rate , found_objective_distance , num_paths_to_walk]

41 self._person_spawning_rate = spawning_rate

42 self._persons_on = True

43 return self

44

45 def set_park_bounds(self , bounds):

46 if bounds <= 0:

47 raise ValueError("Park bounds is not in range")

48 self._park_bounds = bounds

49 return self

50

51 def init_drones(self , drones):

52 self._all_drones = drones

53 return self

54

55 def init_collectors(self , start_positions):

56 if self._park_bounds is None:

57 raise Exception("Park bounds must be set before initializing collectors")

58 all_collectors = []

59 all_collector_coords = []

60 for coords in start_positions:

61 self._check_coords(coords)

62 all_collector_coords.append(coords)

63 all_collectors.append(Collector(coords))

64 self._all_collectors = all_collectors

65 self._all_collector_coords = all_collector_coords

66 return self

67

68 def init_rechargers_from_file(self , num_chargers , bounds):

69 all_chargers = load_avgmin_config(num_chargers , bounds).tolist ()

70 self.init_rechargers(all_chargers)

71 return self

72

73 def init_collectors_from_file(self , num_collectors , bounds):

74 collector_coords = load_avgmin_config(num_collectors , bounds).tolist ()

75 self.init_collectors(collector_coords)

76 return self

77

78 def init_rechargers_random(self , num_chargers):

79 charging_station_coords = []

80 for _ in range(num_chargers):

88

81 charging_station_coords.append(random_position_in_bounds(self._park_bounds))

82 self.init_rechargers(charging_station_coords)

83 return self

84

85 def init_collectors_random(self , num_collectors):

86 collector_coords = []

87 for _ in range(num_collectors):

88 collector_coords.append(random_position_in_bounds(self._park_bounds))

89 self.init_collectors(collector_coords)

90 return self

91

92 def init_rechargers(self , start_positions):

93 if self._park_bounds is None:

94 raise Exception("Park bounds must be set before initializing chargers")

95 all_chargers = []

96 all_chargers_coords = []

97 for coords in start_positions:

98 self._check_coords(coords)

99 all_chargers.append(ChargeStation(coords))

100 all_chargers_coords.append(coords)

101 self._all_rechargers = all_chargers

102 self._all_recharger_coords = all_chargers_coords

103 return self

104

105 def _check_coords(self , coords):

106 self._check_coords_type(coords)

107 self._check_that_coords_are_in_bounds(coords)

108

109 def _check_coords_type(self , coords):

110 if len(coords) != 2 or not isinstance(coords [0], (int , float)) or not isinstance(coords [1], (int ,

float)):

111 raise TypeError("Coordinate location must be list of length two with float or int")

112

113 def _check_that_coords_are_in_bounds(self , coords):

114 if coords [0] < 0 or coords [0] > self._park_bounds or coords [1] < 0 or coords [1] > self.

_park_bounds:

115 raise ValueError("Coordinate location must be in park bounds")

116

117 def commit(self):

118 if self._random_trash_generation_on is None:

119 self._random_trash_generation_on = False

120 if self._persons_on is None:

121 self._persons_on = False

122 self._check_if_can_commit ()

123 sim_model = SimModel ()

124 self._set_sim_model_parameters(sim_model)

125 self._set_drone_ids(sim_model)

126 self._set_collector_ids(sim_model)

89

127 self._set_charger_ids(sim_model)

128 return sim_model

129

130 def _check_if_can_commit(self):

131 if self._all_collectors is None or len(self._all_collectors) == 0:

132 raise Exception("No collectors in simulation")

133 if self._all_rechargers is None or len(self._all_rechargers) == 0:

134 raise Exception("No rechargers in simulation")

135 if self._all_drones is None or len(self._all_drones) == 0:

136 raise Exception("No drones in simulation")

137 if self._park_bounds is None:

138 raise Exception("Park bounds is not set")

139 if not self._random_trash_generation_on and not self._persons_on:

140 raise Exception("No trash generation methods set on")

141

142 def _set_drone_ids(self , sim_model):

143 for index , drone in enumerate(sim_model.all_drones):

144 drone.set_id(index)

145

146 def _set_collector_ids(self , sim_model):

147 for index , collector in enumerate(sim_model.all_collectors):

148 collector.set_id(index)

149

150 def _set_charger_ids(self , sim_model):

151 for index , charger in enumerate(sim_model.all_rechargers):

152 charger.set_id(index)

153

154 def _set_potential_fields_is_active(self , sim_model):

155 for drone in sim_model.all_drones:

156 if drone.potential_fields_on:

157 return True

158 return False

159

160 def _set_sim_model_parameters(self , sim_model):

161 sim_model.random_trash_generation_on = self._random_trash_generation_on

162 sim_model.trash_spawning_rate = self._trash_spawning_rate

163

164 sim_model.persons_on = self._persons_on

165 sim_model.person_params = self._person_params

166 sim_model.person_spawning_rate = self._person_spawning_rate

167

168 sim_model.all_collectors = self._all_collectors

169 sim_model.all_drones = self._all_drones

170 sim_model.all_rechargers = self._all_rechargers

171 sim_model.collector_coords = [collector.position for collector in sim_model.all_collectors]

172 sim_model.charger_coords = [charger.position for charger in sim_model.all_rechargers]

173

174 sim_model.park = Park(self._park_bounds , self._persons_on)

90

175 sim_model.potential_fields_on = self._set_potential_fields_is_active(sim_model)

sim data logger.py

1 import time

2 from math import floor

3

4 import numpy as np

5 import matplotlib.pyplot as plt

6

7 from parkcleanup.parkcleanup.model.agents.drone_state_type import DroneStateType

8

9 class SimDataLogger ():

10 def __init__(self , trash_heatmap_disc , search_heatmap_disc , experiment_mode , hm_at_every_time_step=

True):

11 # Experiment mode minimizes RAM by only computing running averages ,

12 # if false it will record all information needed to plot an experiment

13 self.experiment_mode = experiment_mode

14 self.hm_at_every_time_step = hm_at_every_time_step

15 self._initialize_drone_metrics(search_heatmap_disc)

16 self._initialize_trash_metrics(trash_heatmap_disc)

17

18 def _initialize_drone_metrics(self , search_heatmap_disc):

19 self.num_time_visited_hm = np.zeros((search_heatmap_disc , search_heatmap_disc))

20 self.time_last_searched_hm = np.zeros ((search_heatmap_disc , search_heatmap_disc))

21 self.running_sum_total = np.zeros ((search_heatmap_disc , search_heatmap_disc))

22 self.running_sum_squared_total = np.zeros((search_heatmap_disc , search_heatmap_disc))

23 self.search_hm_disc = search_heatmap_disc

24 self.all_drone_heat_map = []

25 self.all_max_hm = []

26 self.all_mean_hm = []

27 self.all_std_dev_hm = []

28 self.total_time_spent_searching = 0

29 self.total_time_spent_searching_sq = 0

30 self.total_time_spent_collecting = 0

31 self.total_time_spent_collecting_sq = 0

32 self.drones_with_depleted_energy = set ([])

33 self.drones_with_depleted_energy_times = []

34 self.num_drones_collecting = []

35 self.num_drones_searching = []

36

37 def _initialize_trash_metrics(self , trash_heatmap_disc):

38 self.trash_heatmap_disc = trash_heatmap_disc

39 # Record how many trash in the sim at each time step

40 self.num_trash_each_time_step = []

41 # Used for calculating the running average of how many trash in sim

42 self.total_trash_counting_duplicates = 0

43 self.running_avg_num_trash_each_time_step = []

44

91

45 self.total_number_of_trash_collected = 0

46 self.total_collected_trash_times = 0

47

48 self.all_trash_info = []

49 # Used for calculating stats related to average of

50 # (sum of times of trash in time step i)/(Number of trash out in time step i)

51 self.trash_time_at_each_time_step = []

52

53 self.running_avg_of_avg_time_left_out_at_each_time_step = []

54 self.sum_of_trash_times = 0

55 self.sum_of_squared_trash_times = 0

56

57 self.longest_time_left_out = 0

58 self.longest_curr_trash_left_out = []

59

60 self.times_left_out_heat_map = np.zeros((trash_heatmap_disc , trash_heatmap_disc))

61 self.num_trash_collected_heat_map = np.zeros((trash_heatmap_disc , trash_heatmap_disc))

62 if not self.experiment_mode:

63 self.avg_heat_map = np.zeros ((trash_heatmap_disc , trash_heatmap_disc))

64 self.all_avg_trash_hm = []

65

66 self.additional_trash_at_end = 0

67 self.additional_times_at_end = 0

68 self.additional_times_at_end_sq = 0

69

70 def _initialize_visualization_metrics(self):

71 self.drone_history = [None]*self.num_time_steps

72 self.drone_battery_life = [None]*self.num_time_steps

73 self.active_drones_history = [None]*self.num_time_steps

74 self.searching_drones_history = [None]*self.num_time_steps

75 self.trash_history = [None]*self.num_time_steps

76 self.longest_trash_index = [None]*self.num_time_steps

77

78 def update_initial_information(self , park_sim):

79 bounds = park_sim.sim_model.park.bounds

80 tdr = park_sim.sim_model.all_drones [0]. trash_detection_radius

81 self.random_seed = park_sim.random_seed

82 self.num_time_steps = park_sim.num_time_steps

83 self.bounds = bounds

84 self.tdr = tdr

85 self.num_drones = len(park_sim.sim_model.all_drones)

86 self.drone_hm_lookup_table = self._initialize_discretized_drone_search_radius_lookup_table(bounds

, self.search_hm_disc , tdr)

87 self.collector_positions = [collector.position for collector in park_sim.sim_model.all_collectors

]

88 self.charger_positions = [charger.position for charger in park_sim.sim_model.all_rechargers]

89 if not self.experiment_mode:

90 self._initialize_visualization_metrics ()

92

91

92 def update(self , index , sim_model):

93 self._update_drone_information(sim_model.all_drones , index)

94 self._update_trash_information(sim_model.all_trash ,

95 sim_model.trash_ids ,

96 sim_model.start_times ,

97 sim_model.times_left_out ,

98 sim_model.times_left_out_positions ,

99 index)

100

101 def update_final_information(self , sim):

102 self.total_number_of_trash = sim.trash_id_counter

103 times_left_out = [trash.time_left_out for trash in sim.sim_model.all_trash]

104 self.additional_trash_at_end = len(times_left_out)

105 if len(times_left_out) != 0:

106 self.additional_times_at_end += sum(times_left_out)

107 self.additional_times_at_end_sq += (

108 sum([trash.time_left_out **2 for trash in sim.sim_model.all_trash]))

109 for trash in sim.sim_model.all_trash:

110 # Use negative one to denote the trash was not picked up at the end

111 self.all_trash_info.append ([trash.id,

112 trash.start_time ,

113 -1,

114 trash.position [0],

115 trash.position [1]])

116

117 def _update_trash_information(self , all_trash , trash_ids , start_times ,

118 collected_trash_times , collected_positions , index):

119 # Metrics related to number of trash left out

120 num_trash_rn = len(all_trash)

121 self.num_trash_each_time_step.append(num_trash_rn)

122 # Running avg num trash

123 self.total_trash_counting_duplicates += num_trash_rn

124 self.running_avg_num_trash_each_time_step.append(self.total_trash_counting_duplicates /(index +1))

125

126 # Stats on collected trash

127 if len(collected_trash_times) != 0:

128 self.total_collected_trash_times += sum(collected_trash_times)

129 self.total_number_of_trash_collected += len(collected_trash_times)

130 for trash_id , start_time , collected_position , collected_time in zip(

131 trash_ids ,

132 start_times ,

133 collected_positions ,

134 collected_trash_times):

135 self._update_trash_hm(collected_position , collected_time)

136 self.all_trash_info.append ([trash_id ,

137 start_time ,

138 collected_time ,

93

139 collected_position [0],

140 collected_position [1]

141])

142 if not self.experiment_mode:

143 if self.hm_at_every_time_step:

144 self.all_avg_trash_hm.append(np.copy(self.avg_heat_map))

145

146 # Stats on current trash in simulation

147 times_left_out = [trash.time_left_out for trash in all_trash]

148 if len(times_left_out) != 0:

149 self.longest_curr_trash_left_out.append(max(times_left_out))

150 sum_trash_times = sum(times_left_out)

151 self.trash_time_at_each_time_step.append(sum_trash_times)

152 self.sum_of_trash_times += sum_trash_times

153 self.sum_of_squared_trash_times += sum([trash.time_left_out **2 for trash in all_trash])

154 else:

155 self.longest_curr_trash_left_out.append (0)

156 self.trash_time_at_each_time_step.append (0)

157

158 if self.total_trash_counting_duplicates == 0:

159 self.running_avg_of_avg_time_left_out_at_each_time_step.append (0)

160 else:

161 self.running_avg_of_avg_time_left_out_at_each_time_step.append(

162 self.sum_of_trash_times /(self.total_trash_counting_duplicates))

163 if not self.experiment_mode:

164 self.trash_history[index] = [trash.position for trash in all_trash]

165 if self.longest_curr_trash_left_out [-1] == 0:

166 # Mark with negative one when no trash is in the sim

167 # so plotter handles accordingly

168 self.longest_trash_index[index] = -1

169 else:

170 self.longest_trash_index[index] = times_left_out.index(self.longest_curr_trash_left_out

[-1])

171

172 def _update_trash_hm(self , position , time_left_out):

173 bounds = self.bounds

174 discretization = self.trash_heatmap_disc

175 x_grid_position = int(floor(position [0]/ bounds*discretization))

176 y_grid_position = int(floor(position [1]/ bounds*discretization))

177 self.times_left_out_heat_map[x_grid_position][y_grid_position] += time_left_out

178 self.num_trash_collected_heat_map[x_grid_position][y_grid_position] += 1

179 if not self.experiment_mode:

180 self.avg_heat_map[x_grid_position][y_grid_position] = (

181 self.times_left_out_heat_map[x_grid_position][y_grid_position] /

182 self.num_trash_collected_heat_map[x_grid_position][y_grid_position])

183

184 def get_max_trash_indices(self):

185 return self.longest_trash_index

94

186

187 def _get_x_for_plotting(self):

188 return list(range(self.num_time_steps))

189

190 def get_total_trash_time_per_time_step_data(self):

191 return self._get_x_for_plotting (), self.trash_time_at_each_time_step

192

193 def get_trash_per_time_step_data(self):

194 return self._get_x_for_plotting (), self.num_trash_each_time_step

195

196 def get_running_avg_num_trash_per_timestep_data(self):

197 return self._get_x_for_plotting (), self.running_avg_num_trash_each_time_step

198

199 def max_trash_left_out_each_time_step_data(self):

200 return self._get_x_for_plotting (), self.longest_curr_trash_left_out

201

202 def avg_time_trash_left_out_in_each_time_step_data(self):

203 return self._get_x_for_plotting (), self.running_avg_of_avg_time_left_out_at_each_time_step

204

205 def get_avg_time_trash_left_out(self):

206 if self.total_number_of_trash_collected+self.additional_trash_at_end ==0:

207 return 0

208 else:

209 return (

210 (self.total_collected_trash_times+self.additional_times_at_end)

211 /(self.total_number_of_trash_collected+self.additional_trash_at_end)

212)

213

214 def get_avg_time_trash_collected(self):

215 if self.total_number_of_trash_collected == 0:

216 return 0

217 else:

218 return self.total_collected_trash_times/self.total_number_of_trash_collected

219

220

221 def get_std_dev_time_trash_left_out(self):

222 return self._std_dev(self.sum_of_trash_times+self.additional_times_at_end ,

223 self.sum_of_squared_trash_times+self.additional_times_at_end_sq ,

224 self.total_number_of_trash)

225

226 def get_max_time_any_trash_left_out(self):

227 return max(self.longest_curr_trash_left_out)

228

229 def get_avg_num_trash_in_sim(self):

230 return self.running_avg_num_trash_each_time_step [-1]

231

232 def get_max_num_trash_in_sim_any_time(self):

233 return max(self.num_trash_each_time_step)

95

234

235 def get_std_dev_num_trash_in_sim(self):

236 return np.std(self.num_trash_each_time_step)

237

238 def get_num_trash_collected_heat_map(self):

239 return self.num_trash_collected_heat_map

240

241 def get_avg_collected_time_heat_map(self):

242 return self.times_left_out_heat_map/self.num_trash_collected_heat_map

243

244 def get_total_trash_picked_up(self):

245 return self.total_number_of_trash_collected

246

247 def get_total_number_of_unique_trash_in_sim(self):

248 return self.total_number_of_trash

249

250

251 def _update_drone_information(self , all_drones , index):

252 self.time_last_searched_hm += 1

253 search_time = 0

254 collecting_time = 0

255 num_drones_collecting = 0

256 num_drones_searching = 0

257 if not self.experiment_mode:

258 drone_positions = []

259 drone_battery_life = []

260 for drone in all_drones:

261 if (drone._state_type == DroneStateType.GO_TO_TRASH

262 or drone._state_type == DroneStateType.SEARCH_FOR_TRASH):

263 self._update_drone_search_hms(drone.position)

264 if drone._state_type in (DroneStateType.PICK_UP_TRASH ,

265 DroneStateType.DROP_OFF_TRASH ,

266 DroneStateType.GO_TO_COLLECTOR ,

267 DroneStateType.GO_TO_TRASH):

268 collecting_time += 1

269 num_drones_collecting += 1

270 elif drone._state_type == DroneStateType.SEARCH_FOR_TRASH:

271 search_time += 1

272 num_drones_searching += 1

273 elif drone._state_type == DroneStateType.OUT_OF_ENERGY:

274 if drone.id not in self.drones_with_depleted_energy:

275 self.drones_with_depleted_energy.add(drone.id)

276 self.drones_with_depleted_energy_times.append(index)

277 if not self.experiment_mode:

278 drone_positions.append(drone.position)

279 drone_battery_life.append(drone.battery_life)

280 if not self.experiment_mode:

281 self.active_drones_history[index] = num_drones_collecting

96

282 self.searching_drones_history[index] = num_drones_searching

283 self.drone_history[index] = drone_positions

284 self.drone_battery_life[index] = drone_battery_life

285

286 self.running_sum_total += self.time_last_searched_hm

287 self.running_sum_squared_total += self.time_last_searched_hm **2

288 if not self.experiment_mode:

289 if self.hm_at_every_time_step:

290 self.all_drone_heat_map.append(np.copy(self.time_last_searched_hm))

291 self.total_time_spent_searching += search_time

292 self.total_time_spent_searching_sq += search_time **2

293 self.total_time_spent_collecting += collecting_time

294 self.num_drones_searching.append(num_drones_searching)

295 self.num_drones_collecting.append(num_drones_collecting)

296

297 curr_max = np.max(self.time_last_searched_hm).item (0)

298 self.all_max_hm.append(curr_max)

299 curr_mean = np.mean(self.time_last_searched_hm).item (0)

300 self.all_mean_hm.append(curr_mean)

301 curr_std_dev = np.std(self.time_last_searched_hm).item (0)

302 self.all_std_dev_hm.append(curr_std_dev)

303

304 def get_num_drones_ran_out_of_batteries(self):

305 return len(self.drones_with_depleted_energy)

306

307 def get_avg_time_spent_searching_per_drone(self):

308 return self.total_time_spent_searching/self.num_drones

309

310 def get_std_dev_time_spent_searching_per_drone(self):

311 return self._std_dev(self.total_time_spent_searching ,

312 self.total_time_spent_searching_sq ,

313 self.num_drones)

314

315 def get_avg_time_spent_collecting_per_drone(self):

316 return self.total_time_spent_collecting/self.num_drones

317

318 def get_std_dev_time_spent_collecting_per_drone(self):

319 return self._std_dev(self.total_time_spent_collecting ,

320 self.total_time_spent_collecting_sq ,

321 self.num_drones)

322

323 def _update_drone_search_hms(self , position):

324 bounds = self.bounds

325 discretization = self.search_hm_disc

326 x_grid_position = int(floor(position [0]/ bounds*discretization))

327 y_grid_position = int(floor(position [1]/ bounds*discretization))

328 # If the UAV by chance goes outside the park , there will be no entry in the

329 # lookup table , and so the grid cells seen from there must be calculated again

97

330 if x_grid_position < 0 or x_grid_position >= discretization or y_grid_position < 0 or

y_grid_position >= discretization:

331 cells_drone_can_see = self._get_indices_of_cells_drone_can_see_inside_map(

332 self._cell_indices_drone_can_see_from_center ,

333 x_grid_position , y_grid_position ,

334 discretization)

335 if len(self.time_last_searched_hm[cells_drone_can_see [:,0], cells_drone_can_see [: ,1]]) == 0:

336 return

337 else:

338 cells_drone_can_see = self.drone_hm_lookup_table[x_grid_position][y_grid_position]

339 self.time_last_searched_hm[cells_drone_can_see [:,0], cells_drone_can_see [: ,1]] = 0

340 self.num_time_visited_hm[cells_drone_can_see [:,0], cells_drone_can_see [:,1]] += 1

341

342 def _initialize_discretized_drone_search_radius_lookup_table(self , bounds , discretization , tdr ,

print_checkpoint=False):

343 self._cell_indices_drone_can_see_from_center = self._get_cell_indices_drone_can_see_from_center(

bounds , discretization , tdr)

344 if print_checkpoint:

345 print("Start drone heat map preallocation")

346 start = time.time()

347 # Create lookup table for all the cells that a drone can see from each grid cell

348 # Depending on its detection radius

349 lookup_table = []

350 for i in range(discretization):

351 row = []

352 for j in range(discretization):

353 cells_drone_can_see = self._get_indices_of_cells_drone_can_see_inside_map(

354 self._cell_indices_drone_can_see_from_center ,

355 i, j,

356 discretization)

357 row.append(cells_drone_can_see)

358 lookup_table.append(row)

359 if print_checkpoint:

360 end = time.time()

361 print("Time: {}".format(str(end -start)))

362 return lookup_table

363

364 def _get_indices_of_cells_drone_can_see_inside_map(self , center_circle , i, j, discretization):

365 cells_drone_can_see = center_circle + [i, j]

366 # Only include the cells that are inside the map

367 indices_to_take = np.argwhere(np.all(np.logical_and(cells_drone_can_see < discretization ,

cells_drone_can_see >= 0), axis =1)).flatten ()

368 cells_drone_can_see = cells_drone_can_see[indices_to_take]

369 return cells_drone_can_see

370

371 def _get_cell_indices_drone_can_see_from_center(self , bounds , discretization , tdr):

372 # Convert float radius to radius in number of cells

373 map_len = bounds

98

374 cell_len = map_len/discretization

375 cell_radius_float = tdr/cell_len

376 cell_radius = int(round(cell_radius_float))+1

377

378 # Create indices of every cell in the park

379 m, n = discretization , discretization

380 xs = np.arange(m)

381 ys = np.arange(n)

382 x = xs - m/2

383 y = ys - n/2

384 X, Y = np.meshgrid(x, y)

385 # Find cells that are within cell radius **2 and save indices

386 center_circle = np.argwhere ((X**2 + Y**2) <= cell_radius **2)

387 center_circle [:,0] = center_circle [:,0] - m/2

388 center_circle [:,1] = center_circle [:,1] - n/2

389 center_circle = np.unique(center_circle , axis =0)

390 return center_circle

391

392 def get_num_times_visited_hm(self):

393 return self.num_time_visited_hm

394

395 def get_average_time_trash_in_cell_hms(self):

396 return self.all_avg_trash_hm

397

398 def get_all_last_search_heat_map(self):

399 return self.all_drone_heat_map

400

401 def get_average_heat_map(self):

402 return self.running_sum_total/self.num_time_steps

403

404 def get_std_deviation_heat_map(self):

405 #https ://en.wikipedia.org/wiki/Algorithms_for_calculating_variance

406 # sqrt of naive variance with bessels correction

407 rs = self.running_sum_total

408 rs_sq = self.running_sum_squared_total

409 nts = self.num_time_steps

410 return self._std_dev(rs, rs_sq , nts)

411

412 def _std_dev(self , sum_ , sum_sq , N):

413 if N==1:

414 return -1

415 else:

416 return np.sqrt((sum_sq - sum_ **2/N)/N)

417

418 def _plot_heat_map(self):

419 heat_map = self.get_std_deviation_heat_map ()

420 fig , ax = plt.subplots ()

421 bounds = self.bounds

99

422 extent = (0,bounds ,0,bounds)

423 hm = ax.imshow(heat_map.T, vmin=0, vmax=np.max(heat_map), interpolation=’nearest ’, origin=’lower’

, extent=extent)

424 # ax.set_title(title)

425 plt.colorbar(hm)

426 plt.show()

427 # plt.savefig(PathManager.plot_save_output_path(self._doe_name , title , index))

428 # plt.close(fig=fig)

park.py

1 from random import choice

2

3 class Park(object):

4 def __init__(self , bounds , nodes_on):

5 self.bounds = bounds

6 self.nodes_on = nodes_on

7 if nodes_on:

8 x1 = 0

9 x2 = 0.1* bounds

10 x3 = 0.35* bounds

11 x4 = 0.5* bounds

12 x5 = 0.65* bounds

13 x6 = 0.9* bounds

14 x7 = 1.0* bounds

15 y1 = 0

16 y2 = 0.1* bounds

17 y3 = 0.35* bounds

18 y4 = 0.5* bounds

19 y5 = 0.65* bounds

20 y6 = 0.9* bounds

21 y7 = 1.0* bounds

22 A = Node([x1,y7],None ,True)

23 B = Node([x4,y7],None ,True)

24 C = Node([x7,y7],None ,True)

25 D = Node([x2,y6],None ,False)

26 E = Node([x4,y6],None ,False)

27 F = Node([x6,y6],None ,False)

28 G = Node([x3,y5],None ,False)

29 H = Node([x4,y5],None ,False)

30 I = Node([x5,y5],None ,False)

31 J = Node([x1,y4],None ,True)

32 K = Node([x2,y4],None ,False)

33 L = Node([x3,y4],None ,False)

34 M = Node([x4,y4],None ,False)

35 N = Node([x5,y4],None ,False)

36 O = Node([x6,y4],None ,False)

37 P = Node([x7,y4],None ,True)

38 Q = Node([x3,y3],None ,False)

100

39 R = Node([x4,y3],None ,False)

40 S = Node([x5,y3],None ,False)

41 T = Node([x2,y2],None ,False)

42 U = Node([x4,y2],None ,False)

43 V = Node([x6,y2],None ,False)

44 W = Node([x1,y1],None ,True)

45 X = Node([x4,y1],None ,True)

46 Y = Node([x7,y1],None ,True)

47 A.children = [D]

48 B.children = [E]

49 C.children = [F]

50 D.children = [E,G,K,A]

51 E.children = [D,F,H,B]

52 F.children = [E,O,I,C]

53 G.children = [D,L,H,M]

54 H.children = [E,G,I,M]

55 I.children = [F,H,M,N]

56 J.children = [K]

57 K.children = [L,D,T,J]

58 L.children = [G,M,Q,K]

59 M.children = [G,H,I,L,N,Q,R,S]

60 N.children = [I,M,S,O]

61 O.children = [F,N,V,P]

62 P.children = [O]

63 Q.children = [L,M,R,T]

64 R.children = [M,Q,S,U]

65 S.children = [N,M,R,V]

66 T.children = [K,Q,U,W]

67 U.children = [R,T,V,X]

68 V.children = [S,O,U,Y]

69 W.children = [T]

70 X.children = [U]

71 Y.children = [V]

72 A.value = "A"

73 B.value = "B"

74 C.value = "C"

75 D.value = "D"

76 E.value = "E"

77 F.value = "F"

78 G.value = "G"

79 H.value = "H"

80 I.value = "I"

81 J.value = "J"

82 K.value = "K"

83 L.value = "L"

84 M.value = "M"

85 N.value = "N"

86 O.value = "O"

101

87 P.value = "P"

88 Q.value = "Q"

89 R.value = "R"

90 S.value = "S"

91 T.value = "T"

92 U.value = "U"

93 V.value = "V"

94 W.value = "W"

95 X.value = "X"

96 Y.value = "Y"

97 A.value = "A"

98 B.value = "B"

99 C.value = "C"

100 D.value = "D"

101 E.value = "E"

102 F.value = "F"

103 G.value = "G"

104 H.value = "H"

105 I.value = "I"

106 J.value = "J"

107 K.value = "K"

108 L.value = "L"

109 M.value = "M"

110 N.value = "N"

111 O.value = "O"

112 P.value = "P"

113 Q.value = "Q"

114 R.value = "R"

115 S.value = "S"

116 T.value = "T"

117 U.value = "U"

118 V.value = "V"

119 W.value = "W"

120 X.value = "X"

121 Y.value = "Y"

122 self.nodes = [A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y]

123 self.exit_nodes = [A,B,C,P,W,X,Y,J]

124 for node in self.nodes:

125 node.visited = False

126

127 class Node(object):

128 def __init__(self , coordinates , children , entrance_node):

129 self.coordinates = coordinates

130 self.children = children

131 self.entrance_node = entrance_node

132

133 def get_next_destination(self):

134 return choice(self.children)

102

charge station.py

1 from parkcleanup.parkcleanup.model.objectives.objective import Objective

2 from parkcleanup.parkcleanup.model.objectives.objective_strings import CHARGER

3

4 ID = "ID"

5

6 class ChargeStation(Objective):

7 def __init__(self , position , init_from_json=False):

8 super().__init__(position)

9 self.id = None

10

11 def set_id(self , id_):

12 self.id = id_

13

14 @staticmethod

15 def get_object_string_value ():

16 return CHARGER

17

18 def export_to_json(self):

19 values = super().export_to_json(ChargeStation.get_object_string_value ())

20 values[ID] = self.id

21 return values

22

23 def import_from_json(self , values):

24 super().import_from_json(values)

25 self.id = values[ID]

collector.py

1 from parkcleanup.parkcleanup.model.objectives.objective import Objective

2 from parkcleanup.parkcleanup.model.objectives.objective_strings import COLLECTOR

3

4 ID = "ID"

5 TRASH_INSIDE = "Trash inside"

6

7 class Collector(Objective):

8 def __init__(self , position , init_from_json=False):

9 super().__init__(position)

10 self.trash_inside = 0

11 self.id = None

12

13 def set_id(self , id_):

14 self.id = id_

15

16 @staticmethod

17 def get_object_string_value ():

18 return COLLECTOR

19

103

20 def export_to_json(self):

21 values = super().export_to_json(Collector.get_object_string_value ())

22 values[TRASH_INSIDE] = self.trash_inside

23 values[ID] = self.id

24 return values

25

26 def import_from_json(self , values):

27 super().import_from_json(values)

28 self.trash_inside = values[TRASH_INSIDE]

29 self.id = values[ID]

30 return self

trash.py

1 from parkcleanup.parkcleanup.model.objectives.objective import Objective

2 from parkcleanup.parkcleanup.model.objectives.objective_strings import TRASH

3

4 TIME_LEFT_OUT = "Time left out"

5

6

7 class Trash(Objective):

8 def __init__(self , position , time_to_complete_dropoff , start_time , id, init_from_json=False):

9 super().__init__(position)

10 self.id = id

11 self.start_time = start_time

12 self.time_left_out = 0

13 self.distances_to_drones = []

14 self.time_to_complete_dropoff = time_to_complete_dropoff

15

16 @staticmethod

17 def get_object_string_value ():

18 return TRASH

19

20 def export_to_json(self):

21 values = super().export_to_json(Trash.get_object_string_value ())

22 values[TIME_LEFT_OUT] = self.time_left_out

23 return values

24

25 def import_from_json(self , values):

26 super().import_from_json(values)

27 self.time_left_out = values[TIME_LEFT_OUT]

28 return self

location.py

1 from parkcleanup.parkcleanup.model.objectives.objective import Objective

2 from parkcleanup.parkcleanup.model.objectives.objective_strings import LOCATION

3

4

104

5 class Location(Objective):

6 def __init__(self , position , init_from_json=False):

7 super().__init__(position)

8

9 @staticmethod

10 def get_object_string_value ():

11 return LOCATION

12

13 def export_to_json(self):

14 return super().export_to_json(Location.get_object_string_value ())

15

16 def import_from_json(self , values):

17 super().import_from_json(values)

objective.py

1 import abc

2

3 TYPE = "Objective Type"

4 POSITION = "Position"

5

6 class Objective(abc.ABC):

7 def __init__(self , position , init_from_json=False):

8 self.position = position

9

10 def export_to_json(self , objective_type):

11 values = {}

12 values[TYPE] = objective_type

13 values[POSITION] = self.position

14 return values

15

16 def import_from_json(self , values):

17 self.position = values[POSITION]

18 return self

objective strings.py

1 TRASH = "Trash"

2 COLLECTOR = "Collector"

3 CHARGER = "Charger"

4 LOCATION = "Location"

A.1.1 UAV Code

drone.py

1 from enum import Enum

2 import abc

105

3 from math import sqrt

4 from random import randint

5 from random import random

6

7 from scipy.spatial import distance_matrix

8

9 from parkcleanup.parkcleanup.model.agents.movable import Movable

10 from parkcleanup.parkcleanup.model.agents.drone_state_type import DroneStateType

11 from parkcleanup.parkcleanup.model.objectives.trash import Trash

12 from parkcleanup.parkcleanup.model.objectives.location import Location

13 from parkcleanup.parkcleanup.model.objectives.objective import Objective

14 from parkcleanup.parkcleanup.model.drone_strategies.drone_search_strategies import _PatrolSearch ,

_RandomSearch , _RandomBounceSearch

15 from parkcleanup.parkcleanup.model.drone_strategies.drone_path_planning_strategies import _DirectRoute ,

_PotentialFields

16 from parkcleanup.parkcleanup.tools.helper import distance

17

18 class Drone(Movable):

19 def __init__(self , bounds):

20 # Use DroneBuilder for initialization

21 self.position = None

22 self.direction = None

23 self.speed = None

24

25 self.potential_fields_on = None

26 self.avoidance_distance = None

27 self.repulse_radius = None

28 self.attract_scale = None

29

30 self.found_distance = None

31 self.patrol_coordinates = None

32 self.group_index = None

33 self.bounds = bounds

34

35 self.id = None

36 self.trash_detection_radius = None

37 self.emergency_recharge_level = None

38 self.set_out_for_seen_trash_while_charging = None

39 self.return_to_charge_from_patrolling = None

40

41 self.fly_time = None # seconds

42 self.recharge_time = None

43 self.can_communicate_objective = False

44 self.cant_see_trash_sometimes = False

45

46 self.trash_pickup_delay = None

47 self.trash_dropoff_delay = None

48 self.wait_to_start = None

106

49

50 self.objective = None

51 self._state_type = None

52 # Start drone with a full charge

53 self.battery_life = 1 # from 0 to 1

54 self.has_trash = False

55 self.is_on_lookout_for_trash = True

56 self.trash_held = []

57 self.poly_of_area = None

58 self.start_waypoint = None

59

60 self._state = None

61 self._state_dict = self._create_state_dict ()

62

63 def set_id(self , id):

64 self.id = id

65

66 def update(self , sim_model):

67 state = self._state

68 state.update_energy(self , sim_model)

69 if self.battery_life < 0:

70 self._set_state(DroneStateType.OUT_OF_ENERGY , sim_model)

71 else:

72 state.update_objective(self , sim_model)

73 if self.objective is not None:

74 self._path_planning_strategy.update_direction(self , sim_model)

75 self._update_coordinates ()

76

77 def set_path_planning_method(self , path_planning_type):

78 if not isinstance(path_planning_type , PathPlanningType):

79 raise TypeError("path_planning_type must be of type PathPlanningType")

80 if path_planning_type == PathPlanningType.DIRECT_ROUTE:

81 self._path_planning_strategy = _DirectRoute ()

82 elif path_planning_type == PathPlanningType.POTENTIAL_FIELDS:

83 self._path_planning_strategy = _PotentialFields ()

84 else:

85 raise ValueError("Path planning behavior not implemented")

86

87 def set_search_method(self , search_type):

88 if not isinstance(search_type , SearchType):

89 raise TypeError("search_type must be of type SearchType")

90 if search_type == SearchType.RANDOM_SEARCH:

91 self._search_strategy = _RandomSearch ()

92 elif search_type == SearchType.PATROL:

93 self._search_strategy = _PatrolSearch(self.patrol_coordinates , closest_waypoint_on_resume=

False)

94 elif search_type == SearchType.RANDOM_BOUNCE:

95 self._search_strategy = _RandomBounceSearch(self.poly_of_area , self.bounds)

107

96 else:

97 raise ValueError("Search behavior not implemented")

98

99 def _set_state(self , state_type , sim_model):

100 if not isinstance(state_type , DroneStateType):

101 raise TypeError("Objective type must be of type ObjectiveType")

102 self._state_type = state_type

103 self._state = self._state_dict[state_type]

104 self._state.initialize(self , sim_model)

105

106 def _check_for_trash_to_pick_up(self , sim_model):

107 if self.is_on_lookout_for_trash and sim_model.there_is_trash_in_model ():

108 all_trash_detected = self._look_for_trash(sim_model)

109 if len(all_trash_detected) != 0:

110 trash = self._decide_on_trash_to_pick_up(all_trash_detected)

111 return True , trash

112 return False , None

113

114 def _look_for_trash(self , sim_model):

115 trash_in_range = [trash for trash in sim_model.all_trash if trash.distances_to_drones[self.id] <

self.trash_detection_radius]

116 if self.cant_see_trash_sometimes:

117 trash_detected = self._detect_trash(trash_in_range)

118 else:

119 trash_detected = trash_in_range

120 return trash_detected

121

122 def _detect_trash(self , trash_in_range):

123 # TODO include detection criteria

124 return trash_in_range

125

126 def _decide_on_trash_to_pick_up(self , all_trash_detected):

127 # Drone decides to travel to the closest trash

128 closest_trash = all_trash_detected [0]

129 for trash in all_trash_detected:

130 if closest_trash.distances_to_drones[self.id] > trash.distances_to_drones[self.id]:

131 closest_trash = trash

132 return closest_trash

133

134 def _reached_objective(self):

135 return self.distance(self.position , self.objective.position) < self.found_distance

136

137 def _decrease_energy(self):

138 self._decrease_energy_linearly ()

139

140 def _decrease_energy_linearly(self):

141 self.battery_life -= 1/self.fly_time

142

108

143 def _increase_energy(self):

144 self.battery_life += 1/self.recharge_time

145

146 def _set_position_as_objective_position(self):

147 self.position = self.objective.position

148

149 def _create_state_dict(self):

150 return {

151 DroneStateType.GO_TO_TRASH: GoToTrashState(self),

152 DroneStateType.GO_TO_COLLECTOR: GoToCollectorState(self),

153 DroneStateType.SEARCH_FOR_TRASH: SearchForTrashState(self),

154 DroneStateType.GO_TO_CHARGER: GoToChargerState(self),

155 DroneStateType.RECHARGE: RechargeState(self),

156 DroneStateType.DROP_OFF_TRASH: DropOffTrashState(self),

157 DroneStateType.PICK_UP_TRASH: PickUpTrashState(self),

158 DroneStateType.OUT_OF_ENERGY: OutOfEnergyState(self),

159 DroneStateType.WAIT_TO_START: WaitToStartState(self),

160 DroneStateType.LAND_ON_CHARGER: LandOnChargerState(self),

161 DroneStateType.TAKE_OFF: TakeOffState(self)

162 }

163

164 class SearchType(Enum):

165 RANDOM_SEARCH = "Random Search"

166 PATROL = "Patrolling"

167 RANDOM_BOUNCE = "Random Bounce"

168

169 class PathPlanningType(Enum):

170 DIRECT_ROUTE = "Direct Route"

171 POTENTIAL_FIELDS = "Potential Fields"

172

173 class DroneObjectiveState(metaclass=abc.ABCMeta):

174 def __init__(self , drone):

175 self._drone = drone

176

177 def initialize(self , drone , sim_model):

178 pass

179

180 def update_energy(self , drone , sim_model):

181 pass

182

183 def update_objective(self , drone , sim_model):

184 pass

185

186 def _decide_to_get_trash(self , drone , sim_model , trash):

187 time_to_cross_park_thrice = (sim_model.park.bounds*sqrt (2) *3)/drone.speed

188 if drone.battery_life*drone.fly_time < time_to_cross_park_thrice:

189 distance_to_trash = distance(trash.position , drone.position)

190 time_to_drop_off_trash = (distance_to_trash+trash.time_to_complete_dropoff)/drone.speed

109

191 if time_to_drop_off_trash < drone.battery_life*drone.fly_time:

192 drone.objective = trash

193 drone._set_state(DroneStateType.GO_TO_TRASH , sim_model)

194 return True

195 else:

196 drone.objective = trash

197 drone._set_state(DroneStateType.GO_TO_TRASH , sim_model)

198 return True

199 return False

200

201 class WaitToStartState(DroneObjectiveState):

202 def __init__(self , drone):

203 super().__init__(drone)

204

205 def initialize(self , drone , sim_model):

206 self._countdown = drone.wait_to_start

207

208 def update_energy(self , drone , sim_model):

209 pass

210

211 def update_objective(self , drone , sim_model):

212 self._countdown -= 1

213 if self._countdown <= 0:

214 drone._set_state(DroneStateType.SEARCH_FOR_TRASH , sim_model)

215

216 class GoToTrashState(DroneObjectiveState):

217 def __init__(self , drone):

218 super().__init__(drone)

219

220 def initialize(self , drone , sim_model):

221 pass

222

223 def update_energy(self , drone , sim_model):

224 drone._decrease_energy ()

225

226 def update_objective(self , drone , sim_model):

227 if drone._reached_objective ():

228 # Pick up trash

229 drone.has_trash = True

230 trash_coord = drone.objective.position

231 drone.trash_held = drone.objective

232 drone._set_position_as_objective_position ()

233 # Make sure the other drones don’t go for picked up trash

234 self._tell_other_drones_to_change_trash_obj(drone , sim_model , trash_coord)

235 self._clean_up_trash(trash_coord , sim_model)

236 drone._set_state(DroneStateType.PICK_UP_TRASH , sim_model)

237 else:

238 # Search for closer trash that may have appeared

110

239 found_trash , trash = drone._check_for_trash_to_pick_up(sim_model)

240 if found_trash:

241 self._decide_to_get_trash(drone , sim_model , trash)

242

243 def _time_to_recharge(self , drone):

244 return drone.battery_life < drone.emergency_recharge_level

245

246 def _tell_other_drones_to_change_trash_obj(self , drone , sim_model , trash_coord):

247 for drone in sim_model.all_drones:

248 if drone == self:

249 pass

250 elif isinstance(drone.objective , Trash) and drone.objective.position == trash_coord:

251 drone.objective = None

252 drone._set_state(DroneStateType.SEARCH_FOR_TRASH , sim_model)

253

254 def _clean_up_trash(self , trash_coord , sim_model):

255 trash_index = sim_model.trash_coords.index(trash_coord)

256 for row in sim_model.drone_to_trash:

257 del row[trash_index]

258 del sim_model.trash_coords[trash_index]

259 # Recording of any details about the trash cleanup should be done here

260 sim_model.record_trash_pickup_event(sim_model.all_trash[trash_index])

261 del sim_model.all_trash[trash_index]

262

263 class GoToCollectorState(DroneObjectiveState):

264 def __init__(self , drone):

265 super().__init__(drone)

266

267 def initialize(self , drone , sim_model):

268 collectors = [collector.position for collector in sim_model.all_collectors]

269 distances_to_collectors = distance_matrix ([drone.position], collectors).tolist ()

270 index_of_min_distance_recharger = distances_to_collectors [0]. index(min(distances_to_collectors

[0]))

271 drone.objective = sim_model.all_collectors[index_of_min_distance_recharger]

272

273 def update_energy(self , drone , sim_model):

274 drone._decrease_energy ()

275

276 def update_objective(self , drone , sim_model):

277 if drone._reached_objective ():

278 self._collect_trash(drone , sim_model)

279 drone._set_position_as_objective_position ()

280 drone._set_state(DroneStateType.DROP_OFF_TRASH , sim_model)

281

282 def _collect_trash(self , drone , sim_model):

283 collector_coords = sim_model.collector_coords

284 trash = drone.trash_held

285 drone.has_trash = False

111

286 drone.trash_held = None

287 collector_coord = drone.objective.position

288 collector_index = collector_coords.index(collector_coord)

289 collector = sim_model.all_collectors[collector_index]

290

291 class SearchForTrashState(DroneObjectiveState):

292 def __init__(self , drone):

293 super().__init__(drone)

294

295 def initialize(self , drone , sim_model):

296 drone._search_strategy.update_strategy_on_state_change(drone , sim_model)

297

298 def update_energy(self , drone , sim_model):

299 drone._decrease_energy ()

300

301 def update_objective(self , drone , sim_model):

302 drone._search_strategy.search_update_method(drone , sim_model)

303 found_trash , trash = drone._check_for_trash_to_pick_up(sim_model)

304 if found_trash:

305 self._decide_to_get_trash(drone , sim_model , trash)

306 if drone.battery_life*drone.fly_time < (sim_model.park.bounds*sqrt (2))/drone.speed:

307 charger_dist = min(distance_matrix(sim_model.charger_coords , [drone.position]))

308 # Have a little buffer

309 if drone.battery_life*drone.fly_time < (charger_dist/drone.speed)+2:

310 drone._set_state(DroneStateType.GO_TO_CHARGER , sim_model)

311

312 class GoToChargerState(DroneObjectiveState):

313 def __init__(self , drone):

314 super().__init__(drone)

315

316 def initialize(self , drone , sim_model):

317 rechargers = [charger.position for charger in sim_model.all_rechargers]

318 distances_to_rechargers = distance_matrix ([drone.position], rechargers).tolist ()

319 index_of_min_distance_recharger = distances_to_rechargers [0]. index(min(distances_to_rechargers

[0]))

320 drone.objective = sim_model.all_rechargers[index_of_min_distance_recharger]

321

322 def update_energy(self , drone , sim_model):

323 drone._decrease_energy ()

324

325 def update_objective(self , drone , sim_model):

326 if drone._reached_objective ():

327 drone._set_position_as_objective_position ()

328 drone._set_state(DroneStateType.RECHARGE , sim_model)

329

330 class LandOnChargerState(DroneObjectiveState):

331 def __init__(self , drone):

332 super().__init__(drone)

112

333

334 def initialize(self , drone , sim_model):

335 self._countdown = 1

336

337 def update_energy(self , drone , sim_model):

338 drone._decrease_energy ()

339

340 def update_objective(self , drone , sim_model):

341 self._countdown -= 1

342 if self._countdown < 0:

343 drone._set_state(DroneStateType.RECHARGE , sim_model)

344

345 class RechargeState(DroneObjectiveState):

346 def __init__(self , drone):

347 super().__init__(drone)

348

349 def initialize(self , drone , sim_model):

350 self._charger_drone_landed_on = drone.objective

351 self._starting_time_step = sim_model.curr_time_step

352 drone.objective = None

353

354 def update_energy(self , drone , sim_model):

355 drone._increase_energy ()

356

357 def update_objective(self , drone , sim_model):

358 if drone.battery_life > drone.set_out_above_this:

359 found_trash , trash = drone._check_for_trash_to_pick_up(sim_model)

360 if found_trash:

361 self._decide_to_get_trash(drone , sim_model , trash)

362 elif drone.battery_life > 0.99:

363 drone._set_state(DroneStateType.TAKE_OFF , sim_model)

364

365 class TakeOffState(DroneObjectiveState):

366 def __init__(self , drone):

367 super().__init__(drone)

368

369 def initialize(self , drone , sim_model):

370 self._countdown = 1

371

372 def update_energy(self , drone , sim_model):

373 drone._decrease_energy ()

374

375 def update_objective(self , drone , sim_model):

376 self._countdown -= 1

377 if self._countdown < 0:

378 drone._set_state(DroneStateType.SEARCH_FOR_TRASH , sim_model)

379

380 class DropOffTrashState(DroneObjectiveState):

113

381 def __init__(self , drone):

382 super().__init__(drone)

383

384 def initialize(self , drone , sim_model):

385 drone.objective = None

386 self._time_spent_dropping_off = 0

387 self._max_time_to_drop_off = drone.trash_dropoff_delay

388

389 def update_energy(self , drone , sim_model):

390 drone._decrease_energy ()

391

392 def update_objective(self , drone , sim_model):

393 self._time_spent_dropping_off += 1

394 if self._time_spent_dropping_off == self._max_time_to_drop_off:

395 found_trash , trash = drone._check_for_trash_to_pick_up(sim_model)

396 if found_trash:

397 going_to_trash = self._decide_to_get_trash(drone , sim_model , trash)

398 if going_to_trash:

399 return

400 drone._set_state(DroneStateType.SEARCH_FOR_TRASH , sim_model)

401

402 class PickUpTrashState(DroneObjectiveState):

403 def __init__(self , drone):

404 super().__init__(drone)

405

406 def initialize(self , drone , sim_model):

407 drone.objective = None

408 self._time_spent_picking_up = 0

409 self._max_time_to_pick_up = drone.trash_pickup_delay

410

411 def update_energy(self , drone , sim_model):

412 drone._decrease_energy ()

413

414 def update_objective(self , drone , sim_model):

415 self._time_spent_picking_up += 1

416 if self._time_spent_picking_up == self._max_time_to_pick_up:

417 drone._set_state(DroneStateType.GO_TO_COLLECTOR , sim_model)

418

419 class OutOfEnergyState(DroneObjectiveState):

420 def __init__(self , drone):

421 super().__init__(drone)

422

423 def initialize(self , drone , sim_model):

424 drone.objective = None

425 self._time_step_out_of_batteries = sim_model.curr_time_step

426

427 def update_energy(self , drone , sim_model):

428 pass

114

429

430 def update_objective(self , drone , sim_model):

431 pass

drone builder.py

1 import random

2 from math import ceil , sqrt , floor

3 import copy

4

5 from parkcleanup.parkcleanup.tools.helper import random_position_in_bounds

6 from parkcleanup.parkcleanup.model.agents.drone import Drone

7 from parkcleanup.parkcleanup.model.agents.drone import SearchType

8 from parkcleanup.parkcleanup.model.agents.drone import PathPlanningType

9 from parkcleanup.parkcleanup.model.agents.drone_state_type import DroneStateType

10 from parkcleanup.parkcleanup.tools.coverage_path_generator.coverage_patterns import

global_lawnmower_coords , partitioned_coords , get_partitions , get_square_poly

11

12 class DroneBuilder(object):

13 def __init__(self , bounds):

14 if bounds <= 0:

15 raise ValueError("Bounds must be positive number")

16 self._bounds = bounds

17

18 self._potential_fields_on = None

19 self._repulse_radius = None

20 self._attract_scale = None

21 self._avoidance_distance = None

22

23 self._patrol_coordinates = None

24

25 self._fly_time = None

26 self._recharge_time = None

27

28 self._direction = None

29 self._speed = None

30 self._position = None

31 self._random_position = None

32

33 self._num_drones = None

34 self._search_method = None

35 self._can_communicate_objective = None

36 self._emergency_recharge_level = None

37 self._set_out_for_seen_trash_while_charging = None

38 self._return_to_charge_from_patrolling = None

39 self._constant_trash_pickup_delay = None

40 self._constant_trash_dropoff_delay = None

41 self._trash_detection_radius = None

42 self._starting_position_on_coordinates = False

115

43 self._half_reverse_patrol = False

44 self._wait_to_start = False

45 self._index_to_wait_time = None

46 self._group_index = None

47 self._partitioned_lawnmower = False

48 self._partitioned_polys = None

49 self._global_pattern = False

50

51 def set_constant_trash_pickup_delay(self , trash_pickup_delay):

52 if not isinstance(trash_pickup_delay , int) and not trash_pickup_delay.is_integer ():

53 raise TypeError("Constant trash pickup delay must be int")

54 if trash_pickup_delay < 0:

55 raise ValueError("Constant trash pickup delay must be positive")

56 self._constant_trash_pickup_delay = trash_pickup_delay

57 return self

58

59 def set_constant_trash_dropoff_delay(self , trash_dropoff_delay):

60 if not isinstance(trash_dropoff_delay , int) and not trash_dropoff_delay.is_integer ():

61 raise TypeError("Constant trash dropoff delay must be int")

62 if trash_dropoff_delay < 0:

63 raise ValueError("Constant trash dropoff delay must be positive")

64 self._constant_trash_dropoff_delay = trash_dropoff_delay

65 return self

66

67 def set_start_delay(self):

68 self._wait_to_start = True

69 return self

70

71 def set_potential_fields_on(self , repulse_radius , attract_scale , avoidance_distance):

72 self._potential_fields_on = True

73 self._repulse_radius = repulse_radius

74 self._attract_scale = attract_scale

75 self._avoidance_distance = avoidance_distance

76 return self

77 # TODO check if input parameters are the right type

78

79 def set_fly_time(self , fly_time_in_seconds):

80 if not isinstance(fly_time_in_seconds , int) and not fly_time_in_seconds.is_integer ():

81 raise TypeError("Fly time must be an int")

82 if fly_time_in_seconds <= 0:

83 raise ValueError("Fly time must be positive")

84 self._fly_time = fly_time_in_seconds

85 return self

86

87 def set_recharge_time(self , recharge_time_in_seconds):

88 if not isinstance(recharge_time_in_seconds , int) and not recharge_time_in_seconds.is_integer ():

89 raise TypeError("Recharge time must be an int")

90 if recharge_time_in_seconds <= 0:

116

91 raise ValueError("Recharge time must be positive")

92 self._recharge_time = recharge_time_in_seconds

93 return self

94

95 def set_search_method_patrol(self , patrol_coordinates , global_pattern=False):

96 if not isinstance(patrol_coordinates , list):

97 raise TypeError("Patrol coordinates must be a list of two value objects")

98 for coordinates in patrol_coordinates:

99 if len(coordinates) != 2:

100 raise TypeError("Patrol coordinates must be a list of two value objects")

101 self._patrol_coordinates = patrol_coordinates

102 self._search_method = SearchType.PATROL

103 self._global_pattern = True

104 return self

105

106 def set_search_method_global_lawnmower(self):

107 if self._trash_detection_radius is None:

108 raise Exception("Trash detection radius must be set before lawnmower search")

109 patrol_coords = global_lawnmower_coords(self._bounds , self._trash_detection_radius , self._speed)

110 return self.set_search_method_patrol(patrol_coords , global_pattern=True)

111

112 def set_search_method_partitioned_lawnmower(self):

113 self._partitioned_lawnmower = True

114 self._search_method = SearchType.PATROL

115 return self

116

117 def set_search_method_partitioned_random_bounce(self):

118 self._search_method = SearchType.RANDOM_BOUNCE

119 return self

120

121 def plot_search_path(self , pts):

122 import matplotlib.pyplot as plt

123 import numpy as np

124 plt.plot(np.array(pts)[:,0], np.array(pts)[: ,1])

125 plt.show()

126 plt.pause (200)

127

128 def set_search_method_random_bounce(self):

129 self._search_method = SearchType.RANDOM_BOUNCE

130 self._partitioned_polys = [get_square_poly(self._bounds)]

131 return self

132

133 def set_search_method_random_search(self):

134 self._search_method = SearchType.RANDOM_SEARCH

135 return self

136

137 def set_can_communicate_objective(self , can_communicate_objective):

138 self._can_communicate_objective = can_communicate_objective

117

139 return self

140

141 def set_object_found_distance(self , found_distance):

142 self._found_distance = found_distance

143 return self

144

145 def set_speed(self , speed):

146 self._speed = speed

147 return self

148

149 def set_starting_position(self , position):

150 self._random_position = False

151 self._position = position

152 return self

153

154 def set_starting_position_random(self):

155 self._random_position = True

156 return self

157

158 def set_starting_position_on_coordinates(self , coordinates):

159 self._starting_position_on_coordinates = True

160 self._starting_coordinates = coordinates

161 return self

162

163 def set_number_of_drones_to_init(self , num_drones):

164 if not isinstance(num_drones , int) and not num_drones.is_integer ():

165 raise TypeError("Num drones must be an int")

166 if num_drones < 1:

167 raise ValueError("Num drones must be at least one")

168 self._num_drones = num_drones

169 return self

170

171 def set_charging_params(self , emergency_recharge_level , set_out_for_seen_trash_while_charging ,

return_to_charge_from_patrolling):

172 self._emergency_recharge_level = emergency_recharge_level

173 self._set_out_for_seen_trash_while_charging = set_out_for_seen_trash_while_charging

174 self._return_to_charge_from_patrolling = return_to_charge_from_patrolling

175 # TODO make limits for input parameters

176 return self

177

178 def set_trash_detection_radius(self , trash_detection_radius):

179 if trash_detection_radius <= 0:

180 raise ValueError("Trash detection radius must be positive and non -zero")

181 self._trash_detection_radius = trash_detection_radius

182 return self

183

184 def commit(self):

185 all_drones = []

118

186 self._check_if_can_commit ()

187 if self._wait_to_start:

188 self._index_to_wait_time , self._group_index , distributions = self._get_index_to_wait_time ()

189 if self._partitioned_lawnmower:

190 all_coords = []

191 all_polys = []

192 for num in distributions:

193 coords_for_drones , polys = partitioned_coords(self._bounds , self.

_trash_detection_radius , self._speed , num)

194 all_coords.extend(coords_for_drones)

195 all_polys.extend(polys)

196 self._all_coords_partitioned_lawnmower = all_coords

197 self._partitioned_polys = all_polys

198 elif self._search_method == SearchType.RANDOM_BOUNCE:

199 if self._partitioned_polys is None:

200 all_polys = []

201 for num in distributions:

202 polys , _ = get_partitions(self._bounds , num)

203 all_polys.extend(polys)

204 self._partitioned_polys = all_polys

205 else:

206 self._partitioned_polys *= self._num_drones

207 elif self._global_pattern:

208 total_waypoints = len(self._patrol_coordinates)

209 all_assignments = []

210 for num in distributions:

211 start_jump = round(total_waypoints/num)

212 curr = 0

213 for _ in range(num):

214 all_assignments.append(curr)

215 curr += start_jump

216 for index in range(self._num_drones):

217 drone = Drone(self._bounds)

218 if self._random_position:

219 self._position = random_position_in_bounds(self._bounds)

220 if self._starting_position_on_coordinates:

221 # TODO make the starting position on the closest charger to the area it will go to

222 self._position = random.choice(self._starting_coordinates)

223 if self._potential_fields_on is None:

224 self._potential_fields_on = False

225 if self._global_pattern:

226 drone.start_waypoint = all_assignments[index]

227 self._direction = [0, 0]

228 self._set_drone_parameters(drone , index)

229 self._set_initial_drone_state(drone)

230 all_drones.append(drone)

231 return all_drones

232

119

233 def _get_index_to_wait_time(self):

234 ’’’Calculates wait times before searching for n groups of drones ’’’

235 charge_fly_ratio = self._recharge_time/self._fly_time

236 n = ceil((self._recharge_time + self._fly_time)/self._fly_time)

237 if self._num_drones == 1:

238 return [0]

239 elif self._num_drones == 2:

240 second_delay = self._fly_time + self._fly_time /(charge_fly_ratio)

241 return [0, second_delay]

242 else:

243 # Make the first groups get the extra drones

244 wait_time = (self._fly_time + self._recharge_time)/n

245 base_number = floor(self._num_drones/n)

246 leftover = self._num_drones%n

247 groups = []

248 for _ in range(n):

249 if leftover > 0:

250 groups.append(base_number +1)

251 leftover -= 1

252 else:

253 groups.append(base_number)

254 wait_times = []

255 group_index = []

256 group_iter = 0

257 group_distribution = copy.copy(groups)

258 for _ in range(self._num_drones):

259 if groups[group_iter] < 1:

260 group_iter += 1

261 wait_times.append ((group_iter)*wait_time)

262 group_index.append(group_iter)

263 groups[group_iter] -= 1

264 return wait_times , group_index , group_distribution

265

266 def _check_if_can_commit(self):

267 if self._fly_time is None:

268 raise Exception("Fly time must be set")

269 if self._recharge_time is None:

270 raise Exception("Recharge time must be set")

271 if self._speed is None:

272 raise Exception("Speed must be set")

273 if self._random_position is None and self._starting_position_on_coordinates is None and self.

_position is None:

274 raise Exception("Position must be initialized")

275 if self._num_drones is None:

276 raise Exception("Number of drones must be set")

277 if self._search_method is None:

278 raise Exception("Search method must be set")

279 if self._emergency_recharge_level is None:

120

280 raise Exception("Emergency recharge level must be set")

281 if self._set_out_for_seen_trash_while_charging is None:

282 raise Exception("Set out for trash while charging level must be set")

283 if self._return_to_charge_from_patrolling is None:

284 raise Exception("Return to charge from patrolling level must be set")

285 if self._constant_trash_dropoff_delay is None:

286 raise Exception("Dropoff delay must be set")

287 if self._constant_trash_pickup_delay is None:

288 raise Exception("Pickup delay must be set")

289

290 def _set_initial_drone_state(self , drone):

291 if drone.wait_to_start is not None:

292 drone._set_state(DroneStateType.WAIT_TO_START , None)

293 else:

294 drone._set_state(DroneStateType.SEARCH_FOR_TRASH , None)

295

296 def _set_drone_parameters(self , drone , index):

297 drone.position = self._position

298 drone.direction = self._direction

299 drone.speed = self._speed

300 drone.fly_time = self._fly_time

301 drone.recharge_time = self._recharge_time

302 drone.found_distance = self._found_distance

303 if self._potential_fields_on:

304 drone.avoidance_distance = self._avoidance_distance

305 drone.repulse_radius = self._repulse_radius

306 drone.attract_scale = self._attract_scale

307 drone.set_path_planning_method(PathPlanningType.POTENTIAL_FIELDS)

308 else:

309 drone.set_path_planning_method(PathPlanningType.DIRECT_ROUTE)

310 if self._search_method == SearchType.PATROL:

311 if self._partitioned_lawnmower:

312 drone.patrol_coordinates = self._all_coords_partitioned_lawnmower[index]

313 drone.poly_of_area = self._partitioned_polys[index]

314 else:

315 drone.patrol_coordinates = self._patrol_coordinates

316 if self._wait_to_start:

317 drone.wait_to_start = self._index_to_wait_time[index]

318 drone.group_index = self._group_index[index]

319 if self._search_method == SearchType.RANDOM_BOUNCE:

320 drone.poly_of_area = self._partitioned_polys[index]

321 drone.set_search_method(self._search_method)

322 drone.trash_detection_radius = self._trash_detection_radius

323 drone.emergency_recharge_level = self._emergency_recharge_level

324 drone.set_out_above_this = self._set_out_for_seen_trash_while_charging

325 drone.return_to_charge_from_patrolling = self._return_to_charge_from_patrolling

326 drone.can_communicate_objective = self._can_communicate_objective

327 drone.trash_pickup_delay = self._constant_trash_pickup_delay

121

328 drone.trash_dropoff_delay = self._constant_trash_dropoff_delay

329 return drone

clipped voronoi.py

1 import numpy as np

2 from shapely.geometry import MultiPoint , Point , Polygon

3 from scipy.spatial import Voronoi

4

5 #Taken from https :// gist.github.com/pv /8036995

6 def voronoi_finite_polygons_2d(vor , radius=None):

7 """

8 Reconstruct infinite voronoi regions in a 2D diagram to finite

9 regions.

10

11 Parameters

12 ----------

13 vor : Voronoi

14 Input diagram

15 radius : float , optional

16 Distance to ’points at infinity ’.

17

18 Returns

19 -------

20 regions : list of tuples

21 Indices of vertices in each revised Voronoi regions.

22 vertices : list of tuples

23 Coordinates for revised Voronoi vertices. Same as coordinates

24 of input vertices , with ’points at infinity ’ appended to the

25 end.

26

27 """

28

29 if vor.points.shape [1] != 2:

30 raise ValueError("Requires 2D input")

31

32 new_regions = []

33 new_vertices = vor.vertices.tolist ()

34

35 center = vor.points.mean(axis =0)

36 if radius is None:

37 radius = vor.points.ptp().max()

38

39 # Construct a map containing all ridges for a given point

40 all_ridges = {}

41 for (p1, p2), (v1, v2) in zip(vor.ridge_points , vor.ridge_vertices):

42 all_ridges.setdefault(p1 , []).append ((p2 , v1 , v2))

43 all_ridges.setdefault(p2 , []).append ((p1 , v1 , v2))

44

122

45 # Reconstruct infinite regions

46 for p1, region in enumerate(vor.point_region):

47 vertices = vor.regions[region]

48

49 if all(v >= 0 for v in vertices):

50 # finite region

51 new_regions.append(vertices)

52 continue

53

54 # reconstruct a non -finite region

55 ridges = all_ridges[p1]

56 new_region = [v for v in vertices if v >= 0]

57

58 for p2, v1, v2 in ridges:

59 if v2 < 0:

60 v1, v2 = v2, v1

61 if v1 >= 0:

62 # finite ridge: already in the region

63 continue

64

65 # Compute the missing endpoint of an infinite ridge

66

67 t = vor.points[p2] - vor.points[p1] # tangent

68 t /= np.linalg.norm(t)

69 n = np.array([-t[1], t[0]]) # normal

70

71 midpoint = vor.points [[p1 , p2]]. mean(axis =0)

72 direction = np.sign(np.dot(midpoint - center , n)) * n

73 far_point = vor.vertices[v2] + direction * radius

74

75 new_region.append(len(new_vertices))

76 new_vertices.append(far_point.tolist ())

77

78 # sort region counterclockwise

79 vs = np.asarray ([new_vertices[v] for v in new_region])

80 c = vs.mean(axis =0)

81 angles = np.arctan2(vs[:,1] - c[1], vs[:,0] - c[0])

82 new_region = np.array(new_region)[np.argsort(angles)]

83

84 # finish

85 new_regions.append(new_region.tolist ())

86

87 return new_regions , np.asarray(new_vertices)

88

89 # Based on https :// stackoverflow.com/questions /34968838/ python -finite -boundary -voronoi -cells

90 def generate_clipped_voronoi_diagram_in_square(voronoi_points , min_bounds , max_bounds):

91 """ A function that will create a voronoi diagram and clip it in a square

92

123

93 Arguments:

94 min_bounds{float} - lower x,y coordinates for a square

95 max_bounds{float} - upper x,y coordinates for a square

96

97 Returns:

98 new_polys{list of Shapely polygons} - polygons corresponding to each clipped Voronoi region

99 new_vertices{list of numpy arrays with shape 2,N} - vertices of each polygon with the same index

100 """

101 points_for_convex_hull = np.asarray(

102 [[min_bounds , min_bounds],

103 [min_bounds , max_bounds],

104 [max_bounds ,max_bounds],

105 [max_bounds ,min_bounds]])

106 return generate_voronoi_diagram_clipped_in_polygon(voronoi_points , points_for_convex_hull)

107

108 def generate_voronoi_diagram_clipped_in_polygon(voronoi_points , points_for_convex_hull):

109 """ A function that will create a voronoi diagram and clip it in a convex polygon

110 Arguments:

111 points{numpy array with shape (2,N)} - N 2D points to construct Voronoi diagram

112 points_for_convex_hull{numpy array with shape (2,N)} - vertices of a convex polygon that the

function will use to clip the Voronoi region

113 """

114 vor = Voronoi(voronoi_points)

115 # Use a large radius because we are clipping it after

116 regions , vertices = voronoi_finite_polygons_2d(vor , radius =100000)

117

118 pts = MultiPoint ([Point(i) for i in points_for_convex_hull])

119 mask = pts.convex_hull

120 new_vertices = []

121 new_polys = []

122 for region in regions:

123 polygon = vertices[region]

124 shape = list(polygon.shape)

125 shape [0] += 1

126 p = Polygon(np.append(polygon , polygon [0]).reshape (* shape)).intersection(mask)

127 poly = np.array(list(zip(p.boundary.coords.xy[0][:-1] , p.boundary.coords.xy[1][: -1])))

128 new_vertices.append(poly)

129 new_polys.append(p)

130 return new_polys , new_vertices

coverage patterns.py

1 import copy

2 from math import sqrt , floor , ceil

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from shapely.geometry import Point , Polygon

6

124

7 from parkcleanup.parkcleanup.tools.coverage_path_generator.clipped_voronoi import

generate_clipped_voronoi_diagram_in_square

8 from parkcleanup.parkcleanup.tools.geometry_utils import *

9 from collector_placement_algorithms.placement_data_utils import load_avgmin_config

10

11

12 def generate_patrol_pattern_for_convex_polygon(polygon , vertices , search_radius):

13 ’’’

14 Input is a polygon from shapely (shapely polygon vertices must be in clockwise order)

15 and a list of the vertices associated with the polygon ,

16 and the search radius of the drone.

17 ’’’

18 polygon_midpoint = [polygon.centroid.x, polygon.centroid.y]

19 distances_to_midpoint = [point_distance(polygon_midpoint , vert) for vert in vertices]

20 if max(distances_to_midpoint) < search_radius *2:

21 return generate_single_spiral(polygon , polygon_midpoint , vertices , distances_to_midpoint ,

search_radius)

22 else:

23 return generate_lawnmower_for_convex_polygon(polygon , vertices , search_radius)

24

25 def generate_single_spiral(polygon , poly_midpoint , vertices , distances_to_midpoint , search_radius):

26 waypoints = []

27 for vertice , distance_to_midpoint in zip(vertices , distances_to_midpoint):

28 direction_towards_midpoint = vertice - poly_midpoint

29 direction_towards_midpoint /= np.linalg.norm(direction_towards_midpoint)

30 if distance_to_midpoint < search_radius:

31 waypoints.append(poly_midpoint)

32 else:

33 waypoint = vertice - direction_towards_midpoint*search_radius

34 waypoints.append(waypoint)

35 return np.asarray(waypoints)

36

37 def generate_lawnmower_for_convex_polygon(polygon , vertices , search_radius):

38 ’’’

39 Input is a polygon from shapely (make sure the shapely polygon vertices are in clockwise order)

40 and a list of the vertices associated with the polygon ,

41 and the search radius of the drone. Also the axis from matplotlib to plot on.

42 ’’’

43 # Make separation radius from the walls smaller than search radius so that drones will see the

corners and

44 # edges of the polygon in between lanes

45 offset_from_poly_edges = sqrt(search_radius **2/2)

46 # Make the in between the lanes search_radius *2 so there will be less overlap in searching.

47 offset_between_lanes = offset_from_poly_edges *2

48 polygon_edges = generate_polygon_edges_as_lines(polygon)

49 edge_lengths = [line_length(line) for line in polygon_edges]

50 # Start the pattern at the longest edge of the polygon and create new lanes in a tangent direction to

the edge

125

51 longest_edge = np.array(polygon_edges[np.argmax(edge_lengths)])

52 t = get_tangent_direction(longest_edge)

53 n = get_normal_direction(t)

54 midpoint = longest_edge.mean(axis =0)

55

56 # Find vertex that has longest normal distance from the longest polygon edge to determine

57 # how many lawnmower lanes to have.

58 distances_from_each_vertex_to_longest_edge = [point_to_line_dist(vert , longest_edge) for vert in

vertices]

59 longest_distance = max(distances_from_each_vertex_to_longest_edge)

60 # Now that we know the longest distance , we want to determine how many lanes to make

61 # Consider that we want the first and the last lanes to be search_radius distance away from the edges

,

62 # and the ones in the middle to be at maximum 2* search_radius

63

64 offset_from_poly_edges = offset_from_poly_edges *0.6

65 num_line_segments = 1 + round((longest_distance - offset_from_poly_edges *2)/offset_between_lanes)

66 num_line_segments = int(num_line_segments)

67 start_distance = offset_from_poly_edges

68 # Make the distances between lanes equivalent to x, y, y, ... y, x, with x being ==

offset_from_poly_edges and y <= offset_from_poly_edges *2

69 offset_between_lanes = (longest_distance - 2* start_distance)/(num_line_segments -1)

70

71 # Now create all the lines that intersect the polygon

72 all_line_information = []

73 next_midpoint = midpoint + n*start_distance

74 for index in range(num_line_segments):

75 # Make huge line with guaranteed intersections in the polygon

76 next_line = np.array([next_midpoint +10000*t, next_midpoint -10000*t])

77 # Find where this huge line intersects the polygon and also return the edges of the polygon that

were intersected

78 line_to_add , edge_intersections = get_edge_intersections(next_line , polygon_edges , polygon)

79 midpoint = line_to_add.mean(axis =0)

80 direction_towards_midpoint = line_to_add [0] - midpoint

81 direction_towards_midpoint /= np.linalg.norm(direction_towards_midpoint)

82 # Check if the endpoints line up , if not flip it

83 if index == 0:

84 first_direction = direction_towards_midpoint

85 if index != 0:

86 dot_product = np.dot(all_line_information[index -1][3] , direction_towards_midpoint)

87 if dot_product < 0:

88 line_to_add = np.flip(line_to_add , axis =0)

89 edge_intersections = np.flip(edge_intersections , axis =0).tolist ()

90 direction_towards_midpoint *= -1

91 all_line_information.append ((line_to_add , edge_intersections , midpoint ,

direction_towards_midpoint , [offset_from_poly_edges]))

92 next_midpoint = midpoint + n*offset_between_lanes

93

126

94 # Now move the endpoints of the lines back from the edges

95 for (line_to_add , edge_intersections , midpoint , direction_towards_midpoint , line_offset) in

all_line_information:

96 curr_line_length = line_length(line_to_add)

97 scale = 1

98 if curr_line_length < 2* offset_from_poly_edges:

99 while True:

100 scale *= 1.00001

101 if curr_line_length > 2* offset_from_poly_edges/scale:

102 break

103 line_to_add [0] -= offset_from_poly_edges*first_direction/scale

104 line_to_add [1] += offset_from_poly_edges*first_direction/scale

105

106 # Now connect everything and plot it

107 all_points = []

108 all_edge_intersections = []

109 for index , (line_to_add , edge_intersections , midpoint , direction_towards_midpoint , line_offset) in

enumerate(all_line_information):

110 even_index_set = index %2==0

111 if index != 0 and index != len(all_line_information) -1:

112 if not even_index_set:

113 # The odd set 1 point is connected with the previous point

114 # The direction to offset the newpoint will be the negative of the direction

115 points = _find_extra_points_in_between(line_to_add [1], all_points [-1], edge_intersections

[1], all_edge_intersections [-1], polygon_edges , -first_direction , line_offset [0])

116 else:

117 # The even set 0 point is connected with the previous point

118 points = _find_extra_points_in_between(line_to_add [0], all_points [-1], edge_intersections

[0], all_edge_intersections [-1], polygon_edges , first_direction , line_offset [0])

119 all_points.extend(points)

120 if even_index_set:

121 all_points.append(line_to_add [0])

122 all_points.append(line_to_add [1])

123 all_edge_intersections.append(edge_intersections [0])

124 all_edge_intersections.append(edge_intersections [1])

125 else:

126 all_points.append(line_to_add [1])

127 all_points.append(line_to_add [0])

128 all_edge_intersections.append(edge_intersections [1])

129 all_edge_intersections.append(edge_intersections [0])

130 # The even set 1 point is connected with the previous 0 point

131 all_points = np.asarray(all_points)

132 return all_points

133

134

135 def _find_extra_points_in_between(next_point , prev_point , next_edge , prev_edge , all_poly_edges , direction

, distance):

136 ’’’

127

137 When the lanes are connected , we want the lane connections to follow the contour of the polygon.

138 If the lane crossing has a vertice of the polygon outside them , we add a point to help follow

139 this vertice.

140 ’’’

141 if np.all(np.isclose(next_edge , prev_edge)):

142 return []

143 else:

144 # In the first two options the edges are touching

145 if np.all(np.isclose(next_edge [0], prev_edge [1])):

146 return [next_edge [0]- direction*distance]

147 elif np.all(np.isclose(next_edge [1], prev_edge [0])):

148 return [next_edge [1]- direction*distance]

149 else:

150 points_to_add = []

151 next_edge_index = np.argwhere ((np.array(all_poly_edges) == next_edge).all(axis =1).all(axis =1)

).item (0)

152 prev_edge_index = np.argwhere ((np.array(all_poly_edges) == prev_edge).all(axis =1).all(axis =1)

).item (0)

153 # Find the edges in between the ones in question to be connected

154 end_of_next_to_begin_of_prev = point_distance(next_edge [1], prev_edge [0])

155 begin_of_next_to_end_of_prev = point_distance(next_edge [0], prev_edge [1])

156 curr = prev_edge_index

157 end = next_edge_index

158 if end_of_next_to_begin_of_prev < begin_of_next_to_end_of_prev:

159 index_dir = -1

160 edge_to_add = 0

161 else:

162 index_dir = 1

163 edge_to_add = 1

164 points_to_add.append(prev_edge[edge_to_add]-direction*distance)

165 while True:

166 curr += index_dir

167 if curr >= len(all_poly_edges):

168 curr = 0

169 if curr < 0:

170 curr = len(all_poly_edges) -1

171 if curr == end:

172 break

173 point_to_add = all_poly_edges[curr][edge_to_add]

174 point_to_add = point_to_add -direction*distance

175 points_to_add.append(point_to_add)

176 #points_to_add.reverse ()

177 return points_to_add

178

179 def discretize_paths(discretization , coords , plot=False):

180 prev_point = coords [0]

181 all_points_to_add = []

182 for index , coord in enumerate(coords):

128

183 all_points_to_add.append(prev_point)

184 if index == 0:

185 prev_point = coord

186 continue

187 distance = point_distance(coord , prev_point)

188 t = get_tangent_direction ([coord , prev_point])

189 scale = 1

190 while True:

191 if discretization*scale > distance -3:

192 break

193 next_point = prev_point + t*discretization*scale

194 all_points_to_add.append(next_point)

195 scale += 1

196 prev_point = coord

197 all_points_to_add.append(coords [-1])

198 all_points_to_add = np.asarray(all_points_to_add)

199 if plot:

200 plt.scatter(all_points_to_add [:,0], all_points_to_add [:,1])

201 return all_points_to_add

202

203 def discretize_paths_with_tdr_and_speed(tdr , speed , coords):

204 if tdr/2 < speed *2:

205 discretization = speed*2

206 else:

207 discretization = tdr/2

208 return discretize_paths(discretization , coords)

209

210 def get_square_poly(bounds):

211 vert = [[0,0],[0, bounds],[bounds ,bounds],[bounds ,0]]

212 return Polygon(vert)

213

214 def global_lawnmower_coords(bounds , trash_detection_radius , speed):

215 vert = [[0,0],[0, bounds],[bounds ,bounds],[bounds ,0]]

216 poly = Polygon(vert)

217 coords_2 = generate_patrol_pattern_for_convex_polygon(poly , vert , trash_detection_radius)

218 return discretize_paths_with_tdr_and_speed(trash_detection_radius , speed , coords_2).tolist ()

219

220

221 def get_partitions(bounds , n):

222 if n == 1:

223 vert = [[0,0],[0, bounds],[bounds ,bounds],[bounds ,0]]

224 poly = Polygon(vert)

225 return [poly], [vert]

226 elif n == 2:

227 vert1 = [[0,0],[0, bounds],[bounds ,bounds],[0,0]]

228 poly1 = Polygon(vert1)

229 vert2 = [[0,0],[bounds ,bounds],[bounds ,0] ,[0 ,0]]

230 poly2 = Polygon(vert2)

129

231 return [poly1 , poly2], [vert1 , vert2]

232 points = load_avgmin_config(n, bounds)

233 polys , vertices = generate_clipped_voronoi_diagram_in_square(points , 0, bounds)

234 return polys , vertices

235

236 def partitioned_coords(bounds , trash_detection_radius , speed , n):

237 if n < 3:

238 polys , vertices = get_partitions(bounds ,n)

239 else:

240 points = load_avgmin_config(n, bounds)

241 polys , vertices = generate_clipped_voronoi_diagram_in_square(points , 0, bounds)

242 all_final_coords = []

243 for poly , vert in zip(polys , vertices):

244 coords = generate_patrol_pattern_for_convex_polygon(poly , vert , trash_detection_radius)

245 final_coords = discretize_paths_with_tdr_and_speed(trash_detection_radius , speed , coords).tolist

()

246 all_final_coords.append(final_coords)

247 return all_final_coords , polys

248

249 #return generate_multiple_spiral(polygon , polygon_midpoint , vertices , distances_to_midpoint ,

search_radius)

250 def generate_multiple_spiral(polygon , poly_midpoint , vertices , distances_to_midpoint , search_radius):

251 # Not finished , but included for future work

252 max_distance_to_midpoint = max(distances_to_midpoint)

253 number_spirals = 1+int(round((max_distance_to_midpoint -search_radius)/(search_radius *2)))

254 directions_towards_midpoint = []

255 vertice_jump_distances = []

256 for vertice , distance_to_midpoint in zip(vertices , distances_to_midpoint):

257 direction_towards_midpoint = np.asarray(vertice) - np.asarray(poly_midpoint)

258 direction_towards_midpoint /= np.linalg.norm(direction_towards_midpoint)

259 directions_towards_midpoint.append(direction_towards_midpoint)

260 vertice_jump_distances.append(distance_to_midpoint/number_spirals)

261 waypoints = []

262 for i in range(number_spirals):

263 for vert , direction , jump_distance in zip(vertices , directions_towards_midpoint ,

vertice_jump_distances):

264 waypoints.append(vert - direction *(search_radius *2*(i)+search_radius))

265

266 get_path_length(waypoints)

267 return waypoints

268

269 def get_path_length(waypoints):

270 start = True

271 total = 0

272 for point in waypoints:

273 if start:

274 prev_waypoint = point

275 start = False

130

276 else:

277 total += point_distance(prev_waypoint , point)

278 prev_waypoint = point

279 print(total)

280

281 if __name__ == "__main__":

282 sr=10

283 disc = sr

284 park_len = 100

285 # #n=1

286 fig , ax = plt.subplots ()

287 vert = [[0 ,0] ,[0 ,100] ,[100 ,100] ,[100 ,0]]

288 ax.set_xlim(0,park_len *1.1)

289 ax.set_ylim(0,park_len *1.1)

290 poly = Polygon(vert)

291 coords_2 = generate_patrol_pattern_for_convex_polygon(poly , vert , disc)

292 ax.plot(coords_2 [:,0], coords_2 [:,1])

293 # final_coords = discretize_paths (20, coords_2)

294 plt.show()

295

296 # #n=2

297 fig , ax = plt.subplots ()

298 square =np.array ([[0 ,0] ,[0 ,100] ,[100 ,100] ,[100 ,0] ,[0 ,0]])

299 ax.plot(square [:,0], square [:,1])

300 ax.set_xlim (0 ,100)

301 ax.set_ylim (0 ,100)

302 vert1 = [[0 ,0] ,[0 ,100] ,[100 ,100] ,[0 ,0]]

303 poly1 = Polygon(vert1)

304 coords = generate_patrol_pattern_for_convex_polygon(poly1 , vert1 , disc)

305 final_coords = discretize_paths(disc/2, coords , plot=False)

306 for drone_position in final_coords:

307 circle = plt.Circle ((drone_position [0], drone_position [1]), sr, color=’b’)

308 ax.add_artist(circle)

309

310 vert2 = [[0 ,0] ,[100 ,100] ,[100 ,0] ,[0 ,0]]

311 poly2 = Polygon(vert2)

312 coords = generate_patrol_pattern_for_convex_polygon(poly2 , vert2 , disc)

313 final_coords = discretize_paths(disc/2, coords , plot=False)

314 for drone_position in final_coords:

315 circle = plt.Circle ((drone_position [0], drone_position [1]), sr, color=’b’)

316 ax.add_artist(circle)

317 ax.set_xlim (0 ,100)

318 ax.set_ylim (0 ,100)

319 plt.show()

320

321 for i in range(3, 20):

322 fig , ax = plt.subplots ()

323 points = load_avgmin_config(i, bounds)

131

324 polys , vertices = generate_clipped_voronoi_diagram_in_square(points , 0, 100)

325 for poly , vert in zip(polys , vertices):

326 coords = generate_patrol_pattern_for_convex_polygon(poly , vert , disc)

327 final_coords = np.vstack ((coords , coords [0]))

328 final_coords = discretize_paths(disc/2, final_coords , plot=False)

329 final_coords = final_coords [:-1]

330 for drone_position in final_coords:

331 circle = plt.Circle ((drone_position [0], drone_position [1]), sr, color=’b’, alpha =0.5)

332 ax.add_artist(circle)

333 plt.show()

geometry utils.py

1 import copy

2 import math

3 from math import sqrt

4 import numpy as np

5 from collections import namedtuple

6

7 import numpy as np

8 from shapely.geometry import Point

9

10 def generate_polygon_edges_as_lines(p):

11 vertices = p.exterior.coords.xy

12 all_lines = []

13 for i in range(len(vertices [0])):

14 point = [vertices [0][i], vertices [1][i]]

15 if i==0:

16 prev = copy.deepcopy(point)

17 continue

18 else:

19 line = [prev , point]

20 all_lines.append(line)

21 prev = copy.deepcopy(point)

22 return all_lines

23

24

25 def closest_edge(edges , point):

26 distances = [point_to_line_dist(point , edge , normal_or_closest_endpoint=True) for edge in edges]

27 return distances.index(min(distances))

28

29

30 def line_length(line):

31 point1 = line [0]

32 point2 = line [1]

33 return sqrt((point2 [0]- point1 [0]) **2 + (point2 [1]- point1 [1]) **2)

34

35

36 def point_distance(point1 , point2):

132

37 return sqrt((point2 [0]- point1 [0]) **2 + (point2 [1]- point1 [1]) **2)

38

39

40 def get_tangent_direction(line):

41 t = line [0] - line [1] # x and y components of slope

42 t /= np.linalg.norm(t)

43 return t

44

45

46 def get_normal_direction(tangent):

47 return np.array([-tangent [1], tangent [0]])

48

49

50 def get_edge_intersections(next_line , edge_lines , p):

51 intersection_points = []

52 edges_that_intersected = []

53 for edge in edge_lines:

54 result = find_line_intersection(next_line , edge)

55 if result [2] == 0:

56 continue

57 point = Point(result [0], result [1])

58 to_store = [result [0], result [1]]

59 if np.isclose(p.distance(point), 0):

60 intersection_points.append(to_store)

61 edges_that_intersected.append(edge)

62 line_to_add = np.array(intersection_points)

63 return line_to_add , edges_that_intersected

64

65

66 #https :// stackoverflow.com/questions /27161533/ find -the -shortest -distance -between -a-point -and -line -

segments -not -line

67 def point_to_line_dist(point , line , normal_or_closest_endpoint=False):

68 """ Calculate the distance between a point and a line segment.

69 If normal_or_closest endpoint is false , it returns the perpendicular distance from the line extended

infinitely to the point.

70 If it is true , this wlil return either perpendicular distance or if the point cannot trace a

perpendicular line back to the point ,

71 the closest to one of the endpoints.

72 """

73 Point = namedtuple(’Point’, [’x’, ’y’])

74 a = Point(line [0][0] , line [0][1])

75 b = Point(line [1][0] , line [1][1])

76 other_point = Point(point [0], point [1])

77 dx = b.x - a.x

78 dy = b.y - a.y

79 dr2 = float(dx ** 2 + dy ** 2)

80

81 lerp = ((other_point.x - a.x) * dx + (other_point.y - a.y) * dy) / dr2

133

82 if normal_or_closest_endpoint:

83 if lerp < 0:

84 lerp = 0

85 elif lerp > 1:

86 lerp = 1

87

88 x = lerp * dx + a.x

89 y = lerp * dy + a.y

90

91 _dx = x - other_point.x

92 _dy = y - other_point.y

93 square_dist = _dx ** 2 + _dy ** 2

94 return np.sqrt(square_dist)

95

96

97 # From https ://www.cs.hmc.edu/ACM/lectures/intersections.html

98 def find_line_intersection(line1 , line2):

99 """ this returns the intersection of Line(pt1 ,pt2) and Line(ptA ,ptB)

100

101 returns a tuple: (xi, yi , valid , r, s), where

102 (xi , yi) is the intersection

103 r is the scalar multiple such that (xi,yi) = pt1 + r*(pt2 -pt1)

104 s is the scalar multiple such that (xi,yi) = pt1 + s*(ptB -ptA)

105 valid == 0 if there are 0 or inf. intersections (invalid)

106 valid == 1 if it has a unique intersection ON the segment """

107 pt1 , pt2 , ptA , ptB = line1[0], line1 [1], line2[0], line2 [1]

108 DET_TOLERANCE = 0.00000001

109

110 # the first line is pt1 + r*(pt2 -pt1)

111 # in component form:

112 x1, y1 = pt1

113 x2, y2 = pt2

114 dx1 = x2 - x1

115 dy1 = y2 - y1

116

117 # the second line is ptA + s*(ptB -ptA)

118 x, y = ptA

119 xB, yB = ptB

120 dx = xB - x

121 dy = yB - y

122

123 # we need to find the (typically unique) values of r and s

124 # that will satisfy

125 #

126 # (x1, y1) + r(dx1 , dy1) = (x, y) + s(dx , dy)

127 #

128 # which is the same as

129 #

134

130 # [dx1 -dx][r] = [x-x1]

131 # [dy1 -dy][s] = [y-y1]

132 #

133 # whose solution is

134 #

135 # [r] = _1_ [-dy dx] [x-x1]

136 # [s] = DET [-dy1 dx1] [y-y1]

137 #

138 # where DET = (-dx1 * dy + dy1 * dx)

139 #

140 # if DET is too small , they’re parallel

141 #

142 DET = (-dx1 * dy + dy1 * dx)

143

144 if math.fabs(DET) < DET_TOLERANCE: return (0,0,0,0,0)

145

146 # now , the determinant should be OK

147 DETinv = 1.0/ DET

148

149 # find the scalar amount along the "self" segment

150 r = DETinv * (-dy * (x-x1) + dx * (y-y1))

151

152 # find the scalar amount along the input line

153 s = DETinv * (-dy1 * (x-x1) + dx1 * (y-y1))

154

155 # return the average of the two descriptions

156 xi = (x1 + r*dx1 + x + s*dx)/2.0

157 yi = (y1 + r*dy1 + y + s*dy)/2.0

158 return (xi, yi, 1, r, s)

159

160

161 def testIntersection(pt1 , pt2 , ptA , ptB):

162 """ prints out a test for checking by hand ... """

163 print("Line segment #1 runs from", pt1 , "to", pt2)

164 print("Line segment #2 runs from", ptA , "to", ptB)

165

166 result = find_line_intersection(pt1 , pt2 , ptA , ptB)

167 print(" Intersection result =", result)

168

169

170 if __name__ == "__main__":

171

172 pt1 = (10 ,10)

173 pt2 = (20 ,20)

174

175 pt3 = (10 ,20)

176 pt4 = (20 ,10)

177

135

178 pt5 = (40 ,20)

179

180 testIntersection(pt1 , pt2 , pt3 , pt4)

181 testIntersection(pt1 , pt3 , pt2 , pt4)

182 testIntersection(pt1 , pt2 , pt4 , pt5)

helper.py

1 import math

2 from random import uniform

3

4 from numpy import std

5

6 def sign(x):

7 return math.copysign(1, x)

8

9 def random_position_in_bounds(bounds):

10 return [uniform(0, bounds), uniform(0, bounds)]

11

12 def distance(p1, p2):

13 x1 = p1[0]

14 x2 = p2[0]

15 y1 = p1[1]

16 y2 = p2[1]

17 return math.sqrt((x2 -x1)**2+(y2-y1)**2)

18

19 def mean(data):

20 mean = 0

21 for value in data:

22 mean += value

23 return mean/len(data)

24

25 def std_dev(data):

26 if len(data) == 1:

27 return 0

28 else:

29 return std(data)

movable.py

1 from math import sin

2 from math import cos

3 from math import sqrt

4 from math import exp

5 from random import random as rand

6

7 from parkcleanup.parkcleanup.tools.helper import sign

8

9 class Movable(object):

136

10 def __init__(self , position , direction , speed , repulse_radius=None , attract_scale=None):

11 self.position = position

12 self.direction = direction

13 self.speed = speed

14 self.repulse_radius = repulse_radius

15 self.attract_scale = attract_scale

16

17 def _rotate_vector(self , angle):

18 vector = self.direction

19 x2 = cos(angle)*vector [0]-sin(angle)*vector [1]

20 y2 = sin(angle)*vector [0]+ cos(angle)*vector [1]

21 vector [0] = x2

22 vector [1] = y2

23 self.direction = self.normalize_vector(vector [0], vector [1])

24

25 def _update_direction_from_objective_straight_line(self , objective):

26 direction = self.calculate_direction(self.position ,objective)

27 self.direction = self.normalize_vector(direction [0], direction [1])

28

29 def _potential_fields_update_direction(self , things_we_are_trying_to_avoid , objective=None):

30 curr_coords = self.position

31 repulse_force_x = 0

32 repulse_force_y = 0

33 x = curr_coords [0]

34 y = curr_coords [1]

35 forces = []

36 if len(things_we_are_trying_to_avoid) != 0:

37 for things in things_we_are_trying_to_avoid:

38 xdist = x-things [0]

39 ydist = y-things [1]

40 repulse_force_x += sign(xdist)*exp (-1/2*(xdist/self.repulse_radius)**2)

41 repulse_force_y += sign(ydist)*exp (-1/2*(ydist/self.repulse_radius)**2)

42 forces.append ([repulse_force_x ,repulse_force_y])

43 if objective != None:

44 attract_force_x = objective [0]-x

45 attract_force_y = objective [1]-y

46 attract_force = [attract_force_x*self.attract_scale , attract_force_y*self.attract_scale]

47 forces.append(attract_force)

48 final_force_x = 0

49 final_force_y = 0

50 for force in forces:

51 final_force_x += force [0]

52 final_force_y += force [1]

53 final_force = self.normalize_vector(final_force_x , final_force_y)

54 self.direction = final_force

55

56 def _update_coordinates(self):

57 x_coord = (self.position [0] + self.direction [0]* self.speed)

137

58 y_coord = (self.position [1] + self.direction [1]* self.speed)

59 self.position = [x_coord ,y_coord]

60

61 @staticmethod

62 def distance(p1,p2):

63 return sqrt((p2[0]-p1[0]) **2+(p2[1]-p1[1]) **2)

64

65 @staticmethod

66 def calculate_direction(p1 ,p2):

67 return [p2[0]-p1[0], p2[1]-p1[1]]

68

69 @staticmethod

70 def normalize_vector(x, y):

71 magnitude = sqrt(x**2 + y**2)

72 if magnitude == 0:

73 return [0, 0]

74 else:

75 return [x/magnitude , y/magnitude]

drone state type.py

1 from enum import Enum

2

3

4 class DroneStateType(Enum):

5 GO_TO_TRASH = "Go to Trash"

6 GO_TO_COLLECTOR = "Go to Collector"

7 SEARCH_FOR_TRASH = "Search for Trash"

8 GO_TO_CHARGER = "Go to Charger"

9 RECHARGE = "Recharge"

10 DROP_OFF_TRASH = "Drop off Trash"

11 PICK_UP_TRASH = "Pick up Trash"

12 OUT_OF_ENERGY = "Out of Energy"

13 WAIT_TO_START = "Wait to start"

14 TAKE_OFF = "Take off"

15 LAND_ON_CHARGER = "Land on charger"

drone path planning strategies.py

1 import abc

2

3 class _PathPlanningStrategy(abc.ABC):

4 def __init__(self):

5 pass

6

7 def update_direction(self , drone , sim_model):

8 pass

9

10 class _PotentialFields(_PathPlanningStrategy):

138

11 def __init__(self):

12 pass

13

14 def update_direction(self , drone , sim_model):

15 people_we_are_trying_to_avoid = []

16 if sim_model.there_are_people_in_model ():

17 all_distances_from_persons = sim_model.drone_to_person[drone.id]

18 for index , distance in enumerate(all_distances_from_persons):

19 if distance < drone.avoidance_distance:

20 people_we_are_trying_to_avoid.append(sim_model.person_coords[index])

21 all_distances_from_drones = sim_model.drone_to_drone[drone.id]

22 drones_we_are_trying_to_avoid = []

23 for index , distance in enumerate(all_distances_from_drones):

24 if distance < drone.avoidance_distance:

25 drones_we_are_trying_to_avoid.append(sim_model.drone_coords[index])

26

27 things_we_are_trying_to_avoid = people_we_are_trying_to_avoid + drones_we_are_trying_to_avoid

28 drone._potential_fields_update_direction(things_we_are_trying_to_avoid , objective=drone.objective

.position)

29

30 class _DirectRoute(_PathPlanningStrategy):

31 def __init__(self):

32 pass

33

34 def update_direction(self , drone , sim_model):

35 drone._update_direction_from_objective_straight_line(drone.objective.position)

drone search strategies.py

1 import abc

2 from random import randint

3 from random import random

4 from random import choice

5

6 from scipy.spatial import distance_matrix

7 from shapely.geometry import Point

8 import numpy as np

9

10 from parkcleanup.parkcleanup.model.objectives.location import Location

11 from parkcleanup.parkcleanup.tools.helper import random_position_in_bounds

12 from parkcleanup.parkcleanup.tools.coverage_path_generator.coverage_patterns import get_square_poly

13 from parkcleanup.parkcleanup.tools.geometry_utils import generate_polygon_edges_as_lines , line_length ,

get_tangent_direction , closest_edge

14

15 class _SearchStrategy(metaclass=abc.ABCMeta):

16 def __init__(self):

17 pass

18

19 def update_strategy_on_state_change(self , drone , sim_model):

139

20 pass

21

22 def search_update_method(self , drone , sim_model):

23 pass

24

25 class _RandomSearch(_SearchStrategy):

26 def __init__(self):

27 pass

28

29 def update_strategy_on_state_change(self , drone , sim_model):

30 pass

31

32 def search_update_method(self , drone , sim_model):

33 x = random ()*drone.speed*2-drone.speed+drone.position [0]

34 y = random ()*drone.speed*2-drone.speed+drone.position [1]

35 drone.objective = Location ([x, y])

36

37 class _PatrolSearch(_SearchStrategy):

38 def __init__(self , patrol_coordinates , closest_waypoint_on_resume):

39 self.patrol_coordinates = patrol_coordinates

40 self.closest_waypoint_on_resume = closest_waypoint_on_resume

41 self.wait_for_one = True

42 self._patrol_index = None

43

44 def update_strategy_on_state_change(self , drone , sim_model):

45 if self.closest_waypoint_on_resume:

46 distances_to_locations = distance_matrix ([drone.position], self.patrol_coordinates).tolist ()

47 index_of_min_distance_location = distances_to_locations [0]. index(min(distances_to_locations

[0]))

48 self._patrol_index = index_of_min_distance_location

49 drone.objective = Location(self.patrol_coordinates[index_of_min_distance_location])

50 else:

51 if self._patrol_index == None:

52 if drone.start_waypoint is None:

53 distances_to_locations = distance_matrix ([drone.position], self.patrol_coordinates).

tolist ()

54 index_of_min_distance_location = distances_to_locations [0]. index(min(

distances_to_locations [0]))

55 self._patrol_index = index_of_min_distance_location

56 drone.objective = Location(self.patrol_coordinates[index_of_min_distance_location])

57 else:

58 self._patrol_index = drone.start_waypoint

59 drone.objective = Location(self.patrol_coordinates[drone.start_waypoint])

60 else:

61 drone.objective = Location(self.patrol_coordinates[self._patrol_index])

62

63 def search_update_method(self , drone , sim_model):

64 if drone._reached_objective ():

140

65 # TODO figure out the interaction effects with reaching a goal and change this function

66 # drone.position = drone.objective.position

67 # self._set_next_location_objective(drone)

68 if self.wait_for_one:

69 self.wait_for_one = False

70 else:

71 drone.position = drone.objective.position

72 self._set_next_location_objective(drone)

73 self.wait_for_one = True

74

75 def _set_next_location_objective(self , drone):

76 index = self._patrol_index

77 index += 1

78 if index == len(self.patrol_coordinates):

79 index = 0

80 self._patrol_index = index

81 drone.objective = Location(self.patrol_coordinates[index])

82

83

84 class _RandomBounceSearch(_SearchStrategy):

85 def __init__(self , poly , bounds):

86 self._side = None

87 if poly is None:

88 poly = get_square_poly(bounds)

89 self._poly = poly

90 self._edges = generate_polygon_edges_as_lines(poly)

91 self._num_sides = len(self._edges)

92 self._in_poly = None

93

94 def update_strategy_on_state_change(self , drone , sim_model):

95 if not self._poly.contains(Point(drone.position [0], drone.position [1])):

96 self._in_poly = False

97 centroid = self._poly.centroid.coords.xy

98 centroid = [centroid [0][0] , centroid [1][0]]

99 drone.objective = Location(centroid)

100 else:

101 random_side = randint(0, self._num_sides -1)

102 self._side = random_side

103 self._in_poly = True

104 drone.objective = Location(self._random_edge_in_poly(sim_model.park.bounds , random_side))

105

106 def search_update_method(self , drone , sim_model):

107 if not self._in_poly:

108 if self._poly.contains(Point(drone.position [0], drone.position [1])):

109 self._in_poly = True

110 drone.objective = Location(drone.position)

111 self._side = closest_edge(self._edges , drone.position)

112 else:

141

113 return

114 if drone._reached_objective ():

115 random_sides = list(range(self._num_sides))

116 random_sides.remove(self._side)

117 random_side = choice(random_sides)

118 self._side = random_side

119 drone.objective = Location(self._random_edge_in_poly(self._poly , random_side))

120

121 def _random_edge_in_poly(self , poly , random_side):

122 line = np.array(self._edges[random_side])

123 length = line_length(line)

124 tangent = get_tangent_direction(np.flip(line , axis =0))

125 rand_in_bounds = random ()*length

126 return (line [0] + tangent*rand_in_bounds).tolist ()

A.1.2 Visualization

plotter.py

1 from abc import ABC , abstractmethod

2

3 import matplotlib

4 import matplotlib.path as mplPath

5 from matplotlib import pyplot as plt

6

7 class Plotter(ABC):

8 def __init__(self):

9 self._title_on = False

10 self._title = None

11

12 self._person_scatter = None

13 self._drone_scatter = None

14 self._trash_scatter = None

15 self._collector_scatter = None

16 self._charger_scatter = None

17 self._end_time_step = None

18 self._start_time_step = None

19 self._trash_per_time_step_on = False

20 self._extra_plots = 0

21 self._show_trash_detection_radius_circle = False

22 self._drone_color_change_battery_level_on = False

23 self._show_drone_search_pattern = False

24

25 self._show_inputs = False

26 self._input_dict = None

27

28 def show_inputs(self , input_dict):

142

29 if input_dict is not None:

30 self._show_inputs = True

31 self._input_dict = input_dict

32

33 def show_drone_search_patterns(self):

34 self._show_drone_search_pattern = True

35 return self

36

37 def set_drone_color_change_for_battery_level(self):

38 self._drone_color_change_battery_level_on = True

39 return self

40

41 def show_trash_detection_radius_circle(self):

42 self._show_trash_detection_radius_circle = True

43 return self

44

45 def show_when_trash_is_identified_with_color(self):

46 pass

47

48 def set_title(self , title):

49 self._title_on = True

50 if not isinstance(title , str):

51 raise TypeError("Title must be string")

52 self._title = title

53 return self

54

55 def step_is_at_least_min_time_step(self , curr_time_step):

56 if self._start_time_step is None:

57 return True

58 return curr_time_step > self._start_time_step

59

60 def set_start_timestep_for_plotting(self , start_time_step):

61 if not isinstance(start_time_step , int):

62 raise TypeError("Start timestep must be int")

63 if start_time_step < 0:

64 raise ValueError("Start timestep must be positive")

65 self._start_time_step = start_time_step

66

67 def set_end_timestep_for_plotting(self , end_time_step):

68 if not isinstance(end_time_step , int):

69 raise TypeError("Max timestep must be int")

70 if end_time_step < 1:

71 raise ValueError("Max timestep must be positive and nonzero")

72 self._end_time_step = end_time_step

73

74 def show_outputs(self):

75 self._show_outputs = True

76 return self

143

77

78 @abstractmethod

79 def init_plot(self , park_sim , has_run):

80 pass

81

82 @abstractmethod

83 def update_plot(self , data_logger , time_step):

84 pass

85

86 @abstractmethod

87 def close_plot(self):

88 pass

89

90 def interactive_plot_data(self , park_sim , show=True):

91 if not park_sim.has_run ():

92 raise Exception("Sim cannot be plotted because it has not been run yet")

93 self.init_plot(park_sim , has_run=True , show=show)

94

95 def plot_data(self , park_sim):

96 if not park_sim.has_run ():

97 raise Exception("Sim cannot be plotted because it has not been run yet")

98 self.init_plot(park_sim , has_run=False)

99 for i in range(park_sim.num_time_steps):

100 if not self.step_is_at_least_min_time_step(i):

101 continue

102 self.update_plot(park_sim.sim_model , i)

103 if self._end_time_step_reached(i):

104 break

105 self.close_plot ()

106

107 def _end_time_step_reached(self , time_step):

108 if self._end_time_step is not None:

109 if self._end_time_step == time_step:

110 return True

111 return False

matplotlib plotter.py

1 import decimal

2 from math import floor , ceil

3 import time

4

5 import numpy as np

6 import matplotlib as mpl

7 import matplotlib.path as mplPath

8 from matplotlib import pyplot as plt

9 from mpl_toolkits.axes_grid1 import Divider , Size , make_axes_locatable

10 from matplotlib.widgets import Slider , Button , RadioButtons , TextBox

11

144

12 from parkcleanup.parkcleanup.visualization.plotter import Plotter

13 from parkcleanup.parkcleanup.model.agents.drone_state_type import *

14 from experiment_runner.experiment_runner.string_constants import *

15

16 LAST_VISITED_HEATMAP_RADIO_TEXT = "UAV HM"

17 TRASH_LEFT_OUT_HEATMAP = "Trash HM"

18 OFF = "Off"

19

20 class MatplotlibPlotter(Plotter):

21 def __init__(self):

22 super().__init__ ()

23 self._speed = 0.00001

24 self.all_circles = []

25

26 def init_plot(self , park_sim , has_run , show=True):

27 sim_model = park_sim.sim_model

28 # Set plotting settings

29 mpl.rc(’font’, **{’sans -serif ’ : ’Arial ’,

30 ’family ’ : ’sans -serif’})

31 self.curr_index = 0

32 self.sim_model = sim_model

33 data_logger = park_sim.data_logger

34 self.hm_at_every_time_step = data_logger.hm_at_every_time_step

35 # Initialize heatmap and colorbar stuff

36 self._drone_heatmap = None

37 self._trash_heatmap = None

38 self._drone_colorbar = None

39 self._trash_colorbar = None

40 self._heat_map_value_selected = OFF

41 # Make the primary update method do nothing since OFF is selected

42 self._heat_map_data_update_method = lambda a, b: None

43 self._cax = None

44 self._vmax = 1000

45 # Initialize variables that will be referenced

46 self._trash_detection_radius = park_sim.sim_model.all_drones [0]. trash_detection_radius

47

48 # Initialize plots

49 fig , axes = plt.subplots (1,2,figsize =(15, 5),dpi =100)

50 # Make fig a little bit smaller to fit more widgets later

51 fig.subplots_adjust(left =0.1, right =0.85, bottom =0.1,top =0.9)

52 self._main_ax = axes [0]

53 self._data_axis = axes [1]

54 self._plot_trash_per_time_step_plot(self._data_axis , sim_model , data_logger)

55 self._fig = fig

56

57 # Plot park with some visual cushion on the outside

58 side_length = sim_model.park.bounds

59 self._side_length = side_length

145

60 self._main_ax.set_xlim(-side_length *0.1, side_length *1.1)

61 self._main_ax.set_ylim(-side_length *0.1, side_length *1.1)

62 self._plot_outside_bounds(side_length , self._main_ax)

63

64 if self._show_inputs:

65 self._plot_the_inputs(self._main_ax)

66 if self._show_outputs:

67 self._plot_the_outputs(self._main_ax , sim_model , data_logger)

68 if sim_model.park.nodes_on:

69 self._plot_park_paths(sim_model , self._main_ax)

70

71 # Initialize plots that will be updated

72 x, y = [],[]

73 self._person_scatter = self._main_ax.scatter(x, y)

74 self._drone_scatter = self._main_ax.scatter(x, y, marker=’$\xa4$’, cmap="Greys", vmin=0, vmax=1,

s=100, alpha =0.9)

75 self._trash_scatter = self._main_ax.scatter(x, y, marker="X", color="r", s=100)

76 self._collector_scatter = self._main_ax.scatter(x, y, marker=r’\sqcup ’, color="saddlebrown", s

=100)

77 self._charger_scatter = self._main_ax.scatter(x, y, marker="P", color="m", s=100)

78 # Initialize the data for the scatter plot that changes the color of the trash that has been left

out the longest

79 max_trash_indices = data_logger.get_max_trash_indices ()

80

81 self._all_max_trash_indices = max_trash_indices

82 self._single_longest_trash_scatter = self._main_ax.scatter(x, y, marker="X", color="g")

83

84 if self._title_on:

85 self._main_ax.set_title(self._title)

86 self._minute_time_text = self._main_ax.text (1.01 , 0.97, ’’, transform=self._main_ax.transAxes)

87 self._hour_time_text = self._main_ax.text (1.01, 0.94, ’’, transform=self._main_ax.transAxes)

88 self._main_ax.text (2.45 , -0.1, ’seconds ’, transform=self._main_ax.transAxes)

89 # Its hard to know which group of drones is out when

90 # TODO make the group number be accurate

91 # self._group_number_text = self._main_ax.text (1.1, 0.7, ’Group: 0’, transform=self._main_ax.

transAxes)

92

93 # Make the legend appear outside of the plot

94 box = self._main_ax.get_position ()

95 self._main_ax.set_position ([box.x0+0.04, box.y0 , box.width * 0.8, box.height])

96 self._main_ax.legend ((self._drone_scatter , self._trash_scatter , self._collector_scatter , self.

_charger_scatter),

97 ("UAVs","Trash","Collectors","Chargers"), bbox_to_anchor =(1.01 ,0.4) ,loc=’center left’)

98 if self._drone_color_change_battery_level_on:

99 # Manually set the drone legend color to gray because setting the marker color to gray

100 # in the drone scatter plot initialization prevents the battery level color change effect from

happening

101 self._main_ax.get_legend ().legendHandles [0]. set_color(’gray’)

146

102

103 # Trash heatmaps

104 heat_maps = data_logger.get_average_time_trash_in_cell_hms ()

105 num_trash_heat_map = data_logger.get_num_trash_collected_heat_map ()

106 all_drone_heat_maps = data_logger.get_all_last_search_heat_map ()

107 avg_heat_map = data_logger.get_average_heat_map ()

108 num_times_visited = data_logger.get_num_times_visited_hm ()

109

110 if self.hm_at_every_time_step:

111 self._all_trash_heat_maps = heat_maps

112 self._max_trash_heat_map = int(np.max(heat_maps))

113

114 self._all_drone_heat_maps = all_drone_heat_maps

115 self._max_drone_heatmap = int(np.max(all_drone_heat_maps))

116

117 self._num_trash_heat_map = num_trash_heat_map

118 self._max_num_trash_heat_map = int(np.max(num_trash_heat_map))

119

120 self._average_drone_heat_map = avg_heat_map

121 # The max usually has a crazy amount of decimals , so round it

122 self._max_average_drone_heat_map = round(np.max(self._average_drone_heat_map), 2)

123

124 self._number_times_visited = num_times_visited

125 self._max_number_times_visited = int(np.max(num_times_visited))

126

127 self._all_max = data_logger.all_max_hm

128 self._all_mean = data_logger.all_mean_hm

129 self._all_std_dev = data_logger.all_std_dev_hm

130

131 # Interactive update things

132 # Create all the buttons and widgets

133 # The axes arguments are: x position , y position , x length , y length

134 axcolor = ’lightgoldenrodyellow ’

135 axfreq = plt.axes ([0.1 , 0.01, 0.65, 0.03], facecolor=axcolor)

136 f0=0

137 delta_f = 1

138 time_step_update_slider = Slider(axfreq , ’Time Step’, 0, data_logger.num_time_steps , valinit=f0,

valstep=delta_f)

139

140 start_button_placeholder = plt.axes ([0.005 , 0.2, 0.025 , 0.04])

141 start_button = Button(start_button_placeholder , ’Play’, color=axcolor , hovercolor=’0.975 ’)

142

143 pause_button_placeholder = plt.axes ([0.03 , 0.2, 0.033, 0.04])

144 pause_button = Button(pause_button_placeholder , ’Pause ’, color=axcolor , hovercolor=’0.975 ’)

145

146 back_button_placeholder = plt.axes ([0.068 , 0.2, 0.029, 0.04])

147 back_button = Button(back_button_placeholder , ’Back’, color=axcolor , hovercolor=’0.975 ’)

148

147

149 next_button_placeholder = plt.axes ([0.097 , 0.2, 0.029, 0.04])

150 next_button = Button(next_button_placeholder , ’Next’, color=axcolor , hovercolor=’0.975 ’)

151

152 axbox = plt.axes ([0.05 , 0.1, 0.05, 0.075])

153 text_box = TextBox(axbox , ’Jump To:’, initial="0")

154

155 axbox_vmax = plt.axes ([0.45 , 0.55, 0.04, 0.075])

156 text_box_vmax = TextBox(axbox_vmax , ’vmax:’, initial=str(self._vmax))

157 self._text_box_vmax = text_box_vmax

158 self._use_default_vmax = True

159

160 axbox = plt.axes ([0.03 , 0.27, 0.05, 0.075])

161 speed_slider = Slider(axbox , ’Speed’, 1, 40, valinit=1, valstep=delta_f)

162

163 rax = plt.axes ([0.42 , 0.1, 0.05, 0.2], facecolor=axcolor)

164 drone_pattern_radio = RadioButtons(rax , (0, 1, 2), active =0)

165

166 axbox_for_output_radio = plt.axes ([0.83 , 0.24, 0.15, 0.2], facecolor=axcolor)

167 data_output_radio = RadioButtons(axbox_for_output_radio , (

168 TOTAL_TRASH ,

169 AVG_TRASH_LEFT_OUT ,

170 LONGEST_CURRENT_TRASH ,

171 AVG_TIME_TRASH_LEFT_OUT ,

172 MAX_TIME_SINCE_VISITED ,

173 AVG_TIME_SINCE_VISITED ,

174 STD_DEV_TIME_SINCE_VISITED ,

175), active =0)

176

177 axbox_for_heat_map_radio = plt.axes ([0.42 , 0.65, 0.093 , 0.17], facecolor=axcolor)

178 heat_map_radio = RadioButtons(axbox_for_heat_map_radio , (

179 OFF ,

180 LAST_VISITED_HEATMAP_RADIO_TEXT ,

181 TRASH_LEFT_OUT_HEATMAP ,

182 NUMBER_TIMES_VISITED ,

183 AVERAGE_VISITED ,

184 NUM_TOTAL_TRASH

185), active =0)

186

187 # Create all the update methods for when the widgets are activated (by button press , text enter ,

etc.)

188 def update_drone_patterns(label):

189 self.patrol_plots = []

190 self.partition_plots = []

191 for drone in sim_model.all_drones:

192 if drone.group_index != label:

193 continue

194 if drone.patrol_coordinates is not None:

195 coords_to_plot = np.array(drone.patrol_coordinates)

148

196 self.patrol_plots.append(self._main_ax.plot(coords_to_plot [:,0], coords_to_plot [:,1],

alpha =0.5))

197 if drone.poly_of_area is not None:

198 self.partition_plots.append(self._main_ax.plot(*drone.poly_of_area.exterior.xy, c=’g’

, alpha =0.5))

199

200 def update_heat_map_vmax(value):

201 self._vmax = value

202 self._use_default_vmax = False

203 value_selected = heat_map_radio.value_selected

204 update_map_background_plot(value_selected)

205 self._use_default_vmax = True

206

207 def update_map_background_plot(label):

208 if label == LAST_VISITED_HEATMAP_RADIO_TEXT:

209 self._plot_last_visited_step_heatmap(self.sim_model , self.curr_index)

210 elif label == TRASH_LEFT_OUT_HEATMAP:

211 self._plot_weighted_trash_per_time_step_heatmap(self.sim_model , self.curr_index)

212 elif label == OFF:

213 self._clear_heat_maps ()

214 self._heat_map_data_update_method = lambda a, b: None

215 elif label == NUMBER_TIMES_VISITED:

216 self._plot_number_of_times_visited(sim_model)

217 elif label == AVERAGE_VISITED:

218 self._plot_average_heat_map_value(sim_model)

219 elif label == NUM_TOTAL_TRASH:

220 self._plot_num_trash_heat_map(sim_model)

221 self._fig.canvas.draw_idle ()

222

223 def update_output_plot(label):

224 if label == TOTAL_TRASH:

225 self._plot_trash_per_time_step_plot(self._data_axis , self.sim_model , data_logger)

226 elif label == LONGEST_CURRENT_TRASH:

227 self._plot_max_time_left_out_in_each_time_step_plot(self._data_axis , self.sim_model ,

data_logger)

228 elif label == AVG_TIME_TRASH_LEFT_OUT:

229 self._plot_avg_time_trash_left_out_in_each_time_step_plot(self._data_axis , self.sim_model

, data_logger)

230 elif label == AVG_TRASH_LEFT_OUT:

231 self._plot_avg_trash_left_out_in_each_time_step_plot(self._data_axis , sim_model ,

data_logger)

232 elif label == AVG_TIME_SINCE_VISITED:

233 self._plot_avg_since_last_visited_plot(self._data_axis , sim_model , data_logger)

234 elif label == MAX_TIME_SINCE_VISITED:

235 self._plot_max_since_last_visited_plot(self._data_axis , sim_model , data_logger)

236 elif label == STD_DEV_TIME_SINCE_VISITED:

237 self._plot_std_dev_since_last_visited_plot(self._data_axis , sim_model , data_logger)

238 elif label == ACTIVE_RATIO:

149

239 self._plot_active_ratios_plot(self._data_axis , sim_model , data_logger)

240 self._fig.canvas.draw_idle ()

241

242 def drone_pattern_radio_update(label):

243 for patrol_plot_set in self.patrol_plots:

244 for patrol_plot in patrol_plot_set:

245 patrol_plot.remove ()

246 for partition_plot_set in self.partition_plots:

247 for partition_plot in partition_plot_set:

248 partition_plot.remove ()

249 self._fig.canvas.draw_idle ()

250 update_drone_patterns(int(label))

251

252 def update_speed_box(val):

253 val = int(val)

254 self._play_speed = val

255

256 def update_slider(val):

257 val = int(val)

258 if val < data_logger.num_time_steps:

259 self.update_plot(sim_model , val , data_logger)

260

261 def update_text_box(val):

262 val = int(val)

263 if val < data_logger.num_time_steps:

264 time_step_update_slider.set_val(val)

265 self.stop = False

266

267 def back_button_update(event):

268 val = time_step_update_slider.val

269 if val - self._play_speed >= 0:

270 time_step_update_slider.set_val(int(val - self._play_speed))

271 else:

272 time_step_update_slider.set_val (0)

273

274 def next_button_update(event):

275 val = time_step_update_slider.val

276 if val + self._play_speed < data_logger.num_time_steps:

277 time_step_update_slider.set_val(int(val + self._play_speed))

278 else:

279 time_step_update_slider.set_val(data_logger.num_time_steps -1)

280

281 def pause_button_update(event):

282 self.stop = True

283

284 def play_button_update(event):

285 self.stop = False

286 while not self.stop:

150

287 val = time_step_update_slider.val

288 if val+self._play_speed > data_logger.num_time_steps:

289 time_step_update_slider.set_val(int(data_logger.num_time_steps))

290 break

291 time_step_update_slider.set_val(int(val+self._play_speed))

292 plt.pause (0.0000000001)

293

294 update_drone_patterns (0)

295 update_slider (0)

296 self._play_speed = 1

297 # Connect widgets with their respective update methods

298 text_box_vmax.on_submit(update_heat_map_vmax)

299 data_output_radio.on_clicked(update_output_plot)

300 heat_map_radio.on_clicked(update_map_background_plot)

301 drone_pattern_radio.on_clicked(drone_pattern_radio_update)

302 speed_slider.on_changed(update_speed_box)

303 pause_button.on_clicked(pause_button_update)

304 start_button.on_clicked(play_button_update)

305 time_step_update_slider.on_changed(update_slider)

306 text_box.on_submit(update_text_box)

307 back_button.on_clicked(back_button_update)

308 next_button.on_clicked(next_button_update)

309

310 if show:

311 plt.show()

312 return self._fig

313

314 def update_plot(self , sim_model , time_step , data_logger):

315 self.curr_index = time_step

316 drone_positions = np.asarray(data_logger.drone_history[time_step])

317 trash_positions = np.asarray(data_logger.trash_history[time_step])

318 collector_positions = np.asarray(data_logger.collector_positions)

319 charger_positions = np.asarray(data_logger.charger_positions)

320

321 self._minute_time_text.set_text(’%.2f’%(time_step /60) + " minutes")

322 self._hour_time_text.set_text(’%.2f’%(time_step /60/60) + " hours")

323 self._drone_scatter.set_offsets(drone_positions)

324 if self._show_trash_detection_radius_circle:

325 if self._show_trash_detection_radius_circle:

326 for circle in self.all_circles:

327 circle.remove ()

328 self.all_circles = []

329 for drone_position in drone_positions:

330 circle = plt.Circle ((drone_position [0], drone_position [1]), self._trash_detection_radius ,

color=’b’, fill=False)

331 self.all_circles.append(circle)

332 self._main_ax.add_artist(circle)

333 if self._drone_color_change_battery_level_on:

151

334 battery_life = data_logger.drone_battery_life[time_step]

335 battery_level_array = np.transpose(battery_life)

336 n = mpl.colors.Normalize(vmin=-0.3, vmax =1)

337 m = mpl.cm.ScalarMappable(norm=n, cmap=’Greys’)

338 scat = self._drone_scatter

339 scat.set_clim(vmin=-0.3, vmax =1)

340 scat.set_facecolor(m.to_rgba(battery_level_array))

341

342 self._collector_scatter.set_offsets(collector_positions)

343 self._charger_scatter.set_offsets(charger_positions)

344 if sim_model.persons_on:

345 if len(person_positions) == 0:

346 self._person_scatter.set_offsets(self.empty_array ())

347 else:

348 self._person_scatter.set_offsets(person_positions)

349 if len(trash_positions) == 0:

350 self._trash_scatter.set_offsets(self.empty_array ())

351 else:

352 self._trash_scatter.set_offsets(trash_positions)

353 if self._all_max_trash_indices[time_step] == -1:

354 self._single_longest_trash_scatter.set_offsets(self.empty_array ())

355 else:

356 self._single_longest_trash_scatter.set_offsets(trash_positions[self._all_max_trash_indices[

time_step]])

357

358 self._pointing_arrow.remove ()

359 self._pointing_arrow = self._data_axis.arrow(time_step , 0, 0, self.data_y_max , width =0.1,

length_includes_head=True)

360 self._data_update_method(sim_model , time_step)

361 self._heat_map_data_update_method(sim_model , time_step)

362

363 self._fig.canvas.draw_idle ()

364

365 def close_plot(self):

366 plt.close()

367

368 def set_speed(self , speed):

369 self._speed = speed

370 return self

371

372 def _clear_heat_maps(self):

373 if self._cax is not None:

374 self._cax.remove ()

375 self._cax = None

376 if self._drone_colorbar is not None:

377 # self._drone_colorbar.remove ()

378 self._drone_colorbar = None

379 if self._drone_heatmap is not None:

152

380 self._drone_heatmap.remove ()

381 self._drone_heatmap = None

382 if self._trash_colorbar is not None:

383 # self._trash_colorbar.remove ()

384 self._trash_colorbar = None

385 if self._trash_heatmap is not None:

386 self._trash_heatmap.remove ()

387 self._trash_heatmap = None

388 self._fig.canvas.draw_idle ()

389

390 # Unfortunately I had to duplicate the code with the heat maps in order to get them to clear and

change properly

391 def _plot_last_visited_step_heatmap(self , sim_model , time_step):

392 self._clear_heat_maps ()

393 map_len = sim_model.park.bounds

394 def update_trash_per_time_step(sim_model , time_step):

395 heat_map = self._all_drone_heat_maps[time_step]

396 self._drone_heatmap.set_data(heat_map.T)

397 heat_map = self._all_drone_heat_maps[time_step]

398 extent = (0,map_len ,0,map_len)

399 vmin = 0

400 vmax = self._vmax

401 self._drone_heatmap = self._main_ax.imshow(heat_map.T, vmin=vmin , vmax=vmax , interpolation=’

nearest ’, origin=’lower’, extent=extent)

402 # Allocate space for the colorbar

403 ax = self._main_ax

404 self._cax = self._fig.add_axes ([ax.get_position ().x1 -0.01 , ax.get_position ().y0, 0.01, ax.

get_position ().height])

405 self._drone_colorbar = plt.colorbar(self._drone_heatmap , cax=self._cax)

406 self._heat_map_data_update_method = update_trash_per_time_step

407 if self._use_default_vmax:

408 self._text_box_vmax.set_val(self._max_drone_heatmap)

409

410 def _plot_weighted_trash_per_time_step_heatmap(self , sim_model , time_step):

411 self._clear_heat_maps ()

412 map_len = sim_model.park.bounds

413 def update_trash_per_time_step(sim_model , time_step):

414 heat_map = self._all_trash_heat_maps[time_step]

415 self._trash_heatmap.set_data(heat_map.T)

416 heat_map = self._all_trash_heat_maps[time_step]

417 extent = (0,map_len ,0,map_len)

418 self._trash_heatmap = self._main_ax.imshow(heat_map.T, vmin=0, vmax=self._vmax , cmap=’Blues’,

interpolation=’nearest ’, origin=’lower ’, extent=extent)

419 # Allocate space for the colorbar

420 ax = self._main_ax

421 self._cax = self._fig.add_axes ([ax.get_position ().x1 -0.01 , ax.get_position ().y0, 0.01, ax.

get_position ().height])

422 self._trash_colorbar = plt.colorbar(self._trash_heatmap , cax=self._cax)

153

423 self._heat_map_data_update_method = update_trash_per_time_step

424 if self._use_default_vmax:

425 self._text_box_vmax.set_val(self._max_trash_heat_map)

426

427 def _plot_number_of_times_visited(self , sim_model):

428 self._clear_heat_maps ()

429 map_len = sim_model.park.bounds

430 def update_trash_per_time_step(sim_model , time_step):

431 pass

432 heat_map = self._number_times_visited

433 extent = (0,map_len ,0,map_len)

434 self._trash_heatmap = self._main_ax.imshow(heat_map.T, vmin=0, vmax=self._vmax , cmap=’Blues’,

interpolation=’nearest ’, origin=’lower ’, extent=extent)

435 # Allocate space for the colorbar

436 ax = self._main_ax

437 self._cax = self._fig.add_axes ([ax.get_position ().x1 -0.01 , ax.get_position ().y0, 0.01, ax.

get_position ().height])

438 self._trash_colorbar = plt.colorbar(self._trash_heatmap , cax=self._cax)

439 self._heat_map_data_update_method = update_trash_per_time_step

440 if self._use_default_vmax:

441 self._text_box_vmax.set_val(self._max_number_times_visited)

442

443 def _plot_average_heat_map_value(self , sim_model):

444 self._clear_heat_maps ()

445 map_len = sim_model.park.bounds

446 def update_trash_per_time_step(sim_model , time_step):

447 pass

448 heat_map = self._average_drone_heat_map

449 extent = (0,map_len ,0,map_len)

450 self._trash_heatmap = self._main_ax.imshow(heat_map.T, vmin=0, vmax=self._vmax , cmap=’Blues’,

interpolation=’nearest ’, origin=’lower ’, extent=extent)

451 # Allocate space for the colorbar

452 ax = self._main_ax

453 self._cax = self._fig.add_axes ([ax.get_position ().x1 -0.01 , ax.get_position ().y0, 0.01, ax.

get_position ().height])

454 self._trash_colorbar = plt.colorbar(self._trash_heatmap , cax=self._cax)

455 self._heat_map_data_update_method = update_trash_per_time_step

456 if self._use_default_vmax:

457 self._text_box_vmax.set_val(self._max_average_drone_heat_map)

458

459 def _plot_num_trash_heat_map(self , sim_model):

460 self._clear_heat_maps ()

461 map_len = sim_model.park.bounds

462 def update_trash_per_time_step(sim_model , time_step):

463 pass

464 heat_map = self._num_trash_heat_map

465 extent = (0,map_len ,0,map_len)

154

466 self._trash_heatmap = self._main_ax.imshow(heat_map.T, vmin=0, vmax=self._vmax , cmap=’Blues’,

interpolation=’nearest ’, origin=’lower ’, extent=extent)

467 # Allocate space for the colorbar

468 ax = self._main_ax

469 self._cax = self._fig.add_axes ([ax.get_position ().x1 -0.01 , ax.get_position ().y0, 0.01, ax.

get_position ().height])

470 self._trash_colorbar = plt.colorbar(self._trash_heatmap , cax=self._cax)

471 self._heat_map_data_update_method = update_trash_per_time_step

472 if self._use_default_vmax:

473 self._text_box_vmax.set_val(self._max_num_trash_heat_map)

474

475 def _plot_avg_since_last_visited_plot(self , ax, sim_model , data_logger):

476 x = len(self._all_mean)

477 y = self._all_mean

478 self._static_data_plot(x, y, AVG_TIME_SINCE_VISITED , ax, sim_model , data_logger)

479

480 def _plot_active_ratios_plot(self , ax, sim_model , data_logger):

481 # TODO update this plot

482 y1, y2 , all_ratios = data_logger.active_drone_ratio ()

483 self._static_data_plot_multiple ([all_ratios], ACTIVE_RATIO , ax, sim_model)

484

485 def _plot_max_since_last_visited_plot(self , ax, sim_model , data_logger):

486 x = len(self._all_max)

487 y = self._all_max

488 self._static_data_plot(x, y, MAX_TIME_SINCE_VISITED , ax, sim_model , data_logger)

489

490 def _plot_std_dev_since_last_visited_plot(self , ax, sim_model , data_logger):

491 x = len(self._all_std_dev)

492 y = self._all_std_dev

493 self._static_data_plot(x, y, STD_DEV_TIME_SINCE_VISITED , ax, sim_model , data_logger)

494

495 def _plot_trash_per_time_step_plot(self , ax , sim_model , data_logger):

496 x, trashes = data_logger.get_trash_per_time_step_data ()

497 self._static_data_plot(x, trashes , TRASH_PER_TIME_STEP_TITLE , ax, sim_model , data_logger)

498

499 def _plot_avg_trash_left_out_in_each_time_step_plot(self , ax, sim_model , data_logger):

500 x, trash_time = data_logger.get_running_avg_num_trash_per_timestep_data ()

501 self._static_data_plot(x, trash_time , AVG_TRASH_LEFT_OUT , ax, sim_model , data_logger)

502

503 def _plot_max_time_left_out_in_each_time_step_plot(self , ax, sim_model , data_logger):

504 x, max_time = data_logger.max_trash_left_out_each_time_step_data ()

505 self._static_data_plot(x, max_time , LONGEST_CURRENT_TRASH , ax, sim_model , data_logger)

506

507 def _plot_avg_time_trash_left_out_in_each_time_step_plot(self , ax, sim_model , data_logger):

508 x, trash_time = data_logger.avg_time_trash_left_out_in_each_time_step_data ()

509 self._static_data_plot(x, trash_time , AVG_TIME_TRASH_LEFT_OUT , ax, sim_model , data_logger)

510

511 def _static_data_plot_multiple(self , y_datas , title , ax , sim_model , data_logger):

155

512 ax.cla()

513 x = len(sim_model.data_logger.trash_history)

514 ax.set_xlim(0, x)

515 max_values = []

516 for y_data in y_datas:

517 ax.plot(list(range(x)), y_data)

518 max_values.append(max(y_data))

519 max_value = max(max_values)

520 if max_value == 0:

521 max_value = 1

522 ax.set_ylim(0, max_value)

523 self.data_y_max = max_value

524 ax.set_title(title)

525 self._pointing_arrow = ax.arrow(self.curr_index , 0, 0, self.data_y_max , width =0.1,

length_includes_head=True)

526 def update_trash_per_time_step(sim_model , time_step):

527 pass

528 self._data_update_method = update_trash_per_time_step

529 aspect = np.diff(self._data_axis.get_xlim ()) / np.diff(self._data_axis.get_ylim ())

530 self._data_axis.set_aspect(aspect)

531

532 def _static_data_plot(self , x_data , y_data , title , ax , sim_model , data_logger):

533 ax.cla()

534 x = len(data_logger.trash_history)

535 ax.set_xlim(0, x)

536 ax.plot(list(range(x)), y_data)

537 max_value = max(y_data)

538 if max_value == 0:

539 max_value = 1

540 ax.set_ylim(0, max_value)

541 self.data_y_max = max_value

542 ax.set_title(title)

543 self._pointing_arrow = ax.arrow(self.curr_index , 0, 0, self.data_y_max , width =0.1,

length_includes_head=True)

544 def update_trash_per_time_step(sim_model , time_step):

545 pass

546 self._data_update_method = update_trash_per_time_step

547 aspect = np.diff(self._data_axis.get_xlim ()) / np.diff(self._data_axis.get_ylim ())

548 self._data_axis.set_aspect(aspect)

549

550

551 def _plot_the_outputs(self , main_ax , sim_model , data_logger):

552 x_place = 2.54

553 y_place = 0.5

554 output_dict = {}

555 output_dict[MAX_TIME_LEFT_OUT] = data_logger.get_max_time_any_trash_left_out ()

556 output_dict[AVERAGE_TIME_TRASH_LEFT_OUT] = round(data_logger.get_avg_time_trash_left_out () ,2)

557 output_dict[AVG_NUM_TRASH_PER_TIMESTEP] = round(data_logger.get_avg_num_trash_in_sim () ,2)

156

558 times = data_logger.drones_with_depleted_energy_times

559 if len(times) > 0:

560 output_dict[RUN_OUT_BATTERY_TIMES] = times [0]

561 output_dict[NUM_DRONES_TO_RUN_OUT_OF_BATTERIES] = data_logger.get_num_drones_ran_out_of_batteries

()

562 output_dict[AVERAGE_TIME_SPENT_SEARCHING_PER_DRONE] = round(data_logger.

get_avg_time_spent_searching_per_drone () ,2)

563 output_dict[AVERAGE_TIME_SPENT_COLLECTING_PER_DRONE] = round(data_logger.

get_avg_time_spent_collecting_per_drone () ,2)

564 text = ""

565 props = dict(boxstyle=’round’, facecolor=’wheat ’, alpha =0.5)

566 for key , value in output_dict.items():

567 if key in (AVERAGE_TIME_TRASH_LEFT_OUT):

568 key = "Average time trash left out (s)"

569 if key in (NUM_DRONES_TO_RUN_OUT_OF_BATTERIES):

570 key = "# UAVs lost power"

571 if key in (MAX_TIME_LEFT_OUT):

572 key = "Max time any trash left out (s)"

573 if key in (AVERAGE_TIME_SPENT_CHARGING_PER_DRONE):

574 key = "Avg UAV charge time (s)"

575 if key in (AVERAGE_TIME_SPENT_SEARCHING_PER_DRONE):

576 key = "Avg UAV search time (s)"

577 if key in (AVG_TIME_NOT_CHARGING_OR_SEARCHING):

578 key = "Avg UAV in other states (s)"

579 next_text = key + ": \n" + str(value) + "\n"

580 text += next_text

581 main_ax.text(x_place , y_place , text , transform=main_ax.transAxes , bbox=props)

582

583 def _plot_the_inputs(self , main_ax):

584 x_place = -0.47

585 y_place = 0.35

586 dont_print_these = (

587 RANDOM_SEED ,

588 DRONE_SPEED ,

589 FOUND_DISTANCE ,

590 EMERGENCY_RECHARGE_LEVEL ,

591 SET_OUT_FOR_TRASH_WHILE_CHARGING_LEVEL ,

592 RETURN_TO_CHARGE_FROM_SEARCHING ,

593 FLY_TIME ,

594 RECHARGE_TIME ,

595 TRASH_PICKUP_DELAY ,

596 TRASH_DROPOFF_DELAY ,

597 INIT_CHARGERS_RANDOM ,

598 INIT_COLLECTORS_RANDOM ,

599 FAILED_EXPERIMENT ,

600 ’Unnamed: 0’

601)

602 text = ""

157

603 props = dict(boxstyle=’round’, facecolor=’wheat ’, alpha =0.5)

604 for key , value in self._input_dict.items():

605 if key in dont_print_these:

606 continue

607 if key in (NUMBER_OF_DRONES):

608 key = "Number of UAVs"

609 if key in (PARK_SIZE):

610 key = "Park side length (m)"

611 if key == SEARCH_PATTERN:

612 value = SEARCH_PATTERNS[value]

613 if key in (TRASH_GENERATION_RATE):

614 # key = r’γ_{T}’

615 key = "Trash Generation Rate"

616 value *= 3600

617 value = round(value , 2)

618 if key in (TRASH_DETECTION_RADIUS):

619 key = "Detection Distance (m)"

620 value = round(value , 2)

621 if key in (SIM_RUN_TIME):

622 value = round(value , 2)

623 next_text = key + ": \n" + str(value) + "\n"

624 text += next_text

625 main_ax.text(x_place , y_place , text , transform=main_ax.transAxes , bbox=props)

626

627 @staticmethod

628 def empty_array ():

629 return np.c_[np.array ([]), np.array ([])]

630

631 def _plot_outside_bounds(self , side_length , ax):

632 l = side_length

633 bounds_x , bounds_y = [0, l, l, 0, 0],[0, 0, l, l, 0]

634 polygon = np.column_stack ((bounds_x ,bounds_y))

635 bounds = mplPath.Path(polygon)

636 vertices = bounds.vertices

637 ax.plot(vertices[:, 0], vertices[:, 1], color=’violet ’)

638

639 def _plot_park_paths(self , sim_model , ax):

640 for node in sim_model.park.nodes:

641 x_node = []

642 y_node = []

643 for child in node.children:

644 x_node.append(node.coordinates [0])

645 x_node.append(child.coordinates [0])

646 y_node.append(node.coordinates [1])

647 y_node.append(child.coordinates [1])

648 ax.plot(x_node ,y_node ,color=’deepskyblue ’, linewidth = 0.5)

158

A.1.3 Collector Placement Algorithm

coarse genetic fine convex optimization.py

1 import numpy as np

2 import scipy.optimize

3 from scipy.optimize import differential_evolution

4 from scipy.optimize import minimize

5 from scipy.optimize import Bounds

6 from scipy.optimize import NonlinearConstraint

7 from scipy.spatial import distance_matrix

8 from matplotlib import pyplot as plt

9 import time

10

11

12 def get_coords(discretization , map_min , map_max):

13 x_dis = np.linspace(map_min , map_max , discretization)

14 y_dis = np.linspace(map_min , map_max , discretization)

15 return np.array([np.repeat(x_dis , discretization), np.tile(y_dis , discretization)]).T

16

17

18 def obj_maxmin(x, coordinates):

19 collectors = np.array(x).reshape(-1, 2)

20 distances = distance_matrix(coordinates , collectors , p=2)

21 return np.max(np.min(distances , axis =1))

22

23

24 def obj_avgmin(x, coordinates):

25 collectors = np.array(x).reshape(-1, 2)

26 distances = distance_matrix(coordinates , collectors , p=2)

27 return np.mean(np.min(distances , axis =1))

28

29

30 def scipy_differential(obj , lb , ub , number_collectors , coarse_coords):

31 bounds_dif_ev = []

32 for _ in range(number_collectors):

33 bounds_dif_ev.append ((lb , ub))

34 bounds_dif_ev.append ((lb , ub))

35 return scipy.optimize.differential_evolution(obj , bounds_dif_ev , args=(coarse_coords ,), maxiter

=100000000)

36

37 # Convex minimization with fine grid

38 def minimize_results(start_x , obj , discretization , map_min , map_max):

39 fine_coords = get_coords(discretization , map_min , map_max)

40 return scipy_minimize(obj , start_x , fine_coords)

41

42

43 def scipy_minimize(obj , start_x , fine_coords):

159

44 start_opt = time.time()

45 result = minimize(obj , start_x , args=(fine_coords ,)) # bounds=bounds_min)

46 end_opt = time.time()

47 time_taken = end_opt -start_opt

48 print("nfev: {}, nit: {}, njev: {}, success: {}, time_taken: {}".format(

49 result[’nfev’], result["nit"], result[’njev’], result[’message ’], time_taken))

50 # Plot optimal configuration

51 return result[’x’]

52

53

54 def run_design_coarse_GA_then_fine_scipy(lb, ub, map_min , map_max , number_collectors , obj , save=False ,

folder_name=""):

55 # Global optimum finding algorithm with coarse grid

56 start = time.time()

57 coarse_coords = get_coords (30, map_min , map_max)

58 result_coarse = scipy_differential(obj , lb , ub , number_collectors , coarse_coords)

59 end = time.time()

60 GA_time = end -start

61 print(result_coarse)

62

63 # Save results to compare

64 start_x = result_coarse[’x’]

65 start_x_pl = start_x.reshape(-1, 2)

66 x = start_x

67

68 x5 = minimize_results(x, obj , 500, map_min , map_max)

69 final_x = x5

70 print("Final x: {}".format(final_x))

71 if save:

72 if folder_name == "":

73 folder_name = "test"

74 np.savetxt("collector_placement_algorithms/data /{}/ data {}. txt".format(

75 folder_name , number_collectors), final_x)

76 end = time.time()

77 print("Total time {}: {}".format(number_collectors , end -start))

78 print("GA_time {}: {}".format(number_collectors , GA_time))

79 return start_x_pl , final_x

80

81 # Plot the two solutions to compare

82 def plot_solutions(start_x , x, map_min , map_max):

83 x_pl = x.reshape(-1, 2)

84 plt.scatter(x_pl[:, 0], x_pl[:, 1], label="After min")

85 plt.scatter(start_x[:, 0], start_x[:, 1], label="After Genetic")

86 plt.legend ()

87

88 plt.xlim(0, 100)

89 plt.ylim(0, 100)

90 plt.title("Optimal configuration")

160

91

92 # Plot distribution of distances

93 plt.subplots ()

94 collectors = np.array(x).reshape(-1, 2)

95 distances = distance_matrix(get_coords (500, map_min , map_max), collectors)

96 d = np.min(distances , axis =1)

97

98 number_collectors , bins , patches = plt.hist(x=d, bins=’auto’, color=’#0504 aa’,

99 alpha =0.7, rwidth =0.85)

100 plt.grid(axis=’y’, alpha =0.75)

101 plt.xlabel(’Value’)

102 plt.ylabel(’Frequency ’)

103 plt.title(’Histogram ’)

104 # plt.text(23, 45, r’$\mu=, b=3$ ’)

105 maxfreq = number_collectors.max()

106 # Set a clean upper y-axis limit.

107 plt.ylim(ymax=np.ceil(maxfreq / 10) * 10 if maxfreq % 10 else maxfreq + 10)

108 plt.show()

109

110 def run_experiments(folder_name):

111 lb = 0

112 ub = 100

113 map_min = 0

114 map_max = 100

115 for number_collectors in range(1, 15):

116 run_design_coarse_GA_then_fine_scipy(

117 lb, ub , map_min , map_max , number_collectors , obj_maxmin , save=True , folder_name=folder_name)

118

119 def run_one_experiment ():

120 lb = 0

121 ub = 100

122 map_min = 0

123 map_max = 100

124 number_collectors = 5

125 folder_name = "maxmin_test"

126 start , final = run_design_coarse_GA_then_fine_scipy(lb, ub, map_min , map_max , number_collectors ,

obj_maxmin , save=True , folder_name=folder_name)

127 plot_solutions(start , final , map_min , map_max)

128

129 if __name__ == "__main__":

130 folder_name = "maxmin_overnight"

131 run_experiments(folder_name)

A.1.4 DOE Generator

design of experiment generator.py

161

1 import os

2 import random

3

4 from pyDOE import lhs

5 import numpy as np

6 import pandas as pd

7

8 from experiment_runner.experiment_runner.path_manager import PathManager

9 RANDOM_SEED = "Random Seed"

10

11

12 class DesignOfExperimentGenerator ():

13 def __init__(self):

14 self._inputs = {}

15 self._repeated_experiments = False

16 self._number_of_repeats = None

17 self._random_seeds = None

18

19 def add_input_with_range(self , name , min_value , max_value , is_int=False):

20 self._inputs[name] = RangedInput(name , min_value , max_value , is_int)

21 return self

22

23 def add_constant_input(self , name , value , is_int=False):

24 self._inputs[name] = ConstantInput(name , value , is_int)

25 return self

26

27 def add_leveled_input(self , name , levels):

28 self._inputs[name] = LeveledInput(name , levels)

29 return self

30

31 def make_latin_hypercube_doe(self , number_of_experiments , save_to_csv , csv_name=None):

32 count = self._count_non_constant_inputs ()

33 lhs_DOE = lhs(count , samples=number_of_experiments)

34 return self._make_doe_helper(lhs_DOE , number_of_experiments , save_to_csv , csv_name)

35

36 def make_monte_carlo_doe(self , number_of_experiments , save_to_csv , csv_name=None):

37 count = self._count_non_constant_inputs ()

38 monte_carlo_DOE = np.random.rand(number_of_experiments , count)

39 return self._make_doe_helper(monte_carlo_DOE , number_of_experiments , save_to_csv , csv_name)

40

41 def _make_doe_helper(self , DOE , number_of_experiments , save_to_csv , csv_name=None):

42 labeled_data = self._create_data_frame(DOE , number_of_experiments)

43 final_DOE = pd.DataFrame(labeled_data)

44 if save_to_csv:

45 path = self._get_path(csv_name)

46 final_DOE.to_csv(path)

47 return final_DOE

48

162

49 def with_repeated_experiments(self , number_of_experiments_per_data_point , random_seeds=None):

50 # If this is activated , each experiment replicate set will get the same random seed

51 self._repeated_experiments = True

52 self._number_of_repeats = number_of_experiments_per_data_point

53 if random_seeds == None:

54 random_seeds = self._create_random_seeds_for_experiments(number_of_experiments_per_data_point

)

55 else:

56 if len(random_seeds) != number_of_experiments_per_data_point:

57 raise Exception("There is a discrepancy in the number of \

58 experiments and the length of the random seed list")

59 self._random_seeds = random_seeds

60 return self

61

62 def _create_random_seeds_for_experiments(self , number_of_experiments_per_data_point):

63 random_seeds = []

64 for _ in range(number_of_experiments_per_data_point):

65 random_seeds.append(random.randrange (100000000))

66 if len(random_seeds) > len(set(random_seeds)):

67 raise Exception("Random seeds are not unique")

68 return random_seeds

69

70 def _get_path(self , csv_name):

71 path = PathManager.input_doe_path ()

72 if not os.path.exists(path):

73 os.makedirs(path)

74 return PathManager.input_doe_csv_path(csv_name)

75

76 def _count_non_constant_inputs(self):

77 count = 0

78 for input_field in self._inputs:

79 if (not isinstance(self._inputs[input_field], ConstantInput)):

80 count += 1

81 return count

82

83 def _create_data_frame(self , DOE , number_of_experiments):

84 index = 0

85 data_frame_dict = {}

86 # Since the DOE input is normalized with values from zero to one ,

87 # we need to modify the values to be in the correct range with the

88 # correct data type , add constant inputs and , if specified , add repeat

89 # experiments

90 for input_name in self._inputs:

91 if (not isinstance(self._inputs[input_name], ConstantInput)):

92 self._add_ranged_input_to_DOE(input_name , index , data_frame_dict , DOE)

93 index += 1

94 else:

95 self._add_constant_input_to_DOE(input_name , data_frame_dict , number_of_experiments)

163

96 if self._repeated_experiments:

97 data_frame_dict = self._add_repeated_experiments(data_frame_dict , number_of_experiments)

98 return data_frame_dict

99

100 def _add_repeated_experiments(self , data_frame_dict , number_of_experiments):

101 for input_name in self._inputs:

102 data = data_frame_dict[input_name]

103 to_add = np.array ([])

104 for index in range(self._number_of_repeats):

105 to_add = np.append(to_add , data)

106 input_field = self._inputs[input_name]

107 if input_field.is_int:

108 to_add = np.floor(to_add).astype(int)

109 data_frame_dict[input_name] = to_add

110 random_seed_data = np.array ([])

111 for index in range(self._number_of_repeats):

112 random_seed_data = np.append(random_seed_data , np.full(number_of_experiments , self.

_random_seeds[index]))

113 data_frame_dict[RANDOM_SEED] = random_seed_data

114 return data_frame_dict

115

116 def _add_ranged_input_to_DOE(self , input_name , index , data_frame_dict , DOE):

117 input_field = self._inputs[input_name]

118 data = self._set_limits(

119 DOE[:, index],

120 input_field.min_value ,

121 input_field.max_value

122)

123 if input_field.is_int:

124 data = np.floor(data).astype(int)

125 data_frame_dict[input_name] = data

126

127 def _set_limits(self , column , lower_bound , upper_bound):

128 column = column *(upper_bound -lower_bound)+lower_bound

129 return column

130

131 def _add_constant_input_to_DOE(self , input_name , data_frame_dict , number_of_experiments):

132 constant_value = self._inputs[input_name].value

133 data_frame_dict[input_name] = np.full(

134 (number_of_experiments), constant_value)

135

136 class RangedInput ():

137 def __init__(self , name , min_value , max_value , is_int):

138 self.name = name

139 self.min_value = min_value

140 if is_int:

141 # Make the max value += 1 for ints

142 # So that all the values get represented equally

164

143 # by flooring the number in DOE creation

144 max_value +=1

145 self.max_value = max_value

146 self.is_int = is_int

147

148

149 class ConstantInput ():

150 def __init__(self , name , value , is_int):

151 self.name = name

152 self.value = value

153 self.is_int = is_int

154

155

156 class LeveledInput ():

157 def __init__(self , name , levels):

158 self.name = name

159 self.levels = levels

generate doe with repeated experiments.py

1 from doe_generator.doe_generator.design_of_experiment_generator import DesignOfExperimentGenerator

2 from experiment_runner.experiment_runner.parkcleanup_experiment_runner import ParkCleanupExperimentRunner

3

4 RANGED_PARAMETER_1 = "The first ranged parameter"

5 RANGED_PARAMETER_2 = "The second ranged parameter"

6 RANGED_PARAMETER_3 = "The third range parameter"

7 RANGED_PARAMETER_INT_1 = "The first ranged parameter that only contains ints"

8 RANGED_PARAMETER_INT_2 = "The second ranged parameter that only contains ints"

9 CONSTANT_PARAMETER_1 = "The first constant parameter"

10 CONSTANT_PARAMETER_2 = "The second constant parameter"

11

12

13 def main():

14 DOE_generator = (

15 DesignOfExperimentGenerator ()

16 .add_input_with_range(RANGED_PARAMETER_1 , min_value=0, max_value =10)

17 .add_input_with_range(RANGED_PARAMETER_2 , min_value =-40, max_value =10000)

18 .add_input_with_range(RANGED_PARAMETER_3 , min_value =-42.3, max_value =76.93)

19 .add_input_with_range(RANGED_PARAMETER_INT_1 , min_value =-20, max_value =10, is_int=True)

20 .add_input_with_range(RANGED_PARAMETER_INT_2 , min_value=0, max_value =10, is_int=True)

21 .add_constant_input(CONSTANT_PARAMETER_1 , value =3)

22 .add_constant_input(CONSTANT_PARAMETER_2 , value =20345.56)

23 .with_repeated_experiments (3, random_seeds =[2342305982 , 23059802395 , 340958405])

24)

25 DOE_generator.make_latin_hypercube_doe (100, save_to_csv=True , csv_name="latin_hypercube_test")

26 DOE_generator.make_monte_carlo_doe (5342, save_to_csv=True , csv_name="monte_carlo_test")

27

28

29

165

30 if __name__ == "__main__":

31 main()

A.1.5 Experiment Runner

abstract experiment runner.py

1 import os

2 import time

3 import pickle

4 import random

5 from multiprocessing import Pool

6 from abc import ABC , abstractmethod

7

8 import pandas as pd

9 import numpy as np

10 import psutil

11

12 from experiment_runner.experiment_runner.path_manager import PathManager

13 from experiment_runner.experiment_runner.string_constants import INDEX

14

15

16 class AbstractExperimentRunner(ABC):

17 def __init__(self , doe_name):

18 self._checkpoint_printing = False

19 self._how_often_to_checkpoint = None

20 self._DOE = None

21 self._pickled = None

22 self._doe_name = doe_name

23 self._checkpoint_csv_saving = False

24 self._start = 0

25 self._end = None

26 self._make_error_file_printing_path ()

27 self._output_minimum_distance_data = False

28

29 def _make_error_file_printing_path(self):

30 self._error_path = PathManager.error_path(self._doe_name)

31 if not os.path.exists(self._error_path):

32 os.makedirs(self._error_path)

33

34 def with_checkpoint_printing(self , how_often_to_checkpoint):

35 self._checkpoint_printing = True

36 self._how_often_to_checkpoint_print = how_often_to_checkpoint

37 return self

38

39 def with_csv_output_checkpointing(self , how_often_to_checkpoint):

40 self._checkpoint_csv_saving = True

166

41 self._how_often_to_checkpoint_to_csv = how_often_to_checkpoint

42 return self

43

44 def with_start_experiment(self , start):

45 self._start = start

46 return self

47

48 def with_end_experiment(self , end):

49 self._end = end

50 return self

51

52 @abstractmethod

53 def run_one_from_dict(self , values):

54 ’’’

55 Implement this method in a new class to run a single instance of your experiment

56 Values is a dictionary of input values.

57 Return a dictionary with keys of strings that will be the column names and alphanumeric values

that will be the row values

58 for a csv table

59 ’’’

60 pass

61

62 def run_all_from_object(self , DOE):

63 values = []

64 if self._end is None:

65 self._end = len(DOE)

66 for index in range(self._start , self._end):

67 value = self.run_one_from_object(index , DOE=DOE)

68 if self._checkpoint_printing and (index%self._how_often_to_checkpoint_print == 0):

69 print("Run " + str(index) + " completed")

70 values.append(value)

71 if self._checkpoint_csv_saving and (index%self._how_often_to_checkpoint_to_csv == self.

_how_often_to_checkpoint_to_csv -1):

72 self._save_to_output_csv(values)

73 self._save_to_output_csv(values)

74

75 def run_all_from_object_with_multiprocessing(self , DOE , num_workers=None):

76 if num_workers is None:

77 cpu_count = psutil.cpu_count ()

78 # Default to use one less core than is available

79 # so that the extra core can do system processes

80 num_workers = cpu_count -1

81 inputs = []

82 if self._end is None:

83 self._end = len(DOE)

84 for index in range(self._start , self._end):

85 inputs.append(self._get_experiment_dict_from_pandas(DOE , index))

86 if self._checkpoint_csv_saving:

167

87 self.multiprocessing_with_csv_checkpointing(inputs , num_workers)

88 else:

89 with Pool(num_workers) as p:

90 values = p.map(self.run_one_from_dict , inputs)

91 self._save_to_output_csv(values)

92

93 def multiprocessing_with_csv_checkpointing(self , inputs , num_workers):

94 how_often_checkpoint = self._how_often_to_checkpoint_to_csv

95 keep_going = True

96 i = 0

97 all_values = []

98 # Split the inputs into groups of number equal to how_often_checkpoint

99 # and process each group one at a time with multiprocessing

100 while(keep_going):

101 if i+how_often_checkpoint < len(inputs):

102 selected_inputs = inputs[i:i+how_often_checkpoint]

103 else:

104 selected_inputs = inputs[i:len(inputs)]

105 keep_going = False

106 with Pool(num_workers) as p:

107 values = p.map(self.run_one_from_dict , selected_inputs)

108 all_values.extend(values)

109 self._save_to_output_csv(all_values)

110 print("Run " + str(i+how_often_checkpoint) + " completed")

111 i += how_often_checkpoint

112

113 def _save_to_output_csv(self , values):

114 df = pd.DataFrame(values)

115 path = PathManager.output_path ()

116 if not os.path.exists(path):

117 os.makedirs(path)

118 df.to_csv(PathManager.output_path_from_csv_name(self._doe_name))

119

120 def run_all_from_csv(self , csv_name , multiprocessing=False , num_workers=None):

121 DOE = self.get_data_frame_from_csv_name(csv_name)

122 if multiprocessing:

123 self.run_all_from_object_with_multiprocessing(DOE , num_workers=num_workers)

124 else:

125 self.run_all_from_object(DOE)

126

127 def run_one_from_csv(self , csv_name , index):

128 DOE = self.get_data_frame_from_csv_name(csv_name)

129 self.run_one_from_object(index , DOE=DOE)

130

131 def get_data_frame_from_csv_name(self , csv_name):

132 path = PathManager.input_doe_csv_path(csv_name)

133 return pd.read_csv(path)

134

168

135 def run_one_from_object(self , index , DOE):

136 values = self._get_experiment_dict_from_pandas(DOE , index)

137 return self.run_one_from_dict(values)

138

139 def _get_experiment_dict_from_pandas(self , DOE , index):

140 dict_ = DOE.iloc[index]. to_dict ()

141 # The pandas method converts all values to floats , and so

142 # we need to check if they should be ints and convert them

143 for key in dict_:

144 if np.issubdtype(DOE[key], np.integer):

145 dict_[key] = int(dict_[key])

146 dict_[INDEX] = index

147 return dict_

parkcleanup experiment runner.py

1 import random

2 import sys

3 import os

4 from traceback import format_exc

5 import time

6 import pathlib

7

8 import numpy as np

9 from matplotlib import pyplot as plt

10

11 from parkcleanup.parkcleanup.simulation.park_cleanup_simulation import ParkCleanupSimulation

12 from parkcleanup.parkcleanup.dataloggers.sim_data_logger import SimDataLogger

13 from parkcleanup.parkcleanup.builders.drone_builder import DroneBuilder

14 from parkcleanup.parkcleanup.builders.sim_model_builder import SimModelBuilder

15 from parkcleanup.parkcleanup.model.agents.drone_state_type import DroneStateType

16 from parkcleanup.parkcleanup.tools.helper import mean , std_dev

17

18 from experiment_runner.experiment_runner.abstract_experiment_runner import AbstractExperimentRunner

19 from experiment_runner.experiment_runner.string_constants import *

20 from experiment_runner.experiment_runner.data_output_string_constants import *

21

22 from experiment_runner.experiment_runner.path_manager import PathManager

23 from preferences import PATH_STRING

24 import pprint

25

26 class ParkCleanupExperimentRunner(AbstractExperimentRunner):

27 def __init__(self , doe_name):

28 super().__init__(doe_name)

29 self._folders_initialized = False

30

31 def run_one_from_dict(self , values , return_sim=False , data_logger=None , base_path=None):

32 if data_logger is None:

33 data_logger = SimDataLogger (10, 75, True)

169

34 if base_path is None:

35 PathManager.BASE_PATH = pathlib.Path(PATH_STRING)

36 else:

37 PathManager.BASE_PATH = base_path

38 # Set the random seed from the values , if not , create one and save it

39 start_time = time.time()

40 if RANDOM_SEED in values:

41 random_seed = values[RANDOM_SEED]

42 else:

43 random_seed = random.randrange(sys.maxsize)

44 values[RANDOM_SEED] = random_seed

45 random.seed(random_seed)

46 try:

47 sim_model_builder = (

48 SimModelBuilder ()

49 .set_park_bounds(values[PARK_SIZE])

50 .set_random_trash_generation_on(values[TRASH_GENERATION_RATE])

51)

52 if values[INIT_COLLECTORS_RANDOM]:

53 sim_model_builder.init_collectors_random(values[NUMBER_OF_COLLECTORS])

54 else:

55 sim_model_builder.init_collectors_from_file(values[NUMBER_OF_COLLECTORS], values[

PARK_SIZE])

56

57 if values[INIT_CHARGERS_RANDOM]:

58 sim_model_builder.init_rechargers_random(values[NUMBER_OF_CHARGERS])

59 else:

60 sim_model_builder.init_rechargers_from_file(values[NUMBER_OF_CHARGERS], values[PARK_SIZE

])

61

62 charging_coords = sim_model_builder._all_recharger_coords

63 drone_builder = (

64 DroneBuilder(values[PARK_SIZE])

65 .set_speed(values[DRONE_SPEED])

66 .set_fly_time(values[FLY_TIME])

67 .set_recharge_time(values[RECHARGE_TIME])

68 .set_trash_detection_radius(values[TRASH_DETECTION_RADIUS])

69 .set_object_found_distance(values[FOUND_DISTANCE])

70 .set_constant_trash_dropoff_delay(values[TRASH_DROPOFF_DELAY])

71 .set_constant_trash_pickup_delay(values[TRASH_PICKUP_DELAY])

72 .set_charging_params(

73 set_out_for_seen_trash_while_charging=values[SET_OUT_FOR_TRASH_WHILE_CHARGING_LEVEL],

74 emergency_recharge_level=values[EMERGENCY_RECHARGE_LEVEL],

75 return_to_charge_from_patrolling=values[RETURN_TO_CHARGE_FROM_SEARCHING]

76)

77 .set_number_of_drones_to_init(values[NUMBER_OF_DRONES])

78 .set_starting_position_on_coordinates(charging_coords)

79 .set_start_delay ()

170

80)

81 if values[SEARCH_PATTERN] == 0:

82 drone_builder.set_search_method_random_bounce ()

83 elif values[SEARCH_PATTERN] == 1:

84 drone_builder.set_search_method_global_lawnmower ()

85 elif values[SEARCH_PATTERN] == 2:

86 drone_builder.set_search_method_partitioned_random_bounce ()

87 else:

88 drone_builder.set_search_method_partitioned_lawnmower ()

89 drones = drone_builder.commit ()

90

91 sim_model_builder.init_drones(drones)

92 sim_model = sim_model_builder.commit ()

93 sim = ParkCleanupSimulation(sim_model)

94 sim.run_sim(values[LENGTH_OF_SIMULATION], seed_for_run=random_seed , data_logger=data_logger)

95 except:

96 # Output any errors to an external file so that it doesn’t break if you are running a set of

experiments

97 self._write_error_to_file(values[INDEX])

98 # Return dictionary with minimal information for experiment identification

99 values[FAILED_EXPERIMENT] = 1

100 return values

101 end_time = time.time()

102 values[SIM_RUN_TIME] = end_time - start_time

103 values[FAILED_EXPERIMENT] = 0

104 if return_sim:

105 return sim

106 else:

107 try:

108 index = values[INDEX]

109 bounds = values[PARK_SIZE]

110 tdr = values[TRASH_DETECTION_RADIUS]

111 return self._record_output_data(sim , values , index , bounds , tdr)

112 except:

113 # Output any errors to an external file so that it doesn’t break if you are running a set

of experiments

114 self._write_error_to_file(values[INDEX])

115 # Return dictionary with minimal information for experiment identification

116 values[FAILED_EXPERIMENT] = 1

117 return values

118

119 def run_one_from_csv_with_plotting(self , csv_name , index , plotter , return_sim=False ,

values_to_replace=None , data_logger=None):

120 DOE = self.get_data_frame_from_csv_name(csv_name)

121 values = self._get_experiment_dict_from_pandas(DOE , index)

122 if values_to_replace is not None:

123 for key , pair in values_to_replace.items():

124 values[key] = pair

171

125 if return_sim:

126 return self.run_one_from_dict(values , return_sim=True , data_logger=data_logger)

127 else:

128 plotter.show_inputs(values)

129 start = time.time()

130 sim = self.run_one_from_dict(values , return_sim=True , data_logger=data_logger)

131 end = time.time()

132 print(end -start)

133 plotter.interactive_plot_data(sim)

134

135 def test_experiment_outputs(self , csv_name , index , values_to_replace=None , data_logger=None):

136 DOE = self.get_data_frame_from_csv_name(csv_name)

137 values = self._get_experiment_dict_from_pandas(DOE , index)

138 if values_to_replace is not None:

139 for key , pair in values_to_replace.items():

140 values[key] = pair

141 return self.run_one_from_dict(values , return_sim=False , data_logger=data_logger)

142

143 def _write_error_to_file(self , index):

144 path = os.path.join(self._error_path , "run" + str(index))

145 with open(path , ’w+’) as f:

146 f.write(format_exc ())

147

148 def _save_line_plot(self , x, y, title , index):

149 fig = plt.figure ()

150 plt.plot(x, y)

151 plt.xlim(0, max(x))

152 plt.ylim(0, max(y))

153 # plt.title(title)

154 plt.savefig(PathManager.plot_save_output_path(self._doe_name , title , index))

155 plt.close(fig=fig)

156

157 def _save_charger_collector_plot(self , charger , collector , bounds , title , index):

158 fig = plt.figure ()

159 plt.scatter(charger [:,0], charger [:,1], marker="P", color="m", label="Chargers")

160 plt.scatter(collector [:,0], collector [:,1], marker=r’\sqcup ’, color="saddlebrown", label="

Collectors")

161 plt.xlim(0, bounds)

162 plt.ylim(0, bounds)

163 plt.legend ()

164 plt.savefig(PathManager.plot_save_output_path(self._doe_name , title , index))

165 plt.close(fig=fig)

166

167 def _save_charger_plot(self , charger , bounds , title , index):

168 fig = plt.figure ()

169 plt.scatter(charger [:,0], charger [:,1], marker="P", color="m", label="Chargers")

170 plt.xlim(0, bounds)

171 plt.ylim(0, bounds)

172

172 # plt.title(title)

173 plt.savefig(PathManager.plot_save_output_path(self._doe_name , title , index))

174 plt.close(fig=fig)

175

176 def _save_collector_plot(self , collector , bounds , title , index):

177 fig = plt.figure ()

178 plt.scatter(collector [:,0], collector [:,1], marker=r’\sqcup ’, color="saddlebrown", label="

Collectors")

179 plt.xlim(0, bounds)

180 plt.ylim(0, bounds)

181 # plt.title(title)

182 plt.savefig(PathManager.plot_save_output_path(self._doe_name , title , index))

183 plt.close(fig=fig)

184

185 def _save_data(self , y, title , index):

186 np.savetxt(PathManager.data_save_output_path(self._doe_name , title , index), y)

187

188 def _save_heatmap(self , heat_map , bounds , title , index):

189 fig , ax = plt.subplots ()

190 extent = (0,bounds ,0,bounds)

191 hm = ax.imshow(heat_map.T, vmin=0, vmax=np.max(heat_map), interpolation=’nearest ’, origin=’lower’

, extent=extent)

192 # ax.set_title(title)

193 plt.colorbar(hm)

194 plt.savefig(PathManager.plot_save_output_path(self._doe_name , title , index))

195 plt.close(fig=fig)

196

197 def _save_polys_and_lawnmower_plot(self , sim_model , bounds , index , title):

198 there_are_polys = sim_model.all_drones [0]. poly_of_area is not None

199 there_are_patrols = sim_model.all_drones [0]. patrol_coordinates is not None

200 if there_are_polys or there_are_patrols:

201 group_id = 0

202 polys_to_plot = []

203 patrols_to_plot = []

204 for drone in sim_model.all_drones:

205 if drone.group_index != group_id:

206 # Save stuff

207 fig = plt.figure ()

208 if there_are_patrols:

209 self._save_coords(patrols_to_plot)

210 if there_are_polys:

211 self._save_partitions(polys_to_plot)

212 self._save_fig(fig , title , group_id , bounds , index)

213 polys_to_plot = []

214 patrols_to_plot = []

215 group_id += 1

216 if there_are_polys:

217 polys_to_plot.append(drone.poly_of_area)

173

218 if there_are_patrols:

219 patrols_to_plot.append(drone.patrol_coordinates)

220 fig = plt.figure ()

221 if there_are_patrols:

222 self._save_coords(patrols_to_plot)

223 if there_are_polys:

224 self._save_partitions(polys_to_plot)

225 self._save_fig(fig , title , group_id , bounds , index)

226

227 def _save_fig(self , fig , title , group_id , bounds , index):

228 plt.title(title + " for Group {}".format(group_id))

229 plt.xlim(0,bounds)

230 plt.ylim(0,bounds)

231 plt.savefig(PathManager.plot_save_output_path_with_groups(self._doe_name , title , index , group_id)

)

232 plt.close(fig=fig)

233

234 def _save_polys_and_coords(self , polys , coords):

235 self._save_partitions(polys)

236 self._save_coords(coords)

237

238 def _save_partitions(self , polys):

239 for poly in polys:

240 plt.plot(*poly.exterior.xy, c=’k’)

241

242 def _save_coords(self , coords_set):

243 for coord in coords_set:

244 coord = np.asarray(coord)

245 plt.plot(coord[:,0], coord[:,1], c=’b’)

246

247 def _record_output_data(self , simulation , csv_row_values , index , bounds , tdr):

248 start_time = time.time()

249 sim_model = simulation.sim_model

250 data_logger = simulation.data_logger

251

252 # This check saves time in a multirun experiment , so once the folders are initialized the

253 # next runs will not check if the folders are there

254 if not self._folders_initialized:

255 PathManager.make_plot_save_output_path_folder(self._doe_name ,

STD_DEV_TIME_SINCE_SEARCHED_LINE_CHART)

256 PathManager.make_plot_save_output_path_folder(self._doe_name ,

MAX_TIME_SINCE_SEARCHED_LINE_CHART)

257 PathManager.make_plot_save_output_path_folder(self._doe_name ,

AVG_TIME_SINCE_SEARCHED_LINE_CHART)

258 PathManager.make_plot_save_output_path_folder(self._doe_name , TRASH_PER_TIME_STEP_LINE_CHART)

259 PathManager.make_plot_save_output_path_folder(self._doe_name , AVG_TRASH_LEFT_OUT_LINE_CHART)

260 PathManager.make_plot_save_output_path_folder(self._doe_name ,

LONGEST_CURRENT_TRASH_LINE_CHART)

174

261 PathManager.make_plot_save_output_path_folder(self._doe_name ,

AVG_TIME_TRASH_LEFT_OUT_LINE_CHART)

262 PathManager.make_plot_save_output_path_folder(self._doe_name , TOTAL_TRASH_TIME_LINE_CHART)

263 PathManager.make_plot_save_output_path_folder(self._doe_name , NUMBER_TIMES_VISITED_HM)

264 PathManager.make_plot_save_output_path_folder(self._doe_name , AVERAGE_TIME_LAST_SEARCHED_HM)

265 PathManager.make_plot_save_output_path_folder(self._doe_name , NUM_TOTAL_TRASH_HM)

266 PathManager.make_plot_save_output_path_folder(self._doe_name , AVG_TRASH_TIME_EACH_CELL_HM)

267 PathManager.make_plot_save_output_path_folder(self._doe_name , CHARGER_LOCATIONS)

268 PathManager.make_plot_save_output_path_folder(self._doe_name , COLLECTOR_LOCATIONS)

269 PathManager.make_values_folder(self._doe_name , TRASH_INFO)

270 PathManager.make_plot_folder(self._doe_name , CHARGER_AND_COLLECTOR_LOCATIONS)

271 PathManager.make_plot_folder(self._doe_name , PARTITIONS_PATTERNS)

272 self._folders_initialized = True

273

274 x, trash_per_time_step = data_logger.get_trash_per_time_step_data ()

275 x, avg_trash_left_out = data_logger.get_running_avg_num_trash_per_timestep_data ()

276 x, longest_curr_trash = data_logger.max_trash_left_out_each_time_step_data ()

277 x, avg_time_trash_left_out = data_logger.avg_time_trash_left_out_in_each_time_step_data ()

278 x, total_trash_time = data_logger.get_total_trash_time_per_time_step_data ()

279 num_trash_heat_map = data_logger.num_trash_collected_heat_map

280 avg_time_trash_heat_map = data_logger.times_left_out_heat_map

281 num_times_visited = data_logger.get_num_times_visited_hm ()

282 avg_heat_map = data_logger.get_average_heat_map ()

283

284 trash_info = data_logger.all_trash_info

285 all_max = data_logger.all_max_hm

286 all_mean = data_logger.all_mean_hm

287 all_std = data_logger.all_std_dev_hm

288 # TODO plot std dev heat map

289 self._save_line_plot(x, all_std , STD_DEV_TIME_SINCE_SEARCHED_LINE_CHART , index)

290 self._save_line_plot(x, all_max , MAX_TIME_SINCE_SEARCHED_LINE_CHART , index)

291 self._save_line_plot(x, all_mean , AVG_TIME_SINCE_SEARCHED_LINE_CHART , index)

292 self._save_line_plot(x, trash_per_time_step , TRASH_PER_TIME_STEP_LINE_CHART , index)

293 self._save_line_plot(x, avg_trash_left_out , AVG_TRASH_LEFT_OUT_LINE_CHART , index)

294 self._save_line_plot(x, avg_time_trash_left_out , AVG_TIME_TRASH_LEFT_OUT_LINE_CHART , index)

295 self._save_line_plot(x, longest_curr_trash , LONGEST_CURRENT_TRASH_LINE_CHART , index)

296 self._save_line_plot(x, total_trash_time , TOTAL_TRASH_TIME_LINE_CHART , index)

297

298

299 self._save_heatmap(num_times_visited , bounds , NUMBER_TIMES_VISITED_HM , index)

300 self._save_heatmap(avg_heat_map , bounds , AVERAGE_TIME_LAST_SEARCHED_HM , index)

301 self._save_heatmap(num_trash_heat_map , bounds , NUM_TOTAL_TRASH_HM , index)

302 self._save_heatmap(avg_time_trash_heat_map , bounds , AVG_TRASH_TIME_EACH_CELL_HM , index)

303

304 collector_coords = np.asarray ([collector.position for collector in sim_model.all_collectors])

305 charger_coords = np.asarray ([charger.position for charger in sim_model.all_rechargers])

306 self._save_charger_collector_plot(charger_coords , collector_coords , bounds ,

CHARGER_AND_COLLECTOR_LOCATIONS , index)

175

307 self._save_charger_plot(charger_coords , bounds , CHARGER_LOCATIONS , index)

308 self._save_collector_plot(collector_coords , bounds , COLLECTOR_LOCATIONS , index)

309

310 self._save_data(np.array(trash_info), TRASH_INFO , index)

311 self._save_data(charger_coords , CHARGER_LOCATIONS , index)

312 self._save_data(collector_coords , COLLECTOR_LOCATIONS , index)

313 self._save_data(all_std , STD_DEV_TIME_SINCE_SEARCHED_LINE_CHART , index)

314 self._save_data(all_max , MAX_TIME_SINCE_SEARCHED_LINE_CHART , index)

315 self._save_data(all_mean , AVG_TIME_SINCE_SEARCHED_LINE_CHART , index)

316 self._save_data(trash_per_time_step , TRASH_PER_TIME_STEP_LINE_CHART , index)

317 self._save_data(avg_trash_left_out , AVG_TRASH_LEFT_OUT_LINE_CHART , index)

318 self._save_data(avg_time_trash_left_out , AVG_TIME_TRASH_LEFT_OUT_LINE_CHART , index)

319 self._save_data(longest_curr_trash , LONGEST_CURRENT_TRASH_LINE_CHART , index)

320 self._save_data(total_trash_time , TOTAL_TRASH_TIME_LINE_CHART , index)

321

322 self._save_data(num_times_visited , NUMBER_TIMES_VISITED_HM , index)

323 self._save_data(avg_heat_map , AVERAGE_TIME_LAST_SEARCHED_HM , index)

324 self._save_data(num_trash_heat_map , NUM_TOTAL_TRASH_HM , index)

325 self._save_data(avg_time_trash_heat_map , AVG_TRASH_TIME_EACH_CELL_HM , index)

326

327 self._save_polys_and_lawnmower_plot(sim_model , bounds , index , PARTITIONS_PATTERNS)

328

329 csv_row_values[AVERAGE_VISIT_TIME] = all_mean [-1]

330 csv_row_values[STD_DEV_VISIT_TIME] = np.std(avg_heat_map)

331

332 csv_row_values[TOTAL_TRASH_COLLECTED] = data_logger.get_total_trash_picked_up ()

333 csv_row_values[TOTAL_TRASH_LEFT_OUT] = data_logger.get_total_number_of_unique_trash_in_sim ()

334 csv_row_values[AVERAGE_TIME_TRASH_LEFT_OUT] = data_logger.get_avg_time_trash_left_out ()

335 csv_row_values[AVERAGE_TIME_COLLECTED] = data_logger.get_avg_time_trash_collected ()

336 # Welches algorithm for std deviation needs to be implemented for this to work

337 #csv_row_values[STD_DEV_TIME_TRASH_LEFT_OUT] = data_logger.get_std_dev_time_trash_left_out ()

338 csv_row_values[MAX_TIME_LEFT_OUT] = data_logger.get_max_time_any_trash_left_out ()

339 csv_row_values[AVG_NUM_TRASH_PER_TIMESTEP] = data_logger.get_avg_num_trash_in_sim ()

340 csv_row_values[MAX_NUM_TRASH_PER_TIMESTEP] = data_logger.get_max_num_trash_in_sim_any_time ()

341

342 csv_row_values[AVERAGE_TIME_SPENT_SEARCHING_PER_DRONE] = data_logger.

get_avg_time_spent_searching_per_drone ()

343 csv_row_values[AVERAGE_TIME_SPENT_COLLECTING_PER_DRONE] = data_logger.

get_avg_time_spent_collecting_per_drone ()

344 csv_row_values[NUM_DRONES_TO_RUN_OUT_OF_BATTERIES] = data_logger.

get_num_drones_ran_out_of_batteries ()

345 end_time = time.time()

346 csv_row_values[POSTPROCESS_TIME] = end_time - start_time

347 csv_row_values[TOTAL_RUN_TIME] = csv_row_values[POSTPROCESS_TIME] + csv_row_values[SIM_RUN_TIME]

348 return csv_row_values

data output string constants.py

1 # String constants for data output folders

176

2 STD_DEV_TIME_SINCE_SEARCHED_LINE_CHART = "Snapshot of std dev of TLS HM cell values at each time step"

3 MAX_TIME_SINCE_SEARCHED_LINE_CHART = "Max TLS HM cell value at each time step"

4 AVG_TIME_SINCE_SEARCHED_LINE_CHART = "Snapshot of avg TLS HM cell values at each time step"

5 TRASH_PER_TIME_STEP_LINE_CHART = "Number trash at each time step"

6 AVG_TRASH_LEFT_OUT_LINE_CHART = "Running avg of number of trash left at each time step"

7 LONGEST_CURRENT_TRASH_LINE_CHART = "Left out value of the trash thats been out the longest at each time

step"

8 AVG_TIME_TRASH_LEFT_OUT_LINE_CHART = "Running avg of time trash left out line chart (s)"

9 TOTAL_TRASH_TIME_LINE_CHART = "Total time left out of trash at each time step"

10

11 NUMBER_TIMES_VISITED_HM = "Overall number of times searched in each cell HM"

12 AVERAGE_TIME_LAST_SEARCHED_HM = "Overall avg TLS HM"

13 NUM_TOTAL_TRASH_HM = "Overall num trash in each cell HM"

14 AVG_TRASH_TIME_EACH_CELL_HM = "Overall avg time trash left out in each cell HM"

15 TRASH_INFO = "index , time appeared , time left out , position of each trash"

string constants.py

1 # Inputs

2 NUMBER_OF_COLLECTORS = "Number of Collectors"

3 NUMBER_OF_CHARGERS = "Number of Chargers"

4 NUMBER_OF_DRONES = "Number of Drones"

5 DRONE_SPEED = "Drone Speed"

6 FOUND_DISTANCE = "Found Distance"

7 TRASH_DETECTION_RADIUS = "Trash Detection Radius"

8 EMERGENCY_RECHARGE_LEVEL = "Emergency Recharge Level"

9 SET_OUT_FOR_TRASH_WHILE_CHARGING_LEVEL = "Set out for Trash while Charging Level"

10 RETURN_TO_CHARGE_FROM_SEARCHING = "Return to Charge from Searching Level"

11 FLY_TIME = "Fly Time"

12 RECHARGE_TIME = "Recharge Time"

13 TRASH_PICKUP_DELAY = "Trash Pickup Delay"

14 TRASH_DROPOFF_DELAY = "Trash Dropoff Delay"

15 PARK_SIZE = "Park Size"

16 TRASH_GENERATION_RATE = "Trash Generation Rate"

17 LENGTH_OF_SIMULATION = "Length of Simulation"

18 RANDOM_SEED = "Random Seed"

19 INDEX = "Index"

20 SEARCH_PATTERN = "Search Pattern"

21 INIT_CHARGERS_RANDOM = "Init chargers random"

22 INIT_COLLECTORS_RANDOM = "Init collectors random"

23 RANDOM_BOUNCE = "Random Bounce"

24 GLOBAL_LAWNMOWER = "Global Lawnmower"

25 PARTITIONED_BOUNCE = "Partitioned bounce"

26 PARTITIONED_LAWNMOWER = "Partitioned lawnmower"

27 SEARCH_PATTERNS = (RANDOM_BOUNCE , GLOBAL_LAWNMOWER , PARTITIONED_BOUNCE , PARTITIONED_LAWNMOWER)

28

29 # Global Outputs

30 SIM_RUN_TIME = "Sim Run Time"

31 POSTPROCESS_TIME = "Postprocessing Time"

177

32 TOTAL_RUN_TIME = "Total Run Time"

33 TOTAL_TRASH_COLLECTED = "Total trash collected"

34 TOTAL_TRASH_LEFT_OUT = "Total trash left out"

35 AVERAGE_TIME_TRASH_LEFT_OUT = "Average time trash left out"

36 STD_DEV_TIME_TRASH_LEFT_OUT = "Standard deviation time trash left out"

37 AVERAGE_TIME_SPENT_SEARCHING_PER_DRONE = "Average time spent searching per drone"

38 STD_DEV_TIME_SPENT_SEARCHING_PER_DRONE = "Std deviation of time spent searching per drone"

39 AVERAGE_TIME_SPENT_CHARGING_PER_DRONE = "Average time spent charging per drone"

40 STD_DEV_TIME_SPENT_CHARGING_PER_DRONE = "Std deviation of time spent charging per drone"

41 AVERAGE_TIME_SPENT_COLLECTING_PER_DRONE = "Avg UAV collect time (s)"

42 STD_DEV_TIME_SPENT_COLLECTING_PER_DRONE = "Std deviation of time spent collecting per drone"

43

44 TOTAL_ENERGY_USED = "Total energy used"

45 AVG_ENERGY_USED_PER_DRONE = "Average energy used per drone"

46 STD_DEV_ENERGY_USED_PER_DRONE = "Std deviation of energy used per drone"

47 NUM_DRONES_TO_RUN_OUT_OF_BATTERIES = "Number of drones to run out of batteries"

48 RUN_OUT_BATTERY_TIMES = "Times Ran Out of Batteries"

49 AVG_TIME_SPENT_GOING_TO_TRASH = "Average time spent going to trash"

50 STD_DEV_TIME_SPENT_GOING_TO_TRASH = "Std deviation time spent going to trash"

51 MAX_TIME_LEFT_OUT = "Max time any trash was left out"

52 AVG_NUM_TRASH_PER_TIMESTEP = "Avg num trash per timestep"

53 MAX_NUM_TRASH_PER_TIMESTEP = "Max num trash per timestep"

54 AVG_TIME_NOT_CHARGING_OR_SEARCHING = "Avg time not charging or searching"

55 AVERAGE_VISIT_TIME = "Avg visit time to each cell"

56 STD_DEV_VISIT_TIME = "Std dev visit time to each cell"

57 AVG_TRASH_TIME_EACH_CELL = "Average time trash in each cell"

58 AVERAGE_TIME_COLLECTED = "Avg time to get to trash after appeared"

59

60 STD_DEV_CHARGER_USAGE = "Std deviation charger usage"

61 STD_DEV_COLLECTOR_USAGE = "Std deviation collector usage"

62 CENTROID_COLLECTOR_X = "X Centroid Collectors"

63 CENTROID_COLLECTOR_Y = "Y Centroid Collectors"

64 STD_DEV_COLLECTOR_X = "X Std Dev Collectors"

65 STD_DEV_COLLECTOR_Y = "Y Std Dev Collectors"

66

67 CENTROID_CHARGER_X = "X Centroid Chargers"

68 CENTROID_CHARGER_Y = "Y Centroid Chargers"

69 STD_DEV_CHARGERS_X = "X Std Dev Chargers"

70 STD_DEV_CHARGERS_Y = "Y Std Dev Chargers"

71

72 FAILED_EXPERIMENT = "Failed Experiment"

73

74 # Plot titles

75 TRASH_PER_TIME_STEP_TITLE = "Trash in simulation at each time step"

76 MAX_TIME_SINCE_VISITED = "Max time last visited"

77 AVG_TIME_SINCE_VISITED = "Avg time last visited"

78 TOTAL_TRASH = "Total trash"

79 LONGEST_CURRENT_TRASH = "Longest curr trash"

178

80 AVG_TIME_TRASH_LEFT_OUT = "Avg time trash left out"

81 AVG_TRASH_LEFT_OUT = "Avg trash left out"

82 NUMBER_TIMES_VISITED = "# times visited"

83 AVERAGE_VISITED = "Avg visit time"

84 NUM_TOTAL_TRASH = "# Trash"

85 STD_DEV_TIME_SINCE_VISITED = "Std dev last visit"

86 ACTIVE_RATIO = "Active/Searching Drones"

87

88 # Data output names

89 CHARGER_AND_COLLECTOR_LOCATIONS = "Charger and collector Locations"

90 CHARGER_LOCATIONS = "Charger Locations"

91 COLLECTOR_LOCATIONS = "Collector Locations"

92 PARTITIONS_PATTERNS = "Partitions and or Patrol Patterns"

path manager.py

1 import pathlib

2

3 DATA_FOLDER = ’data’

4 INPUT_FOLDER = ’input’

5 OUTPUT_FOLDER = ’output ’

6 RUN = ’run’

7 ERRORS_FOLDER = ’errors ’

8

9 class PathManager:

10 BASE_PATH = pathlib.Path.cwd()

11

12 @staticmethod

13 def input_doe_path ():

14 return PathManager.BASE_PATH / DATA_FOLDER / ’inputs ’

15

16 @staticmethod

17 def input_doe_csv_path(csv_name):

18 return PathManager.BASE_PATH / DATA_FOLDER / ’inputs ’ / (csv_name+’.csv’)

19

20 @staticmethod

21 def error_path(name):

22 return PathManager.BASE_PATH / DATA_FOLDER / ’errors ’ / name

23

24 @staticmethod

25 def output_path ():

26 return PathManager.BASE_PATH / DATA_FOLDER / ’output ’

27

28 @staticmethod

29 def output_path_from_csv_name(name):

30 return PathManager.BASE_PATH / DATA_FOLDER / ’output ’ / (name + ".csv")

31

32 @staticmethod

33 def make_plot_folder(csv_name , name):

179

34 path = PathManager.get_plot_folder(csv_name , name)

35 pathlib.Path.mkdir(path , parents=True , exist_ok=True)

36

37 @staticmethod

38 def make_values_folder(csv_name , name):

39 path = PathManager.get_values_folder(csv_name , name)

40 pathlib.Path.mkdir(path , parents=True , exist_ok=True)

41

42 @staticmethod

43 def get_plot_folder(csv_name , name):

44 return PathManager.BASE_PATH / csv_name / ’plots ’ / name

45

46 @staticmethod

47 def get_values_folder(csv_name , name):

48 return PathManager.BASE_PATH / csv_name / ’values ’ / name

49

50 @staticmethod

51 def make_plot_save_output_path_folder(csv_name , name):

52 PathManager.make_plot_folder(csv_name , name)

53 PathManager.make_values_folder(csv_name , name)

54

55 @staticmethod

56 def plot_save_output_path(csv_name , name , index):

57 return PathManager.get_plot_folder(csv_name , name) / ’run{}’.format(index)

58

59 @staticmethod

60 def plot_save_output_path_with_groups(csv_name , name , index , group):

61 return PathManager.get_plot_folder(csv_name , name) / ’run{} _group {}’.format(index , group)

62

63 @staticmethod

64 def data_save_output_path(csv_name , name , index):

65 return PathManager.get_values_folder(csv_name , name) / ’run {}.txt’.format(index)

make and run doe with multiprocessing.py

1 from doe_generator.doe_generator.design_of_experiment_generator import DesignOfExperimentGenerator

2 from experiment_runner.experiment_runner.parkcleanup_experiment_runner import ParkCleanupExperimentRunner

3 from experiment_runner.experiment_runner.string_constants import *

4 import time

5

6

7 def main():

8 lhs_DOE = _make_DOE ()

9 start = time.time()

10 experiment_runner = (

11 ParkCleanupExperimentRunner(’latin_hypercube_test ’)

12)

13 experiment_runner.run_all_from_object_with_multiprocessing(lhs_DOE)

14 end = time.time()

180

15 print(end -start)

16

17 def _make_DOE ():

18 DOE_generator = (

19 DesignOfExperimentGenerator ()

20 .add_constant_input(DRONE_SPEED , 3)

21 .add_constant_input(FOUND_DISTANCE , 3)

22 .add_constant_input(EMERGENCY_RECHARGE_LEVEL , 0.1)

23 .add_constant_input(SET_OUT_FOR_TRASH_WHILE_CHARGING_LEVEL , 1.0)

24 .add_constant_input(RETURN_TO_CHARGE_FROM_SEARCHING , 0.1)

25 .add_constant_input(FLY_TIME , 1800, is_int=True)

26 .add_constant_input(RECHARGE_TIME , 3600, is_int=True)

27 .add_constant_input(TRASH_PICKUP_DELAY , 5, is_int=True)

28 .add_constant_input(TRASH_DROPOFF_DELAY , 5, is_int=True)

29 .add_constant_input(LENGTH_OF_SIMULATION , 42000, is_int=True)

30 .add_constant_input(INIT_COLLECTORS_RANDOM , 0, is_int=True)

31 .add_constant_input(INIT_CHARGERS_RANDOM , 0, is_int=True)

32 .add_constant_input(SEARCH_PATTERN , 3, is_int=True)

33 .add_input_with_range(NUMBER_OF_COLLECTORS , 1, 10, is_int=True)

34 .add_input_with_range(NUMBER_OF_CHARGERS , 1, 10, is_int=True)

35 .add_input_with_range(NUMBER_OF_DRONES , 3, 27, is_int=True)

36 .add_input_with_range(PARK_SIZE , 200, 800, is_int=True)

37 .add_input_with_range(TRASH_DETECTION_RADIUS , 10, 50)

38 .add_input_with_range(TRASH_GENERATION_RATE , 0.003 , 0.03)

39)

40 lhs_DOE = DOE_generator.make_latin_hypercube_doe (6, save_to_csv=True , csv_name=’latin_hypercube_test ’

)

41 return lhs_DOE

42

43

44 if __name__ == "__main__":

45 main()

A.2 Chapter 2 Code

four strategy framework paper.py

1 from doe_generator.doe_generator.design_of_experiment_generator import DesignOfExperimentGenerator

2 from experiment_runner.experiment_runner.parkcleanup_experiment_runner import ParkCleanupExperimentRunner

3 from experiment_runner.experiment_runner.string_constants import *

4 from experiment_runner.experiment_runner.path_manager import PathManager

5

6 import time

7 import pathlib

8 from preferences import PATH_STRING

9

10 EXPERIMENT_NAME = ’four_strategy_march20 ’

181

11 def main():

12 PathManager.BASE_PATH = pathlib.Path(PATH_STRING)

13 #lhs_DOE = _make_DOE ()

14 start = time.time()

15 experiment_runner = (

16 ParkCleanupExperimentRunner(EXPERIMENT_NAME)

17 .with_csv_output_checkpointing (50)

18)

19 experiment_runner.run_all_from_csv(EXPERIMENT_NAME , multiprocessing=True , num_workers =3)

20 end = time.time()

21 print(end -start)

22

23 def _make_DOE ():

24 DOE_generator = (

25 DesignOfExperimentGenerator ()

26 .add_constant_input(DRONE_SPEED , 3)

27 .add_constant_input(FOUND_DISTANCE , 3)

28 .add_constant_input(EMERGENCY_RECHARGE_LEVEL , 0.1)

29 .add_constant_input(SET_OUT_FOR_TRASH_WHILE_CHARGING_LEVEL , 1.0)

30 .add_constant_input(RETURN_TO_CHARGE_FROM_SEARCHING , 0.1)

31 .add_constant_input(FLY_TIME , 1800, is_int=True)

32 .add_constant_input(RECHARGE_TIME , 3600, is_int=True)

33 .add_constant_input(TRASH_PICKUP_DELAY , 5, is_int=True)

34 .add_constant_input(TRASH_DROPOFF_DELAY , 5, is_int=True)

35 .add_constant_input(LENGTH_OF_SIMULATION , 42000, is_int=True)

36 .add_input_with_range(NUMBER_OF_COLLECTORS , 1, 10, is_int=True)

37 .add_input_with_range(NUMBER_OF_CHARGERS , 1, 10, is_int=True)

38 .add_input_with_range(NUMBER_OF_DRONES , 3, 27, is_int=True)

39 .add_input_with_range(INIT_COLLECTORS_RANDOM , 0, 1, is_int=True)

40 .add_input_with_range(INIT_CHARGERS_RANDOM , 0, 1, is_int=True)

41 .add_input_with_range(PARK_SIZE , 200, 800, is_int=True)

42 .add_input_with_range(TRASH_DETECTION_RADIUS , 10, 50)

43 .add_input_with_range(TRASH_GENERATION_RATE , 0.003 , 0.03)

44 .add_input_with_range(SEARCH_PATTERN , 0, 3, is_int=True)

45 .with_repeated_experiments (2, random_seeds =[53425235 , 7843074239])

46)

47 lhs_DOE = DOE_generator.make_latin_hypercube_doe (5000 , save_to_csv=True , csv_name=EXPERIMENT_NAME)

48 return lhs_DOE

49

50

51 if __name__ == "__main__":

52 main()

A.3 Chapter 3 Code

many replicates experiment.py

182

1 from doe_generator.doe_generator.design_of_experiment_generator import DesignOfExperimentGenerator

2 from experiment_runner.experiment_runner.parkcleanup_experiment_runner import ParkCleanupExperimentRunner

3 from experiment_runner.experiment_runner.string_constants import *

4 import time

5 from pathlib import Path

6 import pandas as pd

7 from copy import deepcopy

8 from experiment_runner.experiment_runner.path_manager import PathManager

9 from preferences import PATH_STRING

10

11 if __name__ == "__main__":

12 OUTPUT_FOLDER = "many_replicates_experiments"

13 folder_name = "long_experiments_28_april_2020"

14 PathManager.BASE_PATH = Path(PATH_STRING)

15

16 experiment_runner = ParkCleanupExperimentRunner(OUTPUT_FOLDER)

17 DOE = pd.read_csv(Path.cwd() / ’data’ / ’inputs ’ / (folder_name + ’.csv’))

18

19 inputs = []

20 experiments = [11, 17, 355]

21 for experiment in experiments:

22 dict_ = experiment_runner._get_experiment_dict_from_pandas(DOE , experiment)

23 for i in range (30):

24 dict_[INDEX] = str(experiment) + " " + str(i)

25 inputs.append(deepcopy(dict_))

26

27 experiment_runner.with_csv_output_checkpointing (30)

28 experiment_runner.multiprocessing_with_csv_checkpointing(inputs , 7)

run difference baseline sims.py

1 from paper_specific_code.analysis_paper.experiment_scripts.run_sim_parameterized import run_experiment

2

3 park_len_ref = 400

4 tph_ref = 40

5 tdr_ref = 20

6 num_drone_ref = 12

7 num_collectors_ref = 3

8 num_chargers_ref = 3

9

10 park_len_mod = 700

11 tph_mod = 70

12 tdr_mod = 50

13 num_drone_mod = 24

14 num_collectors_mod = 8

15 num_chargers_mod = 8

16

17 num_time_steps = int (3.5*24*60*60)

18 folder_name = "difference_baseline_experiments"

183

19

20 # Baseline experiment

21 run_experiment(num_drone_ref , num_collectors_ref , num_chargers_ref , tph_ref , tdr_ref , park_len_ref ,

num_time_steps , 0, folder_name)

22 # Change each experiment reference level

23 run_experiment(num_drone_mod , num_collectors_ref , num_chargers_ref , tph_ref , tdr_ref , park_len_ref ,

num_time_steps , 1, folder_name)

24 run_experiment(num_drone_ref , num_collectors_mod , num_chargers_ref , tph_ref , tdr_ref , park_len_ref ,

num_time_steps , 2, folder_name)

25 run_experiment(num_drone_ref , num_collectors_ref , num_chargers_ref , tph_mod , tdr_ref , park_len_ref ,

num_time_steps , 3, folder_name)

26 run_experiment(num_drone_ref , num_collectors_ref , num_chargers_ref , tph_ref , tdr_mod , park_len_ref ,

num_time_steps , 4, folder_name)

27 run_experiment(num_drone_ref , num_collectors_ref , num_chargers_ref , tph_ref , tdr_ref , park_len_mod ,

num_time_steps , 5, folder_name)

28 run_experiment(num_drone_ref , num_collectors_ref , num_chargers_mod , tph_ref , tdr_ref , park_len_ref ,

num_time_steps , 6, folder_name)

run num UAVS sweep.py

1 from paper_specific_code.analysis_paper.experiment_scripts.run_sim_parameterized import run_experiment

2

3 park_len_ref = 400

4 tph_ref = 40

5 tdr_ref = 20

6 num_drone_ref = 12

7 num_collectors_ref = 3

8 num_chargers_ref = 3

9

10 num_time_steps = int (3.5*24*60*60)

11 folder_name = "NumUAVsweep"

12 # Baseline experiment

13 run_experiment (6, num_collectors_ref , num_chargers_ref , tph_ref , tdr_ref , park_len_ref , num_time_steps ,

0, folder_name)

14 # run_experiment (9, num_collectors_ref , num_chargers_ref , tph_ref , tdr_ref , park_len_ref , num_time_steps ,

1, folder_name)

15 run_experiment (12, num_collectors_ref , num_chargers_ref , tph_ref , tdr_ref , park_len_ref , num_time_steps ,

2, folder_name)

16 # run_experiment (15, num_collectors_ref , num_chargers_ref , tph_ref , tdr_ref , park_len_ref , num_time_steps

, 3, folder_name)

17 run_experiment (18, num_collectors_ref , num_chargers_ref , tph_ref , tdr_ref , park_len_ref , num_time_steps ,

4, folder_name)

18 # run_experiment (21, num_collectors_ref , num_chargers_ref , tph_ref , tdr_ref , park_len_ref , num_time_steps

, 5, folder_name)

19 run_experiment (24, num_collectors_ref , num_chargers_ref , tph_ref , tdr_ref , park_len_ref , num_time_steps ,

6, folder_name)

20 # run_experiment (27, num_collectors_ref , num_chargers_ref , tph_ref , tdr_ref , park_len_ref , num_time_steps

, 7, folder_name)

184

21 run_experiment (30, num_collectors_ref , num_chargers_ref , tph_ref , tdr_ref , park_len_ref , num_time_steps ,

8, folder_name)

185

	A Framework for Simulating and Analyzing Multi-UAV Persistent Search and Retrieval with Stochastic Target Appearance
	BYU ScholarsArchive Citation

	TITLE PAGE
	ABSTRACT
	ACKNOWLEDGEMENTS
	Table of Contents
	LIST OF TABLES
	LIST OF FIGURES
	NOMENCLATURE
	Chapter 1 Introduction
	1.1 Problem Definition and Research Statement
	1.2 Research Outcomes
	1.3 Document Organization

	Chapter 2 A Framework for Multi-UAV Persistent Search and Retrieval with Stochastic Target Appearance in a Continuous Space
	2.1 Preface
	2.2 Introduction
	2.3 Related Works
	2.3.1 Target Search and Retrieval
	2.3.2 Persistent Surveillance
	2.3.3 Persistent Surveillance Analysis Methods

	2.4 Methodology
	2.4.1 Simulation Design Framework Overview
	2.4.2 Analysis Framework Overview

	2.5 Framework Implementation
	2.5.1 UAV Autonomy
	2.5.2 UAV Search Strategies
	2.5.3 Collector and Charger Placement Algorithm
	2.5.4 User Interface and Simulation Exploration
	2.5.5 System Analysis and Verification

	2.6 Discussion and Future Iterations
	2.7 Conclusion

	Chapter 3 Spatiotemporal Analysis of Multi-UAV Persistent Search and Retrieval with Stochastic Target Appearance
	3.1 Preface
	3.2 Introduction
	3.3 Related Works
	3.4 Simulation Overview
	3.5 Temporal Analysis
	3.6 Spatial Analysis
	3.7 Discussion, Limitations, and Future Work
	3.8 Conclusion

	Chapter 4 Conclusions
	4.1 Limitations and Future Work
	4.2 Final Remarks

	References
	Appendix A Code
	A.1 Simulation Code
	A.1.1 UAV Code
	A.1.2 Visualization
	A.1.3 Collector Placement Algorithm
	A.1.4 DOE Generator
	A.1.5 Experiment Runner

	A.2 Chapter 2 Code
	A.3 Chapter 3 Code

