Arthropod associates of plants at the Nevada Test Site

Doral M. Allred
Department of Zoology and Entomology, Brigham Young University, Provo, Utah

D Elden Beck
Department of Zoology and Entomology, Brigham Young University, Provo, Utah

Follow this and additional works at: https://scholarsarchive.byu.edu/byuscib

Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons

Recommended Citation
Available at: https://scholarsarchive.byu.edu/byuscib/vol5/iss2/1

This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Brigham Young University Science Bulletin, Biological Series by an authorized editor of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
ARTHROPOD ASSOCIATES OF PLANTS AT THE NEVADA TEST SITE

by

DORALD M. ALLRED AND D ELDEN BECK

BIOLOGICAL SERIES — VOLUME V, NUMBER 2
SEPTEMBER 1964
FOREWORD

This is another of a series of major publications on desert ecology resulting from studies at the Nevada Test Site by the Brigham Young University Department of Zoology and Entomology in cooperation with the United States Atomic Energy Commission. Although some of the studies are the result of independent investigations by specialists who are not on our departmental staff, they are part of the major project initiated cooperatively by B.Y.U. and the A.E.C. to determine the effect of nuclear detonations on the native animals of the Nevada Test Site.

Dorald M. Allred and
D Elden Beck
Project Supervisors
TABLE OF CONTENTS

INTRODUCTION .. 1

METHODS ... 1

ARTHROPOD ASSOCIATES .. 5

Pseudoscorpions (Pseudoscorpionida) .. 5
Spiders (Araneida) ... 5
Mites (Acarina) ... 6
Spring-tails (Collembola) ... 7
Psocids (Psocoptera) ... 7
Thrips (Thysanoptera) ... 7
Bugs (Hemiptera) .. 7
Aphids, Scale Insects and Relatives (Homoptera) ... 7
Nerve-Winged Insects (Neuroptera) .. 7
Butterflies and Moths (Lepidoptera) ... 7
Beetles (Coleoptera) ... 8
Ants, Bees, Wasps, and Relatives (Hymenoptera) ... 8
Flies (Diptera) .. 8

DISCUSSION ... 8

LITERATURE CITED .. 8

LIST OF TABLES AND FIGURES

Table

1. Plant community and specific localities of plant collections at the Nevada Test Site 5
2. Relative numbers of arthropods of orders and families associated with each plant species 6

Figure

1. Plant of Larrea divaricata showing protective canvas .. 2
2. Process of cutting plant for transport to the laboratory ... 3
3. Bottle used to measure volume of base and roots of plant, and humus on ground 4
4. Berlese funnel used for extraction of arthropods ... 5
5. Relative abundance of arthropods associated with Atriplex canescens 9
6. Relative abundance of arthropods associated with Atriplex confertifolia 9
7. Relative abundance of arthropods associated with Coleogyne ramosissima 9
8. Relative abundance of arthropods associated with Eurotia lanata 9
9. Relative abundance of arthropods associated with Grayia spinosa 10
10. Relative abundance of arthropods associated with Kochia spinosa 10
11. Relative abundance of arthropods associated with Larrea divaricata 10
12. Relative abundance of arthropods associated with Lycium andersoni 10
13. Relative abundance of arthropods associated with Lycium pallidum 11
14. Relative abundance of arthropods associated with Sabola kali 11
15. Relative abundance of arthropods associated with Yucca brevifolia 11
16. Seasonal occurrence of Homoptera and Thysanoptera on Atriplex canescens 11
17. Seasonal occurrence of Diptera and Hemiptera on Atriplex canescens 12
18. Seasonal occurrence of Coleoptera and Acarina on Atriplex canescens 12
19. Seasonal occurrence of Lepidoptera and Hemiptera on Atriplex confertifolia 12
20. Seasonal occurrence of Acarina and Hymenoptera on Atriplex confertifolia 12
21. Seasonal occurrence of Diptera and Homoptera on Atriplex confertifolia 12
22. Seasonal occurrence of Thysanoptera and Collembola on Coleogyne ramosissima 12
23. Seasonal occurrence of Acarina and Homoptera on Coleogyne ramosissima 13
24. Seasonal occurrence of Coleoptera and Hymenoptera on Coleogyne ramosissima 13
25. Seasonal occurrence of Diptera on Coleogyne ramosissima 13
26. Seasonal occurrence of Hemiptera on Eurotia lanata ... 13
27. Seasonal occurrence of Collembola and Thysanoptera on Eurotia lanata 13
28. Seasonal occurrence of Homoptera and Acarina on Eurotia lanata 13
29. Seasonal occurrence of Diptera and Coleoptera on Grayia spinosa 14
30. Seasonal occurrence of Thysanoptera and Homoptera on Grayia spinosa 14
31. Seasonal occurrence of Collembola and Hemiptera on Grayia spinosa 14
32. Seasonal occurrence of Acarina on Grayia spinosa ... 14
33. Seasonal occurrence of Acarina and Homoptera on Kochia americana 14
34. Seasonal occurrence of Collembola and Thysanoptera on Kochia americana 14
35. Seasonal occurrence of Coleoptera and Hemiptera on Kochia americana
36. Seasonal occurrence of Acarina and Thysanoptera on Larrea divaricata
37. Seasonal occurrence of Coleoptera and Hymenoptera on Larrea divaricata
38. Seasonal occurrence of Coleoptera and Diptera on Lycium andersonii
39. Seasonal occurrence of Lepidoptera and Thysanoptera on Lycium andersonii
40. Seasonal occurrence of Acarina and Homoptera on Lycium andersonii
41. Seasonal occurrence of Lepidoptera and Thysanoptera on Lycium pallidum
42. Seasonal occurrence of Homoptera and Coleoptera on Lycium pallidum
43. Seasonal occurrence of Acarina on Lycium pallidum
44. Seasonal occurrence of Hemiptera on Salsola kali
45. Seasonal occurrence of Acarina and Homoptera on Yucca brevifolia
46. Seasonal occurrence of Diptera and Coleoptera on Yucca brevifolia
ARTHROPOD ASSOCIATES OF PLANTS AT THE NEVADA TEST SITE*

By

Dorald M. Allred and D Elden Beck**

INTRODUCTION

This study was made to determine plant-arthropod associations related to the predominant plants in several plant communities at the Nevada Test Site. In our arthropod studies, special emphasis has been directed to the identification of kinds, relative numbers, seasonal incidence and ecological distribution relative to the plant communities as well as individual plant species. These data contribute to the over-all objectives of the ecological studies being conducted by the Brigham Young University Zoology and Entomology Department in cooperation with the U. S. Atomic Energy Commission. These objectives and community designations were reported by Allred, Beck and Jorgensen (1963a).

Ideally the arthropods in this study should have been discussed at the species level. Due to difficulty in obtaining help from taxonomic specialists this was not possible, and we used only the higher taxonomic categories. Nevertheless, we feel that groups of species with similar anatomical, physiological and ecological characteristics may be dealt with collectively. This will provide a basis for further studies on the species level by specialists trained to study such organisms.

In our ecological studies we have collected and preserved thousands of arthropods. Detailed ecological data for each have been recorded. Although some of these organisms may never be studied at the species level, it is expected that most eventually will be so studied and thus vindicate the original effort of making the collections.

METHODS

Plants of eleven species were studied. Each month one plant of each species was taken from a specific area in one of the biotic communities. (For the location of these areas see Table 1.) Each individual plant that was selected was not immediately adjacent to a different species but more or less stood alone.

The following technique was used for each collection. A white canvas cloth was placed on the ground around the plant, snugly fitting about the base at ground contact (Fig. 1). This was done to collect organisms as they fell from the plant while it was being examined and thus avoid soil and humus contamination by the stem- and leaf-dwelling arthropods. Next was the systematic removal of stems and leaves. These were cut by hand clippers and placed into paper bags (Fig. 2). Specimens and plant debris falling onto the cloth were also placed into the bag containing the stems and leaves. The canvas was then removed, and the surface soil and humus plus the base of the plant and large roots were collected, measured volumetrically and placed in a second bag (Fig. 3). The bags were taken to the laboratory and their contents placed in separate Berlese funnels 18 inches in diameter and 3 feet long (Fig. 4). The funnels were operated for 24 to 36 hours for each collection. Specimens were collected in catch-bottles containing 70 per cent alcohol. Specimens in each bottle were sorted to the taxonomic division of Order, and in a few cases the Family. The number of each kind was then determined.

Inasmuch as individual plants varied in size, and the amount of soil and humus taken also varied from plant to plant, corrections for the different volumes were made so that figures used for population analysis would be on a comparative basis. For example, if the total number of arthropods taken from the largest volume of a single plant was 100, then a number of 5 taken from only one-tenth the volume with reference to a different plant was adjusted to 50.

*This work was supported by U. S. Atomic Energy Commission contracts. AEC Report No. C00-1355-2. Field work done under AEC Contract AT(11-1)786.

**Department of Zoology and Entomology, Brigham Young University
Figure 1. Plant of *Larrea divaricata* showing protective canvas.
Figure 2. Process of cutting plant for transport to the laboratory.
Figure 3. Bottle used to measure volume of base and roots of plant, and humus on ground.
ARTHROPOD ASSOCIATES

Relative numbers of individuals of each order and some families with their plant associations are shown in Table 2. Figures 5 to 15 show the relative abundance of arthropods on the stems and leaves as compared with the numbers in the soil and humus of each plant. Figures 16 to 46 show the seasonal occurrence of the predominant groups of arthropods relative to each plant species.

PSEUDOSCORPIONS
(Pseudoscorpionida)
Figs. 5-15

These arachnids were most commonly associated with Atriplex confertifolia, but were also found with Coleogyne ramosissima, Larrea divaricata and Lycium spp. All were taken from the soil and humus. The minimal amounts of moist decaying organic debris under the plants likely is a critical factor affecting the presence of these organisms.

SPIDERS
(Araneida)
Figs. 5-15

Although not in great numbers, spiders were found associated with all plant species except Salsola. They were least abundant with Kochia.

Table 1. Plant community and specific localities* of plant collections at the Nevada Test Site.

<table>
<thead>
<tr>
<th>Plant Species</th>
<th>Community Type</th>
<th>Study Location</th>
<th>Distance from Well 3 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atriplex canescens</td>
<td>Grayia-Lycium Community</td>
<td>Study 6 D D</td>
<td>3.2 miles S</td>
</tr>
<tr>
<td>Atriplex confertifolia</td>
<td>Atriplex-Kochia Community</td>
<td>Study 6 D A</td>
<td>0.5 miles S</td>
</tr>
<tr>
<td>Coleogyne ramosissima</td>
<td>Coleogyne Community</td>
<td>Study 2 D A</td>
<td>11 miles N</td>
</tr>
<tr>
<td>Eurotia lanata</td>
<td>Grayia-Lycium Community</td>
<td>Study 6 D C</td>
<td>Environ of Well 3 B</td>
</tr>
<tr>
<td>Grayia spinosa</td>
<td>Grayia-Lycium Community</td>
<td>Study 4 D A</td>
<td>4.2 miles N</td>
</tr>
<tr>
<td>Kochia americana</td>
<td>Atriplex-Kochia Community</td>
<td>Study 6 D B</td>
<td>0.5 mile S</td>
</tr>
<tr>
<td>Larrea divaricata</td>
<td>Larrea-Franseria Community</td>
<td>Study 5 D A</td>
<td>0.3 mile E</td>
</tr>
<tr>
<td>Lycium andersoni</td>
<td>Grayia-Lycium Community</td>
<td>Study 4 D B</td>
<td>4.2 miles N</td>
</tr>
<tr>
<td>Lycium pallidum</td>
<td>Larrea-Franseria Community</td>
<td>Study 5 D B</td>
<td>1.1 miles E</td>
</tr>
<tr>
<td>Salsola kali</td>
<td>Salsola Community</td>
<td>Study 1 E A</td>
<td>150 yard radius</td>
</tr>
<tr>
<td>Yucca brevifolia</td>
<td>Coleogyne Community</td>
<td>Study 6 D E</td>
<td>4.7 miles S</td>
</tr>
</tbody>
</table>

*For mapped localities of the studies (6 D D, etc.) refer to Allred, Beck and Jorgensen (1963b).
Table 2. Relative numbers of individuals of orders and families of arthropods associated with each plant species.

<table>
<thead>
<tr>
<th>Arthropod Group</th>
<th>Atr can</th>
<th>Atr con</th>
<th>Col ram</th>
<th>Eur lan</th>
<th>Gra spi</th>
<th>Koc ame</th>
<th>Lar div</th>
<th>Lyc and</th>
<th>Lyc pal</th>
<th>Sal kal</th>
<th>Yuc bre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudoscorpionida</td>
<td>12</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>Araneida</td>
<td>45</td>
<td>22</td>
<td>14</td>
<td>28</td>
<td>18</td>
<td>3</td>
<td>35</td>
<td>16</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrana</td>
<td>951</td>
<td>1025</td>
<td>2164</td>
<td>661</td>
<td>1207</td>
<td>1246</td>
<td>1296</td>
<td>704</td>
<td>473</td>
<td>9</td>
<td>373</td>
</tr>
<tr>
<td>Collembo</td>
<td>25</td>
<td>23</td>
<td>556</td>
<td>1251</td>
<td>212</td>
<td>259</td>
<td>60</td>
<td>63</td>
<td>57</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Pscoptera</td>
<td>28</td>
<td>34</td>
<td>9</td>
<td>16</td>
<td>3</td>
<td>10</td>
<td>106</td>
<td>21</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thysanoptera</td>
<td>650</td>
<td>32</td>
<td>388</td>
<td>1853</td>
<td>90</td>
<td>225</td>
<td>674</td>
<td>97</td>
<td>223</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Helioptrida</td>
<td>Corimelaenidae</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corizidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lygaeidae</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2526</td>
</tr>
<tr>
<td></td>
<td>Miridae</td>
<td>119</td>
<td>81</td>
<td>57</td>
<td>77</td>
<td>20</td>
<td>13</td>
<td>19</td>
<td>8</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Nabidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Pentatomidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Tingidae</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Homoptera</td>
<td>Aphididae</td>
<td>21</td>
<td>51</td>
<td>14</td>
<td>31</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coccidae</td>
<td>211</td>
<td>101</td>
<td>57</td>
<td>101</td>
<td>10</td>
<td>19</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coccidae</td>
<td>670</td>
<td>201</td>
<td>1249</td>
<td>1106</td>
<td>274</td>
<td>2303</td>
<td>233</td>
<td>25</td>
<td>82</td>
<td>631</td>
</tr>
<tr>
<td></td>
<td>Fulgoridae</td>
<td>1</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Membracidae</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>819</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psyllidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3711</td>
<td>4</td>
</tr>
<tr>
<td>Neuróptera</td>
<td>8</td>
<td>17</td>
<td></td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidoptera</td>
<td>55</td>
<td>139</td>
<td>1</td>
<td>23</td>
<td>29</td>
<td>49</td>
<td>44</td>
<td>213</td>
<td>190</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>204</td>
<td>42</td>
<td>225</td>
<td>150</td>
<td>286</td>
<td>224</td>
<td>196</td>
<td>112</td>
<td>83</td>
<td>665</td>
<td></td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>Bethylidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Braconidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ceraphronidae</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eurytidae</td>
<td>9</td>
<td>9</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Eulophidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Formicidae</td>
<td>4</td>
<td>208</td>
<td>293</td>
<td>9</td>
<td>53</td>
<td>82</td>
<td>4</td>
<td>35</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mymaridae</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pteromalidae</td>
<td>4</td>
<td>1</td>
<td>28</td>
<td>19</td>
<td>4</td>
<td>22</td>
<td>13</td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Scleroglubidae</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tiphidae</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Diptera</td>
<td>158</td>
<td>121</td>
<td>116</td>
<td>38</td>
<td>112</td>
<td>3</td>
<td>42</td>
<td>122</td>
<td>57</td>
<td>179</td>
<td></td>
</tr>
</tbody>
</table>

and they were most commonly associated with Yucca and Atriplex canescens. In association with Atriplex confertifolia, Eurotia and Yucca they were found in about equal abundance on the stems and leaves and in the soil and humus. In other plant associations they were more common in the soil and humus.

Mites

(Acarina)

Figs. 5-15, 18, 20, 23, 28, 32, 33, 36, 40, 43, 45

These animals were associated with all the plant species except Salsola. They were most commonly found with Coleogyne, but were moderately abundant with Atriplex confertifolia, Grajías, Kochia and Larrea. With Coleogyne, Eurotia, Kochia, Larrea and Salsola they were found predominantly on the stems and leaves. With Yucca they were about evenly distributed between stems-leaves and soil-humus. In other plant associations they were more common in the soil and humus. The seasonal population peaks of the mites varied considerably with the plant species. Highest populations were not necessarily more common for one month than another except November when peaks occurred with Atriplex canescens and Kochia.
SPRING-TAILS
(Collembola)
Figs. 5-15, 22, 27, 31, 34

These insects were most abundantly associated with Eurotia. They were not found with Salsola and occurred least with Yucca. With Atriplex canescens, Coleogyne and Kochia they were found more abundantly on the stems and leaves, whereas with Grayia and Lycium pallidum they were about evenly distributed between stems-leaves and soil-humus. In other associations they were more common in the soil and humus.

PSOCIDS
(Psocoptera)
Figs. 5-15

Psocids were found in small numbers in association with all plant species except Salsola and Yucca. They were most abundant with Larrea and least with Grayia and Lycium pallidum. They were more abundant on the stems and leaves of Grayia, about evenly distributed between stems-leaves and soil-humus with Atriplex canescens and Coleogyne, and occurred predominantly in the soil and humus with other plants.

THrips
(Thysanoptera)
Figs. 5-16, 22, 27, 30, 34, 36, 39, 41

Thysanopterans were associated with every plant species studied except Salsola. Their occurrence was infrequent with Yucca and Atriplex confertifolia, and they were most abundant with Eurotia. They were commonly found on the stems and leaves except in association with Atriplex confertifolia and Yucca where they were predominant in the soil and humus. With Eurotia they were about evenly distributed between the two locations. Seasonally, highest populations occurred in April with Kochia, Larrea and Lycium spp., and in June with Eurotia and Grayia.

Bugs
(Hemiptera)
Figs. 5-15, 17, 19, 26, 31, 35, 44

Hemiptera were found associated with every plant species but were rarely taken in association with Coleogyne and Yucca. Highest numbers occurred with Salsola. Insects of the family Miridae were found with all plants except Coleogyne. Large numbers with Salsola consisted principally of bugs of the family Lygaeidae. Other families were represented only by small numbers of individuals. With Lycium spp, the bugs were about evenly distributed between stems-leaves and soil-humus. With Coleogyne and Salsola they were predominantly in the soil and humus. With other plants they were principally on the stems and leaves. Highest populations for nymphs occurred in March with Atriplex spp. and Kochia, and for adults in June with A. canescens and Eurotia.

APHIDS, SCALE INSECTS AND RELATIVES
(Homoptera)
Figs. 5-16, 21, 23, 28, 30, 33, 40, 42, 45

These insects were found in association with all plant species studied. They were infrequently associated with Salsola but commonly found with Lycium andersoni. The majority taken belonged to the family Coccidae, but insects of the families Cicadellidae and Aphididae were present with more than half of the plants. Psylids were numerous with L. andersoni, but were not found with any other plant except for small numbers with L. pallidum. With L. pallidum and Yucca these insects were about evenly distributed between stems-leaves and soil-humus. With all other plants they were more abundant on stems and leaves. Seasonally April was a month when populations were highest with Grayia, Kochia and L. pallidum. May was the peak month with Atriplex confertifolia and L. andersoni.

NERVE-WINGED INSECTS
(Neuroptera)
Figs. 5-15

These insects were found in small numbers with only four plants. They were predominant on the stems and leaves with Eurotia and Grayia, and in the soil and humus with Atriplex spp.

BUTTERFLIES AND MOTHS
(Lepidoptera)
Figs. 5-15, 19, 39, 41

These animals were associated with every plant except Salsola, but only few numbers were taken with Coleogyne and Yucca. They were most abundant in association with Lycium spp. They were more frequently associated with soil and humus with Eurotia and L. pallidum, about evenly distributed between the two areas with Larrea and Lycium andersoni, and more abundant on stems and leaves of other plants.

BEETLES
(Coleoptera)
Figs. 5-15, 18, 24, 29, 35, 37, 38, 42, 46

These were common with all species of plants except Salsola, being most abundant with Yucca.
With *Larrea* they were about evenly distributed between stems-leaves and soil-humus. With *Lycium pallidum* they were predominantly in the soil and humus, and with other plants they predominated on the stems and leaves. Highest populations of larvae occurred in March with *Eurotia* and *Lycium andersonii*, April with *Kochia* and *Larrea*, and May with *Coleogyne* and *Yucca*. Adults were most abundant in August with *Atriplex canescens*, *Coleogyne* and *Kochia*.

ANTS, BEES, WASPS AND RELATIVES

(**Hymenoptera**)

Figs. 5-15, 20, 24, 37

These insects were associated with all species of plants except *Kochia*. They were most abundant with *Coleogyne* and least abundant with *Salsola*. Those of the family Formicidae were most common on *Atriplex confertifolia*, *Coleogyne*, *Grayia*, *Larrea*, *Lycium pallidum* and *Salsola*, whereas other families were most common with other plants. With *Lycium andersonii* these insects were about evenly distributed between stems-leaves and soil-humus. With *Atriplex canescens*, *Eurotia* and *Larrea* they were more abundant on stems and leaves, whereas with other plants they were predominant in the soil and humus.

FLIES

(**Diptera**)

Figs. 5-15, 17, 21, 25, 29, 38, 46

These insects were found with all plant species except *Salsola*, and were relatively rare with *Kochia*. They were most abundant with *Yucca*. They were evenly distributed between stems-leaves and soil-humus with *Coleogyne*, *Larrea* and *Lycium andersonii*. They were more predominant in the soil and humus with *Atriplex* spp., and on the stems and leaves of other plants. Highest numbers of larvae occurred most frequently in February with *Atriplex* spp. and *Yucca*, and in April with *Lycium* spp.

DISCUSSION

The collection techniques and procedures in this study undoubtedly biased our results. Approaching a plant and cutting it into small pieces causes many flying insects to leave before they can be collected. Although plants were not disturbed physically before a canvas was set in place, the approach of the collector may have caused some arthropods to drop to the ground. This is known to be a part of the protective behavior of some organisms. All the collections were made during the daylight hours. Thus, the incidence of nocturnal associates and their distribution on the plant or ground is not known. This may explain in part the predominance of stem and leaf dwellers in the soil and humus under the protective cover of the plant. Climatic changes such as wind, precipitation or cloudiness during the day may also influence the movement of some arthropods.

The Berlese funnel likewise was a selective sampling technique. Some arthropods may be heat tolerant or negatively phototaxic and consequently may not have moved down the funnel into the collecting bottle. Others may have been killed by the heat or were unable to pass through the relatively small screen supporting the plant materials.

Nevertheless, on the basis of the techniques used, the results are indicative of incidence, relative abundance and seasonal occurrence of certain groups of arthropods on the plants sampled. These data may serve as a basis for further studies at the test site dealing with the effects of nuclear testing and radiation on food chains, as well as radionuclide pathways.

LITERATURE CITED

Figure 5. Relative abundance of arthropods associated with *Atriplex canescens*.

Figure 6. Relative abundance of arthropods associated with *Atriplex confertifolia*.

Figure 7. Relative abundance of arthropods associated with *Coleogyne ramosissima*.

Figure 8. Relative abundance of arthropods associated with *Eurotia lanata*.
Figure 9. Relative abundance of arthropods associated with *Gratia spinosa*.

Figure 10. Relative abundance of arthropods associated with *Kochia americana*.

Figure 11. Relative abundance of arthropods associated with *Larrea divaricata*.

Figure 12. Relative abundance of arthropods associated with *Lycium andersonii*.
Figure 13. Relative abundance of arthropods associated with *Lycium pallidum*.

Figure 14. Relative abundance of arthropods associated with *Salsola kali*.

Figure 15. Relative abundance of arthropods associated with *Yucca brevifolia*.

Figure 16. Seasonal occurrence of Homoptera and Thysanoptera on *Atriplex canescens*.
Figure 17. Seasonal occurrence of Diptera and Hemiptera on *Atriplex canescens*.

Figure 18. Seasonal occurrence of Coleoptera and Acarina on *Atriplex canescens*.

Figure 19. Seasonal occurrence of Lepidoptera and Hemiptera on *Atriplex confertifolia*.

Figure 20. Seasonal occurrence of Acarina and Hemiptera on *Atriplex confertifolia*.

Figure 21. Seasonal occurrence of Diptera and Homoptera on *Atriplex confertifolia*.

Figure 22. Seasonal occurrence of Thysanoptera and Collembola on *Coleogyne ramosissima*.
Figure 23. Seasonal occurrence of Acarina and Homoptera on Coleogyne ramosissima.

Figure 24. Seasonal occurrence of Coleoptera and Hymenoptera on Coleogyne ramosissima.

Figure 25. Seasonal occurrence of Diptera on Coleogyne ramosissima.

Figure 26. Seasonal occurrence of Hemiptera on Eurotia lanata.

Figure 27. Seasonal occurrence of Collembola and Thysanoptera on Eurotia lanata.

Figure 28. Seasonal occurrence of Homoptera and Acarina on Eurotia lanata.
Figure 29. Seasonal occurrence of Diptera and Coleoptera on *Grayia spinosa*.

Figure 30. Seasonal occurrence of Thysanoptera and Homoptera on *Grayia spinosa*.

Figure 31. Seasonal occurrence of Collembola and Hemiptera on *Grayia spinosa*.

Figure 32. Seasonal occurrence of Acarina on *Grayia spinosa*.

Figure 33. Seasonal occurrence of Acarina and Homoptera on *Kochia americana*.

Figure 34. Seasonal occurrence of Collembola and Thysanoptera on *Kochia americana*.
Figure 35. Seasonal occurrence of Coleoptera and Hemiptera on Kochia americana.

Figure 36. Seasonal occurrence of Acarina and Thysanoptera on Larrea divaricata.

Figure 37. Seasonal occurrence of Coleoptera and Hymenoptera on Larrea divaricata.

Figure 38. Seasonal occurrence of Coleoptera and Diptera on Lycium andersoni.

Figure 39. Seasonal occurrence of Lepidoptera and Thysanoptera on Lycium andersoni.

Figure 40. Seasonal occurrence of Acarina and Hymenoptera on Lycium andersoni.
Figure 41. Seasonal occurrence of Lepidoptera and Thysanoptera on *Lycium pallidum*.

Figure 42. Seasonal occurrence of Homoptera and Coleoptera on *Lycium pallidum*.

Figure 43. Seasonal occurrence of Acarina on *Lycium pallidum*.

Figure 44. Seasonal occurrence of Hemiptera on *Salvadora kali*.

Figure 45. Seasonal occurrence of Acarina and Homoptera on *Yucca brevifolia*.

Figure 46. Seasonal occurrence of Diptera and Coleoptera on *Yucca brevifolia*.