Aquatic and semiaquatic vegetation of Utah Lake and its bays

Jack D. Brotherson
Department of Botany and Range Science, Brigham Young University, Provo, Utah 84602

Follow this and additional works at: https://scholarsarchive.byu.edu/gbnm

Recommended Citation
Available at: https://scholarsarchive.byu.edu/gbnm/vol5/iss1/5

This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist Memoirs by an authorized editor of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
AQUATIC AND SEMIAQUATIC VEGETATION
OF UTAH LAKE AND ITS BAYS

Jack D. Brotherson

ABSTRACT.—Seven aquatic and semiaquatic communities surrounding Utah Lake and its bays are described. Similarities and differences in the community types are discussed. Prevalent species in each type are given. The flora contained 483 species, 150 of which were prevalent enough to be included in the quantitative data analysis. Distichlis stricta was the most important and widespread species. Total cover varied in the communities from 10 to 77 percent. Asexual reproduction was shown to increase in importance as moisture in the soil increased. Introduced exotic species were shown to invade most successfully those habitats that show the greatest variability in moisture and/or those that have the greatest internal variation.

Initial comments on the vegetation surrounding Utah Lake were recorded as early as 23 September 1776. Fathers Atanasio Dominguez and Silvestre Velez de Escalante and their party camped on that date adjacent to the southeast shore of the Lake, and it was during their stay that they penned the first known records concerning plant communities in the area. They recorded wide meadows, abundant pasture, and marsh communities on the shores of Utah Lake and noted the prevalence of poplars, willows, flax, and hemp along the streams and east side of the lake (Chevez and Warner 1976). Other early visits were made to the area by trappers, mountain men, and explorers. However, their written records yield little information on the vegetation of Utah Lake that is not extractable from the Dominguez-Velez de Escalante journals. We learn from their writings of occasional bogs, communities containing reeds and abundant marsh grasses, infrequent patches of wild sage, and swamps filled with Lemma and Chara (Wakefield 1933).

More detailed studies of the plant communities found in and around Utah Lake have been made only in the past 50 years. Cottom (1926) made the first quantitative studies of the vegetation of the lake. He listed 11 formations and 20 associations that he described as making up the vegetation around Utah Lake and adjacent Utah Valley. Wakefield (1937) reported on vegetational changes over a six-year period on the lakeshore south of the present Provo boat harbor. Beck (1942) and Murphy (1951), in conjunction with studies of passerine birds found in the vicinity of the lake, studied and classified the plant communities frequented by the birds on Bird Island and the area from the mouth of Provo River to the south end of the Provo Municipal Airport. Barnett (1964) studied waterfowl habitat at Powell’s Slough on the east shores of the lake. He placed the vegetation found there into four major communities based upon habitat type and plant species present. Christensen (1965) studied two Tamarix ramosissima-Salix amygdaloides stands near the mouth of the Spanish Fork River and predicted that ramosissima (which he understood to be T. pentandra) as a type would eventually replace Salix amygdaloides as these trees die. Foster (1968) in a statewide study of the major plant communities of Utah recognized four community types around Utah Lake. His plant community types are broad in definition and based on observation rather than analytical data. Coombs (1970) examined the vascular aquatic and semiaquatic vegetation around the lake and delimited 29 plant communities in 7 major types. Local taxonomic and ecological studies (e.g., Weight 1928, Leichty 1952, Lawler 1960, Bessey 1960, Arnold 1960, White 1963, Skougard 1976) have been of great value by identifying many of the plant species growing in and around the lake.

Even though Utah Lake and its environs is in many localities well studied from the natural history and ecological points of view,

1Department of Botany and Range Science, Brigham Young University, Provo, Utah 84602.
little has been reported in the literature with regard to (1) man’s impact on the plant communities since settlement, (2) the influence and changes wrought by introduced exotic plants, (3) species composition for the major community types, (4) environmental factors influencing the distribution of major community types, (5) community diversity, and (6) information with regard to successional changes and life form patterns along environmental gradients.

Methods

Forty stands of data were selected from the literature (Coombs 1970, Barnett 1964, Christensen 1965) and combined with 10 stands studied by the author in the summer of 1974. Percent sum-frequency values for each species (Phillips 1959), total cover information (Brown 1968), and moisture index values (Coombs 1970) were then assigned to all 50 stands. Percent sum-frequency figures were used to give the species data from the different sources equivalent standing. Where information was questionable and/or lacking (especially with respect to moisture information), supplementary field observations were made in the summer of 1976. Of the stand data taken from the literature only those having relatively complete information were used in this analysis.

Species lists (150 total) were assembled for each stand. Importance values (Warner and Harper 1972) were then computed for each species in relationship to the total vegetative complex and the major communities found in the area. From this information, prevalent species tables were compiled (Tables 4–9). The number of prevalent species included on any one list was equal to the mean number of species reported for the stands of a given community. The prevalents are listed in decreasing order of importance and are the most frequent species in the community; uncommon or rare species are ignored.

Diversity indices (McArthur 1972) were computed from the percent sum-frequency data using the formula:

\[DI = 1/\sum p_i^2 \]

where \(DI \) is the diversity index and \(p_i \) is the relative proportion each species contributes to the overall composition of a community.

Ultimately, each stand and/or community was compared to all other stands and/or communities. This process resulted in the production of interstand or intercommunity similarity index values (Ruzicka 1958). A matrix of similarity index values was constructed. The similarity values were clustered by the pair-group clustering procedures described by Sneath and Sokal (1973).

Moisture index data were assigned to each stand using a modification of the methods employed by Coombs (1970). Moisture classes were set up as reported in Table 2.

Floristics and nomenclature follow Cronquist et al. (1977) for the monocotyledons and Holmgren and Reveal (1966) for the dicotyledons.

Results

General Vegetation Descriptions

The aquatic and semiaquatic communities surrounding Utah Lake form a band of vegetation along the lake shore varying in width from 20 m or less on the western shore to 400 m on the eastern shore. In addition, two large bays, Provo Bay and Goshen Bay, extend away from the lake in eastern and southern directions, respectively, and contain a majority of the land area occupied by the aquatic and semiaquatic communities.

During this investigation 483 plant species were found to be part of the Utah Lake vegetation. Of these, only 150 were of sufficient importance to include in the quantitative data analyses. Only 13 species were included in a prevalence list for the entire area and, as can be seen from Table 1, the list is highly

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Importance value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distichlis spicata</td>
<td>3364</td>
</tr>
<tr>
<td>Scirpus americanus</td>
<td>2587</td>
</tr>
<tr>
<td>Eleocharis palustris</td>
<td>2315</td>
</tr>
<tr>
<td>Juncus balticus</td>
<td>1832</td>
</tr>
<tr>
<td>Carex nebraskensis</td>
<td>1318</td>
</tr>
<tr>
<td>Tanarix ramosissima</td>
<td>1094</td>
</tr>
<tr>
<td>Scirpus acutus</td>
<td>1039</td>
</tr>
<tr>
<td>Hordeum jubatum</td>
<td>1033</td>
</tr>
<tr>
<td>Typha latifolia</td>
<td>1030</td>
</tr>
<tr>
<td>Lema minor</td>
<td>945</td>
</tr>
<tr>
<td>Sporobolus aloides</td>
<td>662</td>
</tr>
<tr>
<td>Salicornia rubra</td>
<td>606</td>
</tr>
<tr>
<td>Ambrosia artemisiifolia</td>
<td>586</td>
</tr>
</tbody>
</table>
dominated by grasses and sedges, with *Distichlis stricta* being the most important and widespread species.

Seven major vegetative types exist around the Lake (Tables 2 and 3), each occupying unique habitats and each showing varying degrees of internal structure with respect to subcommunity dominants. This subcommunity variation is related in some degree to the prominence of asexual reproduction (by rhizomes) in the dominant species. When dominant species reproduce vegetatively, large areas may be occupied almost exclusively by a single species or clone even though the abiotic environment is homogeneous.

Average values for selected environmental variables are given for the seven major vegetative types in Table 2. It will be seen that the number of stands considered for each community is not equal, varying from 5 to 16. The communities vary with respect to moisture from continuous inundation to seasonal inundation, and finally to those that never experience standing water or high water tables. Communities on the dry end of the

Table 2. Selected environmental characteristics of major plant communities surrounding Utah Lake.

<table>
<thead>
<tr>
<th>Community</th>
<th>ID no.</th>
<th>No. stands considered</th>
<th>Moisture index</th>
<th>Variation in moisture</th>
<th>Exposed surface water</th>
<th>Percent soil exposed</th>
<th>Percent litter cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pondweed communities</td>
<td>1</td>
<td>5</td>
<td>1.0</td>
<td>0.0</td>
<td>91.20</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Bulrush-cattail marshes</td>
<td>2</td>
<td>7</td>
<td>1.0</td>
<td>0.0</td>
<td>26.47</td>
<td>2.51</td>
<td>20.64</td>
</tr>
<tr>
<td>Spikerush-bulrush meadows</td>
<td>3</td>
<td>7</td>
<td>1.75</td>
<td>0.26</td>
<td>7.57</td>
<td>5.07</td>
<td>13.02</td>
</tr>
<tr>
<td>Grassrush-sedge meadows</td>
<td>4</td>
<td>16</td>
<td>2.13</td>
<td>0.34</td>
<td>1.16</td>
<td>15.52</td>
<td>6.67</td>
</tr>
<tr>
<td>Lowland woody communities</td>
<td>5</td>
<td>11</td>
<td>1.86</td>
<td>0.43</td>
<td>23.90</td>
<td>12.53</td>
<td>12.18</td>
</tr>
<tr>
<td>Saline terrestrial communities</td>
<td>6</td>
<td>5</td>
<td>3.20</td>
<td>0.34</td>
<td>0.00</td>
<td>72.20</td>
<td>1.90</td>
</tr>
<tr>
<td>Annual herbaceous communities</td>
<td>7</td>
<td>4</td>
<td>2.50</td>
<td>0.51</td>
<td>0.00</td>
<td>50.55</td>
<td>20.70</td>
</tr>
</tbody>
</table>

1Moisture index is as follows: (1) substratum inundated continuously; (2) substratum seasonally saturated; (3) substratum well drained; (4) substratum dry.

2Moisture variability is expressed as a coefficient based on variation on means and standard deviations of moisture index values for individual stands.

Table 3. Biotic characteristics of major plant communities surrounding Utah Lake.

<table>
<thead>
<tr>
<th>Community characteristic</th>
<th>Community Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pondweed</td>
</tr>
<tr>
<td></td>
<td>Bulrush-cattail</td>
</tr>
<tr>
<td></td>
<td>Spikerush-bulrush</td>
</tr>
<tr>
<td></td>
<td>Grassrush-sedge</td>
</tr>
<tr>
<td></td>
<td>Lowland woody</td>
</tr>
<tr>
<td></td>
<td>Saline terrestrial</td>
</tr>
<tr>
<td></td>
<td>Annual herbaceous</td>
</tr>
<tr>
<td>ID no.</td>
<td>1</td>
</tr>
<tr>
<td>X no. of species/stand</td>
<td>2</td>
</tr>
<tr>
<td>X percent living cover</td>
<td>9.8</td>
</tr>
<tr>
<td>X diversity</td>
<td>0.1</td>
</tr>
<tr>
<td>Dominant life form</td>
<td>Aquatic forb</td>
</tr>
<tr>
<td></td>
<td>Cattail sedge</td>
</tr>
<tr>
<td></td>
<td>Spikerush sedge</td>
</tr>
<tr>
<td></td>
<td>Grass sedge</td>
</tr>
<tr>
<td></td>
<td>Sedge grass</td>
</tr>
<tr>
<td></td>
<td>Shrubs shrub</td>
</tr>
<tr>
<td></td>
<td>Shrubs shrub</td>
</tr>
<tr>
<td></td>
<td>Annual annual</td>
</tr>
<tr>
<td>Trees</td>
<td>0.0</td>
</tr>
<tr>
<td>Shrub</td>
<td>0.0</td>
</tr>
<tr>
<td>Grasses</td>
<td>0.0</td>
</tr>
<tr>
<td>Sedges</td>
<td>0.0</td>
</tr>
<tr>
<td>Forbs</td>
<td>100.0</td>
</tr>
<tr>
<td>Annuals</td>
<td>0.0</td>
</tr>
<tr>
<td>Cattails</td>
<td>0.0</td>
</tr>
<tr>
<td>Nonvascular</td>
<td>0.0</td>
</tr>
<tr>
<td>Introduced exotics</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Numbers represent percent relative frequency
scale exhibit the greatest fluctuations in moisture (Fig. 1). The amount of exposed soil varies among the communities from less than 15 percent to slightly less than 50 percent in the playa and beach communities.

Compositional data for the seven community types is given in Table 3. Each community is dominated by a different set of life-form types, with annuals being especially prevalent in the playa and beach areas. In only two cases do particular life form types become sufficiently abundant to contribute over 50 percent of the plant cover. Generally, the vegetation of the communities considered includes species from several life form classes.

Diversity measurements varied from low values for pond weed communities to high values for the annual herbaceous communities. However, even though the diversity indices varied considerably, no significant correlations could be established between diversity and other parameters.

Similarities between the seven community types are evident since some species show dominance in more than one type (Tables 4–9). To better understand these interrelationships and to assess the degree of uniqueness of the different community types (Tables 2 and 3), a graphical summary of intercommunity similarity is presented (Fig. 2).

Table 4. The prevalent species found in the bulrush-cattail marsh communities of Utah Lake with their importance values.

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Importance values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typha latifolia</td>
<td>6814</td>
</tr>
<tr>
<td>Lemma minor</td>
<td>6243</td>
</tr>
<tr>
<td>Scirpus acutus</td>
<td>5471</td>
</tr>
<tr>
<td>Berula erecta</td>
<td>3457</td>
</tr>
<tr>
<td>Eleocharis palustris</td>
<td>1771</td>
</tr>
<tr>
<td>Spirodea polygama</td>
<td>1257</td>
</tr>
<tr>
<td>Riccia fluitans</td>
<td>957</td>
</tr>
<tr>
<td>Polypogon monspeliensis</td>
<td>657</td>
</tr>
<tr>
<td>Epilobium adenocaulon</td>
<td>614</td>
</tr>
<tr>
<td>Lycopus lucidus</td>
<td>314</td>
</tr>
<tr>
<td>Nasturtium officinale</td>
<td>300</td>
</tr>
<tr>
<td>Scirpus americanus</td>
<td>286</td>
</tr>
</tbody>
</table>

Table 5. The prevalent species found in the semi-aquatic herbaceous meadow communities of Utah Lake with their importance values.

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Importance values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eleocharis palustris</td>
<td>9229</td>
</tr>
<tr>
<td>Carex nebraskensis</td>
<td>4914</td>
</tr>
<tr>
<td>Distichlis spicata</td>
<td>2929</td>
</tr>
<tr>
<td>Scirpus americanus</td>
<td>2271</td>
</tr>
<tr>
<td>Trifolium hybridum</td>
<td>2029</td>
</tr>
<tr>
<td>Lycopus lucidus</td>
<td>1629</td>
</tr>
<tr>
<td>Scirpus validus</td>
<td>1429</td>
</tr>
<tr>
<td>Panicum capillare</td>
<td>1371</td>
</tr>
<tr>
<td>Polygonum coccineum</td>
<td>1357</td>
</tr>
<tr>
<td>Polygonum amphibium</td>
<td>1100</td>
</tr>
<tr>
<td>Ica axillaris</td>
<td>943</td>
</tr>
<tr>
<td>Plantago major</td>
<td>943</td>
</tr>
<tr>
<td>Ambrosia artemisiifolia</td>
<td>800</td>
</tr>
<tr>
<td>Agrostis alba</td>
<td>771</td>
</tr>
<tr>
<td>Bidens cernua</td>
<td>714</td>
</tr>
<tr>
<td>Polypogon monspeliensis</td>
<td>614</td>
</tr>
<tr>
<td>Xanthium strumarium</td>
<td>557</td>
</tr>
</tbody>
</table>

In the cluster diagram, communities that are most similar appear close together. The horizontal line connecting any two communities shows the degree of similarity between those entities. Figure 2 demonstrates that each community recognized is highly unlike all other communities considered. The most similar entities are the Spikerush-bulrush meadows and the Grass-rush-sedge meadows, which are only 25 percent similar. Other similarity patterns exist, but the similarity percents are so low that the community types involved can be considered essentially independent of each other.

Community Type Descriptions

Pond Weed Communities

The pond weed communities are continuously inundated by water. They are essen-
Table 6. The prevalent species found in the grass-rush-sedge meadow communities of Utah Lake with their importance values.

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Importance values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distichlis spicata</td>
<td>7206</td>
</tr>
<tr>
<td>Scirpus americanus</td>
<td>6650</td>
</tr>
<tr>
<td>Juncus balticus</td>
<td>5033</td>
</tr>
<tr>
<td>Eleocharis palustris</td>
<td>2125</td>
</tr>
<tr>
<td>Hordeum jubatum</td>
<td>2113</td>
</tr>
<tr>
<td>Carex nebrascensis</td>
<td>1756</td>
</tr>
<tr>
<td>Sporobolus airoides</td>
<td>1588</td>
</tr>
<tr>
<td>Glauca maritima</td>
<td>1488</td>
</tr>
<tr>
<td>Ambrosia artemisiafolia</td>
<td>1156</td>
</tr>
<tr>
<td>Potentilla anserina</td>
<td>994</td>
</tr>
<tr>
<td>Lycojpus lucidus</td>
<td>838</td>
</tr>
<tr>
<td>Trifolium hybridum</td>
<td>819</td>
</tr>
<tr>
<td>Polygonum monspeliensis</td>
<td>613</td>
</tr>
<tr>
<td>Ranunculus cymbalaria</td>
<td>606</td>
</tr>
<tr>
<td>Plantago major</td>
<td>606</td>
</tr>
<tr>
<td>Iva axillaris</td>
<td>435</td>
</tr>
<tr>
<td>Aster brachyactis</td>
<td>381</td>
</tr>
<tr>
<td>Suaeda occidentalis</td>
<td>363</td>
</tr>
</tbody>
</table>

Table 7. The prevalent species found in the lowland woody communities of Utah Lake with their importance values.

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Importance values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typha angustifolia</td>
<td>4573</td>
</tr>
<tr>
<td>Salix amygdaloides</td>
<td>2345</td>
</tr>
<tr>
<td>Salix exigua</td>
<td>2291</td>
</tr>
<tr>
<td>Distichlis spicata</td>
<td>1964</td>
</tr>
<tr>
<td>Eleagnus angustifolia</td>
<td>1809</td>
</tr>
<tr>
<td>Hordeum jubatum</td>
<td>1036</td>
</tr>
<tr>
<td>Populus fremontii</td>
<td>982</td>
</tr>
<tr>
<td>Myriophyllum verticillatum</td>
<td>873</td>
</tr>
<tr>
<td>Juncus maritimum</td>
<td>791</td>
</tr>
</tbody>
</table>

Table 8. The prevalent species found in the saline terrestrial communities of Utah Lake with their importance values.

<table>
<thead>
<tr>
<th>Scientific names</th>
<th>Importance values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salicornia rubra</td>
<td>6060</td>
</tr>
<tr>
<td>Allenrolia occidentalis</td>
<td>5460</td>
</tr>
<tr>
<td>Koehia americana</td>
<td>3840</td>
</tr>
<tr>
<td>Sarcobatus vermiculatus</td>
<td>1340</td>
</tr>
<tr>
<td>Suaeda nigra</td>
<td>1290</td>
</tr>
</tbody>
</table>

Table 9. The prevalent species found in the annual herbaceous communities of Utah Lake with their importance values.

<table>
<thead>
<tr>
<th>Scientific names</th>
<th>Importance values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polygonum lathifolium</td>
<td>5700</td>
</tr>
<tr>
<td>Chenopodium glaucum</td>
<td>4100</td>
</tr>
<tr>
<td>Xanthium strumarium</td>
<td>3700</td>
</tr>
<tr>
<td>Panicum capillare</td>
<td>3700</td>
</tr>
<tr>
<td>Sesuvium verrucosum</td>
<td>2150</td>
</tr>
<tr>
<td>Malva neglecta</td>
<td>1950</td>
</tr>
<tr>
<td>Ambrosia artemisiafolia</td>
<td>1900</td>
</tr>
<tr>
<td>Scirpus maritimus</td>
<td>1650</td>
</tr>
<tr>
<td>Aster frondosus</td>
<td>1550</td>
</tr>
<tr>
<td>Verbena bracteata</td>
<td>1450</td>
</tr>
<tr>
<td>Distichlis spicata</td>
<td>1450</td>
</tr>
<tr>
<td>Polygonum monspeliensis</td>
<td>1100</td>
</tr>
<tr>
<td>Sitianion hystrix</td>
<td>950</td>
</tr>
<tr>
<td>Rorax crispus</td>
<td>850</td>
</tr>
<tr>
<td>Trifolium spp.</td>
<td>850</td>
</tr>
<tr>
<td>Sporobolus airoides</td>
<td>800</td>
</tr>
<tr>
<td>Tamarix ramosissima</td>
<td>700</td>
</tr>
<tr>
<td>Grindelia squarrosa</td>
<td>450</td>
</tr>
<tr>
<td>Salix exigua</td>
<td>450</td>
</tr>
<tr>
<td>Taraxacum officinale</td>
<td>450</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>450</td>
</tr>
</tbody>
</table>

feet, but depth is variable. Coombs (1970) recorded that in June 1967 David A. White counted 137 stands in the open water of Utah Lake. Stands are found along the shoreline less frequently.

Bulrush-Cattail marshes

The Bulrush-cattail marshes also tolerate continuous inundation. The water depth fluctuates but generally does not exceed 2 feet and is often at ground level. The soil is characterized by considerable organic matter. Stands supported 12 species on the average but were dominated by Typha latifolia and Scirpus acutus (Table 4). In general appearance, this type appears somewhat like a giant jigsaw puzzle, with the major dominants growing in dense monospecific stands and overlapping with each other in only narrow zones. Along their edges and in areas where the cover is more open, one finds more mixing of the dominant species and increased species diversity. It is in these more open areas that many of the subdominant species (Table 4) are found.

The community occurs in three major habitat types (i.e., in the lake, adjacent to spring-fed bogs, and along irrigation canals). The type is extensive around the entire shoreline.
of the lake, but reaches maximum development in Provo Bay and Powell’s Slough.

Whether Scirpus acutus or Typha latifolia dominates any particular marsh seems to be largely a matter of priority, according to Cottam (1926). This observation tends to support the concept that the subcommunities defined by Coombs (1970) can be partially accounted for by patterns in asexual reproduction of the dominant species.

Spikerush-Bulrush Meadows

The spikerush-bulrush meadow communities are generally situated in areas that are inundated in the early seasons of the year but dry by September. The soil of the community varies but generally consists of peaty sandy loams (Coombs 1970). Organic matter content of the soil is high and, in places, the community occurs on peat beds that are 30 inches deep. The type averaged 17 species per stand; several species share dominance. The two most important species are Eleocharis macrostachya and Carex nebrascensis (Table 5). The community is restricted to the eastern side of the lake extending from near White Lake in Goshen Bay to the Jordan River, but is best developed in Benjamin’s Slough and Provo Bay. The major component species appear to distribute themselves in predictable ways in space—as subdominants of the community. Scirpus validus for example, is often found in nearly pure stands surrounded by mixed zones of Eleocharis macrostachya and Carex nebrascensis. These latter species generally give way to areas dominated by Distichlis stricta. The relationship appears to be associated with a water gradient in which moisture increases as one moves toward areas dominated by Scirpus validus (Coombs 1970). Again one sees local areas dominated by single species that reproduce vigorously by asexual processes.

Grass-Rush-Sedge Meadows

The grass-rush-sedge meadows inhabit the largest area of any of the semiaquatic herbaceous communities described thus far. They are situated geographically much like the spikerush-bulrush meadows, but tend to differ in at least the following ways: (1) although seasonally saturated the excess water has generally drained away by late spring, (2) the soils generally are less peaty, and (3) the soils are often slightly to moderately saline.

This community shows the greatest internal variation and as a result exhibits the highest mean diversity value (Table 3), which is exceeded only by the annual herbaceous communities. The community averaged 18 species per study unit and is the only community dominated by grass (Table 6). Of the 8 most important species, 6 are considered to be salt tolerant. The community is extensive (found throughout the study area) and often occupies sites lying between upland shrub types and the communities already described. There is a great deal of subdominant variation within the type that appears to reflect patterns of asexual reproduction on the one hand and islands of local habitat variation on the other (i.e., pockets of peat loam soil dominated by Carex nebrascensis, etc.). Again, the major dominants and subdominants segre-
gate along a moisture gradient. The sedges (Scirpus americanus, Eleocharis macrostachya, and Carex nebraskensis) tend to be dominant on those areas of seasonal inundation, and the grasses (Distichlis stricta, Hordeum jubatum, and Sporobolus aeroides) tend to dominate the higher dryer areas.

Lowland Woody Communities

The lowland woody community is a broadly scattered type occupying a variety of disjunct sites about the lake. It is among the three most extensive communities surrounding the lake and is found most often in seasonally submerged sites often near flowing streams. The soils are predominantly mineral (sandy to sandy clay loams) with varying degrees of incorporated organic matter. The community averaged only 9 species per stand (Table 7) and yielded one of the lowest diversity indices (Table 3). Of the woody dominants listed, 3 are shrubs and 2 are trees. There are two layers in the community, the tree-shrub overstory and a grass-annual or aquatic herb understory. The aquatic herbaceous understory is important only in areas where willows are dominant. There is a high degree of subdominant variation and internal heterogeneity in the community. However, in this case, as opposed to previous described types, the majority of the variation is due to habitat differences rather than asexual reproductive patterns.

Tamarix ramosissima and Elaeagnus angustifolia, two of the most important species listed (Table 7), are exotic invaders. Since they occur in the overstory and since T. ramosissima is the most widely distributed plant in the type, it appears that this type has been more extensively modified by human activities than any other community considered here. Coombs (1970) considered both species to be increasing and suggested that much of the woodland community is in various stages of recovery from disturbance. If his evaluation is accurate, it appears that the woodland community will undergo a great deal of change in the future.

Saline Terrestrial Community

The saline terrestrial community is the most geographically restricted type discussed thus far. It is essentially confined to Benjamin’s Slough, Goshen Bay, and surrounding areas. The soils vary from sandy clay loams to heavy clays and are generally poorly drained and alkaline or saline in nature. Soil erosion is often evident and disturbance from several sources is generally apparent. Salt content in the soil varies greatly in both lateral and vertical space. Variation in salinity combines with variation in soil moisture and local topography to produce small scale heterogeneity in the vegetation. The soils in many areas are seasonally wet, but the communities are not required to develop under water.

Small drainage basins are scattered throughout the type and act as receptacles of spring runoff. As the trapped water evaporates from these catchment basins, salts and other materials carried there by the water are left behind. Salt pans or playas develop in such areas. It is around such playa areas that a majority of the vegetational variation is found. This variation is accounted for by concentric rings of vegetation that surround the playas. Terrestrial saline communities are low in species diversity (Table 3) and average only five species per stand (Table 8). Of the dominants listed, all are salt tolerant and two (i.e. Kochia americana and Suaeda nigr) are considered to be disturbance indicators (Coombs 1970).

Annual Herbaceous Communities

The annual herbaceous type is a conglomeration of several terrestrial communities that occupy waste places around the lake. These areas often have little in common and exhibit high variability in environment and species composition. Because of great environmental variability and regular disturbance, such as along beaches, seasonally inundated islands, and areas heavily impacted by the activities of man, the communities often remain in early seral stages of succession. This is evidenced by the fact that most of the dominant species (Table 9) are of the annual life form, a life-style that permits plants to complete their life cycle in a few months. Since variation is great and conditions change from year to year, patterns in species dominance also fluctuate annually. Stability will only come to these communities as environmental predictability increases.
Ecological Relationships

Total Cover

Total cover in the communities surrounding Utah Lake varies from 9.8 percent in the pondweed sites to 76.6 percent in the Grarush-sedge meadows (Table 3). Observed differences appear to be related to variations in moisture (Fig. 3). As seen in Figure 3, the largest cover values occur midway along the moisture gradient in communities that tend to exhibit the most favorable soil moisture regimes. When there is either too much moisture (year-round inundation) or too little moisture (dry upland sites), fewer plants appear to perform well, thus lowering cover values in these areas.

Asexual Reproduction

As previously suggested, much of the subcommunity variation with the aquatic and semiaquatic communities of Utah Lake can be related to asexual reproduction by dominant species. This seems especially true in those communities that are continuously or seasonally inundated for long periods. Figure 4 illustrates this relationship. Communities having dominant species that reproduce asexually are also those communities common to the wet end of the moisture gradient. This being the case, it appears that those habitats with the most uniform moisture conditions tend to select for species capable of asexual reproduction and against species incapable of such reproduction methods.

Intracommunity Similarity

Earlier in this paper reference has been made of the subcommunity (within) variations in each of the seven major community types. Such internal variations can be measured with similarity indices. I have computed a similarity index matrix (Runzicka 1958) utilizing all stands in each community. Thus, the similarity of each stand with all other stands of a community is obtained. All similarity indices in each community matrix is finally averaged to obtain a mean and standard deviation for internal similarity of each community type. The larger the value the more internally similar is the community; conversely, the lower the value the greater the internal variability. Variation in intracommunity similarity is plotted against variation in available moisture for growth in Figure 5. Intracommunity variation is seen to increase as moisture variability increases. This indicates that as habitat predictability decreases, the composition of communities occupying such habitats also becomes more variable and less recognizable as distinct entities.

Life Forms

The relationship of plant life forms to environmental factors has been the concern of
ecologists for many years. The life form concept was useful in this paper in delimiting community types (i.e., grass-rush-sedge meadows, lowland woody communities, or annual herbaceous communities). The concept also helps relate environmental pattern to plant response in the habitat complex of Utah Lake (Table 3, Figs. 6–10). The data demonstrate that some of the life form classes exhibit rather distinct responses to moisture patterns around the lake. Grasses, for example, do best in habitats with moisture regimes midway along the gradient (Fig. 6). In contrast, the sedges are most abundant at the higher moisture levels (Fig. 7). Annuals reach their greatest importance in the driest habitats (Fig. 8). With respect to annuals, the relationships depicted by Figures 9 and 10 are also of interest. As shown, the annual life form does especially well in habitats that are open, low in cover, and support a good deal of exposed soil. In such areas, interspecific competition
Fig. 9. Importance of annuals in the communities of Utah Lake in relationship to percent exposed surface area.

Fig. 10. Importance of annuals in the communities of Utah Lake in relationship to total living cover.

Fig. 11. Increased importance of introduced species in Utah Lake flora since the early 1800s.

is low, thus giving species which by life-style must complete the life cycle in one season the maximum opportunity to do so.

Introduced Exotics

Species distribution patterns vary greatly in nature; however, in many cases the range of a species tends to be confined to a well-defined geographical region. Should a species jump the barriers confining it to its original range and invade another ecosystem else-

where, it becomes a foreign element in that community and is classed as an introduced or exotic species. Historically, many such species have entered the vegetation surrounding Utah Lake (Fig. 11). Cottam (1926) completed the first real quantitative work on the vegetation of Utah Lake. He listed 333 species in the flora, 67 of which (20 percent) were introduced. Coombs (1970) quantitatively studied the same area. He observed 305 species in the flora, 84 of which were introduced (27 percent).

Ecologically, introduced species may (1) invade native ecosystems and cause unexpected consequences of a harmful or disruptive nature, (2) invade and increase the complexity of existent ecosystems and become useful (nondisruptive) components of such communities, (3) become marginally established and exhibit no apparent effect on the original system, or (4) fail to become established. In the case of the communities around Utah Lake, one can find examples of species that fill all the above categories. However, only a few species (i.e., Tamarix ramosissima, Elaeagnus angustifolia, Bromus tectorum, Trifolium hybridum, Atriplex hortensis, Polygonum lapathifolium, and Malva neglecta, etc.) have become major influences in these natural communities. If the distribution patterns of the introduced species of the communities studied in the interest of habitat
Fig. 12. Importance of introduced species in the communities of Utah Lake as moisture variability increases.

Fig. 13. Importance of introduced species in the Utah Lake communities as internal community similarity increases.

conditions surrounding the lake are considered, two important relationships emerge (Figs. 12 and 13). First, as shown in Figure 12, the introduced species reach their greatest development in those habitats that show the greatest variability in moisture (the most unpredictable environments); and second (Fig. 13), those communities having the greatest internal variation in composition tend to be the most easily invaded. Undoubtedly, such communities have structural gaps that allow a species entering from the outside to become established and compete successfully. These gaps would almost certainly arise as a result of interaction between moisture variability and the resultant effect it has on internal community structure.

Floristic Relationships

A total of 483 species of vascular plants, representing 275 genera, and 74 families was observed and/or found recorded as belonging to the plant communities of Utah Lake. Of these, 67.9 percent belonged to 12 plant families (Table 10). The ecological or phyto-geographical significance of the dominance of these families (Table 10) is not known, but further investigations along such lines should hold great interest.

Table 10. Plant families contributing the majority of species to the flora of Utah Lake.

<table>
<thead>
<tr>
<th>Family</th>
<th>Percent of species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asteraceae</td>
<td>16.7</td>
</tr>
<tr>
<td>Poaceae</td>
<td>14.5</td>
</tr>
<tr>
<td>Cyperaceae</td>
<td>6.3</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>5.9</td>
</tr>
<tr>
<td>Cruciferae</td>
<td>5.9</td>
</tr>
<tr>
<td>Leguminosae</td>
<td>3.9</td>
</tr>
<tr>
<td>Polygonaceae</td>
<td>2.9</td>
</tr>
<tr>
<td>Rosaceae</td>
<td>2.9</td>
</tr>
<tr>
<td>Labiatae</td>
<td>2.5</td>
</tr>
<tr>
<td>Salicaceae</td>
<td>2.2</td>
</tr>
<tr>
<td>Scrophulariaceae</td>
<td>2.2</td>
</tr>
<tr>
<td>Onagraceae</td>
<td>2.0</td>
</tr>
<tr>
<td>Total</td>
<td>67.9</td>
</tr>
</tbody>
</table>

Aceraceae
Acer grandidentatum Nutt.
Acer negundo L.

Aizoaceae
Sesuvium verrucosum Raf.

Alismataceae
Alisma triviale Pursh
Sagittaria cuneata Sheld.

Amaranthaceae
Amaranthus graecizans L.
Amaranthus retroflexus L.

Anacardiaceae
Rhus radicans L.
Rhus trilobata Nutt.
APOCYNACEAE
Apopynnum cannabinum L. var. glaberrimum A.DC.

ASCLEPIADACEAE
Asclepias incarnata L.
Asclepias speciosa Torr.

ASTERACEAE
Achillea millefolium L.
Ambrosia artemisiifolia L.
Ambrosia psilostachya DC.
Anthenis cotula L.
Arctium minus Schk.
Artemisia absinthium L.
Artemisia dracunculus L.
Artemisia ludoviciana Nutt.
Artemisia spinescens D.C. Eaton
Artemisia tridentata Nutt.
Aster brachyactis Blake
Aster chilensis Nees ssp. chilensis (Lindl.) Cronq.
Aster eatenii (A. Gray) Howell
Aster frondosus (Nutt.) Torr. & Gray
Aster perelegans A. Nels. & Macbr.
Balsamorhiza hookeri Nutt.
Bident cernua L.
Bident frondosa L.
Chaenactis douglasii H. & A.
Chrysopsis villosa (Pursh) Nutt. var. foliosa (Nutt.) D.C. Eaton
Chrysanthemum nauseosum (Pall.) Britt.
Chrysanthemum viscidiflorus (Hook.) Nutt.
Cichorium intybus L.
Cirsium arvense (L) Scop.
Cirsium foliosum (Hook.) DC.
Cirsium undulatum (Nutt.) Spreng.
Cirsium vulgare (Savi) Airy-Shaw
Cymza canadensis (L.) Cronq.
Crepis nodocensis Greene
Crepis runcinata (James) Torr. & Gray
Erigeron bellidiflorum var. typicus Cronq.
Erigeron divergens Torr. & Gray
Erigeron glabellus Nutt.
Erigeron lonchophyllum Hook.
Eupatorium maculatum L.
Eupatorium acanthicarpa (Hook.) Cov.
Gnaphalium chilense Spreng.
Gnaphalium palustre Nutt.
Grendelia squarrosa (Pursh) Donal
Haplopappus lanceolatus (Hook.) Torr. & Gray
Haplopappus watsonii A. Gray
Helianthus annuus L.
Helianthus nutallii Torr. & Gray
Helianthus petiolaris Nutt.
Hieracium glaucum Hook.
Hymenoxys acaulis (Pursh) Parker
Inula helenium L.
Iva azillaris Pursh
Iva xanthifolia Nutt.
Lactuca pulchella (Pursh) DC.
Lactuca scariola L.
Laphamia stansburii A. Gray
Layia glandulosa (Hook.) Hook. & Arn.
Lygodesmia grandiflora (Nutt.) Torr. & Gray
Machaeranthera tanacetifolia (HBK.) Ness
Matricaria matricarioides (Less.) Porter
Senecio hydropaillus Nutt.
Senecio uintahensis (A. Nels.) Greene
Solidago canadensis L.
Solidago occidentalis (Nutt.) Torr. & Gray
Sonchus arvensis L.
Sonchus asper (L.) Hill
Stephanomeria paniciflora (Torr.) Nutt.
Tanacetum vulgare L.
Taraxacum officinale Weber
Tetradynia glabra A. Gray
Tetradynia spinosa Hook. & Arn.
Townsendia florifer (Hook.) A. Gray
Townsendia stricta Nutt.
Tragopogon dubius Scop.
Tragopogon porrifolius L.
Viguiera ciliata (Robins. & Greenm.) Blake
Viguiera multiflora (Nutt.) Blake
Wyethia amplexicaulis (Nutt.) Nutt.
Xanthium strumarium L.
Xanthocephalus sarothrae (Pursh) Shinners

BETULACEAE
Ahus tenuifolia Nutt.
Betula occidentalis Hook.

BORAGINACEAE
Cryptantha flavoculata (A. Nels.) Payson
Cryptantha nana (Euotsw.) Payson
Cynoglossum officinaleus L.
Heliotropium curassavicum L.
Lappula redowskii (Hornem.) Greene
Lithastrum ruderale Doug. ex Lehm.
Plagiobothrys scouleri (Hook. & Arn.) I.M.

CACEAE
Echinocactus simpsonii Engelm.
Echinocereus triglochidatus Engelm. var. melananthus (Engelm.) L. Bensen
Opuntia fragilis (Nutt.) Haw.
Opuntia polyacantha Haw.

CAPPARIDACEAE
 Cleome lutea Hook.
 Cleome serrulata Pursh
 Polanisia dodecandra (L.) DC.

CARYOPHYLLACEAE
Lonicera involucrata (Rich.) Banks

CEREALACEAE
Cerasium vulgatum L.
Saponaria officinalis L.
Spergularia marina (L.) Griseb.

CERATOPHYLLACEAE
Ceratophyllum demersum L.

CHENOPODIACEAE
Allenroflea occidentalis (S. Wats.) Kuntze
Atriplex confertifolia (Torr. & Frem.) S. Wats
Atriplex heterosperma Bunge
Atriplex hortensis L.
Atriplex patula var. hastata (L.) A. Gray
Atriplex tridentata Kuntze
Ceratoïdes lanata (Pursh) J. T. Howell
Chenopodium album L.
Chenopodium chenopodiodes (L.) Aellen
Chenopodium fremontii S. Watts.
Chenopodium gigantospermum Aellen
Chenopodium glaucum L.
Chenopodium leptophyllum Nutt.
Chenopodium murale L.
Chenopodium watsoni A. Nels.
Corispermum villosum Rydb.
Echinopis decaryi Fuellebr. & Boiss.
Echinops spinosus (Bieb) Hook.
Elymus trachycaulus (Schulz) Greuter
Eleocharis rostrata (Nutt.) E. W. Small
Eleocharis tuberosa (L.) Steud.
Elymus albicans (L.) P. Beauv.
Elymus canadensis (L.) Nutt.
Elymus canadensis Nutt.
Elymus cinereus (L.) P. Beauv.
Elymus canadensis (L.) P. Beauv.
HYDROCHORITACEAE
Eloelea canadensis Michx.

IBIDEM
Sagittaria halophila Greene

JUNCACEAE
Juncus balticus Willd.
Juncus bynonius L.
Juncus eriophylus Wikstr.
Juncus longistylysis Torr.
Juncus torreyi Coville

JUNCAGINACEAE
Triglochin maritima L.

LABIATAE
Lamium amplexicaule L.
Lycopus americanus Muhl. ex Bart.
Lycopus lucidus Turcz.
Marrubium vulgare L.
Mentha arvensis L.
Mentha spicata L.
Mentha vulgaris L.
Mentha arvensis L.
Mentha spicata L.

LEGUMINOSE
Astragalus argophyllus Nutt. var. argophyllus
Astragalus beckwethii Torr. & Gray
Astragalus canadensis L.
Astragalus convallarius Greene
Astragalus oophorus S. Wats.
Astragalus utahensis (Torr.) Torr. & Gray
Glycyrrhiza lepidota Pursh
Hedysarum boreale Nutt.
Lathyrus brachycalyx Rydb.
Medicago hipulina L.
Medicago sativa L.
Melilotus albus Desr.
Melilotus officinalis (L.) Lam.
Robinia pseudo-acacia L.
Thermopsis montana Nutt.
Trifolium hybridum L.
Trifolium pratense L.
Trifolium repens L.
Vicia americana Muhl. var. minor Hook.

LEMNACEAE
Lemna minor L.
Lemna trisulca L.
Lemna calcicola Phil.
Spirodela polyrhiza (L.) Schleid.

LENTIBULARIACEAE
Utricularia minor L.

LILIACEAE
Allium acuminatum Hook.
Asparagus officinalis L.
Smilacina stellata (L.) Desf.

LOASACEAE
Mentzelia albicaulis Doug. ex Hook.
Mentzelia decapetala (Pursh) Urb. & Gilg.
Mentzelia laevis officinalis (Dough.) Torr. & Gray
Mentzelia multiflora (Nutt.) A. Gray

LYTHRACEAE
Lythrum salicaria L.

MALVACEAE
Althaea rosea Cav.
Malva neglecta Wallr.
Silca hederaeaco (Dough.) Torr.
Silca alcea nacomexicana A. Gray
Silca alcea oregana (Nutt.) A. Gray
Sphaeralcea coccinea (Pursh) Rydb.
Sphaeralcea grossulariaefolia (H. & A.) Rydb.
Sphaeralcea munroana (Dough.) Spach

MORACEAE
Morus rubra L.

NYCTAGINACEAE
Abronia salsa Rydb.

NYMPHACEAE
Nuphar polysepalaum Engelm.

OLEACEAE
Fraxinus velutina Torr.

ONAGRACEAE
Epilobium adenocaulon Hausskn.
Epilobium paniculatum Nutt. ex Torr. & Gray
Gaura parviflora Dough.
Oenothera alsoides Hook. & Arn.
Oenothera canescens Nutt.
Oenothera hookeri Torr. & Gray
Oenothera latifolia (Rydb.) Munz
Oenothera minor (A. Nels.) Munz
Oenothera pallida Lindl.
Oenothera scapoida Torr. & Gray ssp. utahensis Raven

ORCHIDACEAE
Cypripedium calceolus L. var. pubescens (Willd.)
Cornell
Epipactis gigantea Dough.
Spiranthes romanzoffiana Cham. & Schl.

ORYBANCHACEAE
Orobanche multiflora Nutt.

PAPAVERACEAE
Argemone munita Dur. and Hilg.

PLANTAGINACEAE
Plantago lanceolata L.
Plantago major L.
Plantago patagonica Jacq.

POACEAE
Agropyron cristatum (L.) Gaertn.
Agropyron dasystachyum Scribn. (Hook.)
Agropyron elongatum (Host.) Beauv.
Agropyron intermedium (Host) Beauv.
Agropyron repens (L.) Beauv.
Agropyron smithii Rydb.
Agropyron spicatum (Pursh) Scribn. & Smith
Agropyron trachycaulum (Link) Malte.
Agrostis semicernata (Forsk.)
Agrostis stolonifera L.
Alopecurus aequalis Sobol.
Avena fatua L.
Avena sativa L.
Beckmannia azizacne (Stev. & W. Fern.)
Bromus commutatus Schrad.
Bromus inermis Leyss.
Bromus tectorum L.
Calamagrostis canadensis (Michx.) Beauv.
Calamagrostis neglecta (Ehrh.) Gaertn. Mey & Schreb.
Catabrosa aquatica (L.) Beauv.
Cenchrus tribuloides L.
Dactylis glomerata L.
Deschampsia caespitosa (L.) Beauv.
Distichlis spicata (L.) Green
Echinocloa crusgalli (L.) Beauv.
Elymus canadensis L. Michx.
Elymus cinereus Scribn. & Merr.
Elymus simplex Scribn. & Williams
Elymus triticioides Buckl.
Elymus virginicus L. var. submuniticus Hook.
Eragrostis cilianensis (All.) Mosher
Eragrostis hypnoides (Lam.) Britton, Sterns, & Poggenb.
Eragrostis occidentalis Vasey
Festuca pratensis Huds.
Glycera grandis S. Wats.
Hordeum brachyantherum Nevski
Hordeum jubatum L.
Hordeum leporinum Link.
Leersia oryzoides (L.) Swartz
Leptochloa fascicularis (Lam.) A. Gray
Lotus multiflorum Lam.
Muhlenbergia capillaris (Nees & Meyen) Parodi
Oryzopsis hymenoides (R. & S.) Riker
Polygonum capillare L.
Polygonum capillare L. var. occidentale Rydb.
Phalaris annulata L.
Phleum pratense L.
Phragmites australis (Cav.) Trin. ex Steudel
Poa annua L.
Poa arundinacea Vasey ex Scribn.
Poa pratensis L.
Polygogon monspeliensis (L.) Desf.
Puccinellia nuttiitana (J.A. Schultes) A.S. Hitchc.
Scleranthus dura (L.) Beauv.
Secale cereale L.
Setaria glauca (L.) Beauv.
Setaria viridis (L.) Beauv.
Sitanion hystrix (Nutt.) J. G. Smith
Sitanion jubatum J. G. Smith
Spartina gracilis Trin.
Sphenopholis obtusa (Michx.) Scribn.
Sporobolus airoides (Torr.) Torr.
Sporobolus asper (Michx.) Kunth
Sporobolus cryptandrus (Torr.) A. Gray
Stipa comata Trin. & Rupr.
Trisetum acutum L.
Valpia octoflora (Walter) Rydb.

POLEMONIACEAE
Collomia linearis Nutt.
Gilia aggregata (Pursh) Spreng.
Gilia inconspicua (Smith) Sweet
Gilia leptomera A. Gray
Gilia tenuiflora A. Gray
Phlox australontana Coville
Phlox longfolia Nutt.
Polemonium micranthum Benth.
Polemonium occidentale Greene

POLYGONACEAE
Eriogonum effusum Nutt.
Eriogonum racemosum Nutt.
Eriogonum umbellatum Torr.
Polygonum amphibium L.
Polygonum ariculare L.
Polygonum coccineum Muhlg. ex Willd.
Polygonum convolvulus L.
Polygonum lapathifolium L.
Polygonum pensylvanicum L.
Polygonum persicaria L.
Polygonum ramosissimum Michx.
Rumex crispus L.
Rumex fruticosus Phil.
Rumex cernosus Pursh

PORTULACACEAE
Portulaca oleracea L.

POTAMOGETONACEAE
Potamogeton crispus L.
Potamogeton filiformis Pers.
Potamogeton foliosus Raf.
Potamogeton nodosus Poir. ex Lam.
Potamogeton pectinatus L.
Potamogeton praecox Wulf.

PRIMULACEAE
Dodecatheon pulchellum (Raf.) Merrill
Glaux maritima L.
Steironema ciliatum (L.) Raf.

RANUNCULACEAE
Delphinium andersonii A. Gray
Ranunculus acris L.
Ranunculus aquatilis L. capillaceus (Thuill.) DC.
Ranunculus circinatus Stibth.
Ranunculus cymbalaria Pursh
Ranunculus macounii Britton
Ranunculus oreogeierns Greene
Ranunculus tenuiculatns Crantz

ROSACEAE
Amelanchier alnifolia (Nutt.) Nutt.
Amelanchier utahensis Koehne
Corynia mexicana D. Don
Crataegus douglasii Lindl. var. ricketiana (Nutt.) Sarg.
Potentilla anserina L.
Potentilla biennis Greene
Potentilla glandulosa Lindl.
Potentilla gracilis Dong. var. chmeri (Rydb.) Jeps.
Potentilla paradoxa Nutt.
Prunus americana Marsh
Prunus virginiana L. var. melanocarpa (A. Nels.) Sarg.
Species included in the literature as being present in the Utah Lake flora but for which there is not any evidence that such is the case.

Amaranthus lividus L.
Camelina sativa (L.) Crantz.
Carex operta Boot.
Cenchrus tribuloides L.
Erigeron annuus (L.) Pers.
Gnaphalium occidentalis L.
Leptium ramosissimum A. Nels.
Mirabilis linearis (Pursh) Heimerl.
Sagittaria graminea Michx.
Scirpus nebraskensis L.

Ulmaceae
- Celtis reticulata Torr.
- Ulmus americana L.
- Ulmus pumila L.

Umbelliferae
- Berula erecta (Huds.) Coville
- Cicaea douglasii (DC.) Coult. & Rose
- Conium maculatum L.
- Pastinaca sativa L.
- Sitanium Wal.

Urticaceae
- Urtica dioica L. var. procera (Muhl.) Wedd.
- Urtica cerra Blume

Verbeneae
- Verbena bracteata Lag. and Rodr.
- Verbena hastata L.
- Verbena stricta Vent.

Violaceae
- Viola nephrophylla Greene

Zannichelliaeae
- Zannichellia palustris L.

Zygophyllaceae
- Tribulus terrestris L.

Literature Cited

