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CHAPTER ONE: RATIONALE 

 Cases have been made by many researchers that more classroom instruction should be 

focused on quantitative reasoning (Thompson, 2011; Johnson, 2016; Steen, 2001; Thompson & 

Carlson, 2017; Moore & Carlson, 2012). There appears to be a lack of quantitative and 

covariational reasoning in students across mathematics. These skills and attention to quantity are 

key aspects of mathematics that allow students to bridge the gap between the classroom and their 

real-world experience (Thompson, 2011). One subset of mathematics students who can greatly 

benefit from an increase in quantitative reasoning is calculus students. Bressoud et al. (2013) 

showed that about 78% of calculus students major in engineering, biology, physics, computer 

science, or business. However, research has shown that calculus students, much like other 

students, show a lack of quantitative reasoning in thinking about topics such as rates, limits, and 

integration (Thompson, 1994; Carlson et al., 2002; Oehrtman, 2009; Jones, 2015b). Quantitative 

reasoning might provide the richness in mathematical understanding, rather than solely 

procedural knowledge, that these students need in their respective fields (Smith & Thompson, 

2008). 

 One of the most important topics in calculus is integration—its usefulness extending 

beyond math into chemistry, biology, business, physics, statistics, and engineering. However, 

when students use the typical notions of areas and antiderivatives, they have been shown to 

struggle to make sense of integration problems in real-world contexts (Jones, 2015a). Research 

has been done on ways students can reason about integration more quantitatively in these 

contextualized problems. Jones (2015a) showed that students attend to the meaning of an integral 

more successfully in contextual problems when viewing the integral as “adding up pieces” 

(AUP), meaning that the integral represents the summation of infinitely many small pieces of a 
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quantity. This quantity is often created through the product of two other quantities. Jones (2015b) 

also found that students do not often think about these products when making sense of integrals. 

They more often reason about integrals as areas under curves or as antiderivatives. While not 

incorrect conceptualizations of integration, they proved less productive in sense-making (Jones 

2015a).  

 Because of the importance of the “adding up pieces” way of viewing definite integrals, 

much work has been done to understand how students can conceptualize the definite integral 

quantitatively through AUP. Jones (2013; in press) has explored lessons on developing the AUP 

conception when introducing integrals, and Ely (2017) and Oehrtman (Chhetri & Oehrtman, 

2015; Simmons & Oehrtman, 2019) have examined how to help students reason about multiple 

types of contexts with AUP. However, it is important to note that AUP work has focused 

typically on definite integrals with fixed bounds, ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡𝑏𝑏
𝑎𝑎 . But there is an entirely other type of 

integral that is critical for certain contexts and the Fundamental Theorem of Calculus: 

accumulation function integrals with a variable upper bound, 𝑔𝑔(𝑥𝑥) = ∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑡𝑡𝑥𝑥
𝑎𝑎 . There has not 

been sufficient research done on how to extend the AUP quantitative understanding to 

accumulation functions.  

Some work has focused on accumulation functions by having students learn them before 

definite integrals with fixed bounds. Yerushalmy and Swidan (2011) examined students’ 

semiotic meanings for the lower boundary of accumulation functions using an interactive 

program that allowed students to modify the bounds and argument of the integral and graphed 

the corresponding accumulation graph. This was done with little interaction from a teacher and 

only focused on initial student approaches. Also, the students only had an understanding of 

derivatives and had not had any previous instruction about integration. While their work has 
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illuminated many challenges students face with accumulation functions, it does not address the 

potential benefit of attending to quantities as a way of making sense of the accumulation 

function. By contrast, Thompson and Silverman (2008) have researched how to develop the idea 

of accumulation quantitatively before applying the definite integral, with the definite integral 

only being the accumulation function evaluated at a specific point. The issue is that there appears 

to be a very high initial cognitive demand in constructing accumulation functions first. Further, 

Thompson and colleagues have presented a method for developing accumulation based on rate, 

and then imagining the definite integral as this accumulation evaluated at one point. However, 

since many definite integrals might not easily be conceived of as a rate (such as the density 

integral given above), AUP may still be an important way to develop the ideas of integrals. This 

leads me to believe that perhaps there is a way to first develop profound AUP understandings 

from contextual problems which could then be extended to accumulation functions. Because 

research has not yet described how AUP for definite integrals can be extended to accumulation 

functions, I examine in this study the possible benefits of quantitatively developing the definite 

integral through AUP and then extending them to accumulation functions.  

 The purpose of my study is twofold: a) to use existing literature to create a hypothetical 

learning trajectory (HLT) which builds the definite integral quantitatively and extends this 

quantitative understanding to the idea of accumulation and b) to answer the research question: as 

a student progresses through the HLT, what understandings do they develop of the definite 

integral and accumulation function? The first of these purposes has been achieved in preparation 

for my interviews, while the second is answered through my analysis of student thinking during 

the teaching experiments.   
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CHAPTER TWO: BACKGROUND 

In this chapter, I review the existing literature on quantitative reasoning and integration. I 

start with reviewing research on quantitative reasoning and then review research on student 

understanding of definite integrals and accumulations functions. I then discuss my theoretical 

framework of Sfard’s (1991) processes and objects. Lastly, I provide a conceptual breakdown of 

the target process-object understandings I want to elicit with the hypothetical learning trajectory.  

Quantitative Reasoning 

What is Quantitative Reasoning? 

 Smith and Thompson (2008) define quantity as an attribute of an object or system that 

could be measured. For example, “length” is a quantity because it measures the amount of linear 

space between a system of two objects. Thompson (2011) similarly points out that quantities are 

“mental constructions” (p. 34), meaning that quantities are not self-existent in the world but are 

products of our attempts at understanding the world around us. 

 Moore and Carlson (2012) build on Thompson and Smith’s work (Smith & Thompson, 

2008; Thompson, 2011) to define quantitative reasoning as “the process of analyzing a situation 

in terms of quantities and relationships among them” (p. 49). Therefore, quantitative reasoning 

includes not only identifying or conceiving of any relevant quantities in a problem, but also 

assessing how those quantities relate to each other. To illustrate this, I draw on an example of a 

student who lacked quantitative reasoning. Moore and Carlson (2012) presented students with 

what they called the “box problem,” which involved finding the equation for the formula of a 

box created by cutting equal-sized squares from the corners of an 11-inch by 13-inch sheet of 

paper. One student, Matt, used a piece of paper to illustrate (to himself and the interviewer) how 

the quantities of cutout side length and the dimensions of the box change together. He made two 
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important observations about quantitative structure: as the size of the cutout increases the box 

becomes less wide and at the same time becomes “deeper.” When he went to create a formula for 

the volume of the box, he mistakenly wrote 𝑉𝑉 = 13 ∗ 11 ∗ 𝑥𝑥 where x represented the side length 

of the squares removed from the corners. However, because he had attended to the quantities, he 

was able to see that his formula would not work. He used specific values for x to help himself 

translate the quantitative relationship between x and the dimensions of the box into a formula for 

the volume. Matt was able to determine that the size of x needed to be removed from both the 

length and width of the paper to fold the box. He refined his formula and ended with the correct 

equation.  

Using Quantitative Reasoning 

 Quantitative reasoning can be utilized throughout many levels of mathematics. The 

literature on quantitative reasoning includes topics such as rate of change (Thompson & Carlson, 

2017), trigonometry (Moore, 2012; 2014), integration (Thompson, 1994; Ely, 2017; Jones, 

2015a), and function (Moore et al., 2014; Ellis, 2011; Smith & Thompson, 2008; Moore & 

Paoletti, 2013). Because of the vast amount of literature on this subject, I choose to focus on two 

applications of quantitative reasoning. The first is an example within trigonometry from Moore 

(2014), the second is Thompson and Carlson’s (2017) work on covariation. 

Moore (2014) demonstrated the utility of quantitative reasoning within trigonometry. He 

presented a case study of a student, Zac, who was building meaning for the sine function. After 

two teaching sessions of developing the concept of angle measure, Moore introduced a problem 

involving a bug sitting on the end of a counterclockwise-revolving fan blade. Zac’s task was to 

create a graph of the bug’s vertical distance above the 9:00 to 3:00 diameter line through the 

center of the fan.  
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Zac initially based his reasoning and graph on physical features of the scenario, such as 

the curvature of the fan, without attending to quantity. He created the sine graph, but his 

reasoning did not reflect rates of change. Moore presented Zac with an alternative graph, with 

the same intervals of increasing and decreasing as 𝑠𝑠𝑖𝑖𝑖𝑖(𝑥𝑥), but with constant rates of change. 

Once Zac saw this graph, he began to reason about the changing rates of change as the fan 

revolves and was able to explain why the rates of 𝑠𝑠𝑖𝑖𝑖𝑖(𝑥𝑥)are not constant. He started to compare 

the changes in the bug’s vertical distance from the 3:00 position for constant changes in the arc 

length. Attending to the size of these changes in vertical distance allowed Zac to explain why the 

rates of change had to change, and that for the first quarter rotation of the fan the rate of change 

decreased. Zac saw that as the fan approached the 12:00 position, the vertical distance changed 

very little, explaining why the graph should be concave down. Moore then changed the size of 

the fan blades so Zac began to see the radius as a unit he could use to measure distances. 

Through Moore’s careful questioning and encouragement to focus on the quantities in context, 

Zac built a deeper conceptual understanding of the sine graph. Zac was able to see the 

covariational relationship between arc length and vertical distance because he was focused on the 

relative sizes of the vertical distance quantity.  

Thompson and Carlson (2017) expanded the work on the application of quantitative 

reasoning to covariational reasoning. They developed a framework for levels of covariational 

reasoning which focuses on quantity and how quantities change simultaneously. For example, 

students may be able to envision quantities that increase together but may not yet see these as 

happening simultaneously. To illustrate this, consider the Bottle Problem from Carlson (1998). 

Carlson presented students with an image of a bottle and asked them to graph the height of the 

water in the bottle as a function of the volume of water in the bottle. Someone who is not 
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attending to both quantities of height and volume simultaneously may imagine a certain volume 

being added, then the height increasing rather than increasing as the volume is added. The ability 

to coordinate quantities varying together is a key idea when developing meanings for slope and 

rate of change (Thompson & Carlson, 2017). Seeing rate of change not only as a slope of a line 

but as the relative changing of size or measure between two quantities together gives more 

conceptual meaning to a rate of change. 

Integration 

Conceptions of the Definite Integral 

Jones (2013) identified different conceptualizations of integrals which students use to 

make sense of the meaning of integration problems. These include a conception of “perimeter 

and area,” “function matching,” and “adding up pieces” (AUP).  

In function matching, the integral denotes an antiderivative of a function. Having a 

conception of integrals as antiderivatives means that students try to create meaning for the 

integral in terms of the antiderivative of the function in the integral. They might refer to velocity 

and position in terms of their explanations, or talk about rates of things (Jones, 2013). While 

using antiderivatives to solve integrals is a critical application of the Fundamental Theorem of 

Calculus, it is often not useful in making sense of what the answer would mean in context. Jones 

(2015a) found that students were less confident in making sense of problems in terms of 

antiderivatives. They tried to reason about the units of the function compared to the 

antiderivative, but without using a multiplicative comparison they struggled to find real-world 

meaning in the symbols.  

In perimeter and area, the integral denotes the area under a curve. Relating the integral to 

the area between the function and the x-axis is a correct graphical interpretation but is also less 
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helpful when explaining values in context. Jones (2015a) found that students using this method 

could draw a picture and attempted to explain the meaning in terms of units, but often felt 

frustrated or insecure about their explanations. This conceptualization of the area under a curve 

differs from AUP because the student only conceptualizes the integral as the undivided area of 

some shape bounded by the x-axis, the function, and the upper and lower bounds. They do not 

split this area up into pieces.  

In the AUP conception, students imagine a sum of infinitesimally small quantities, which 

is similar in structure to the Riemann sum. Jones (2013) found that when students reasoned about 

the multiplication between an infinitesimally small amount of the quantity represented by the 

differential change in the domain and the quantity represented by the integrand function, they 

were able to make sense of integrals in context much more productively (Jones, 2015a). To break 

it down, AUP involves a student “chopping” an interval into small pieces, finding the quantity of 

interest within each chopped piece, and then adding the quantitative pieces up (Jones, in press).  

While AUP often involves a product between a function and a differential, this is not 

always necessary. Ely (2017) gives an example of the arc length formula, in the form 

∫ �𝑑𝑑𝑥𝑥2 + 𝑑𝑑𝑦𝑦2𝑏𝑏
𝑎𝑎 . Each small piece here represents a tiny distance, the hypotenuse of the triangle 

formed by dx and dy. Adding these pieces up would give the length of a given line segment.  

 To illustrate the differences in these three conceptualizations of integrals, consider the 

integral ∫ 𝜋𝜋[𝑓𝑓(𝑥𝑥)]2𝑑𝑑𝑥𝑥 𝑏𝑏
𝑎𝑎 , which calculates the volume created by rotating a function 𝑓𝑓(𝑥𝑥) in the 

interval [a,b] around the x-axis. A student who thinks of integrals as antiderivatives might try to 

find the antiderivative of 𝜋𝜋[𝑓𝑓(𝑥𝑥)]2, but this does not have a clear connection to calculating a 

volume created by 𝑓𝑓(𝑥𝑥). Alternatively, thinking about the integral as the area under the curve 

𝜋𝜋[𝑓𝑓(𝑥𝑥)]2seems strange as well since we are interested in a volume rather than an area. Why 
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would the area under the graph of 𝜋𝜋[𝑓𝑓(𝑥𝑥)]2correspond to the volume of an object? However, an 

AUP perspective would begin by chopping up the interval [a,b]. In chopping up the interval, you 

are left with small cylindrical slivers of volume, each with a radius length of the function at that 

point and a height of the thickness of your “chops.” The volume of each chopped piece can be 

represented as 𝜋𝜋(𝑥𝑥2)2 ∗ 𝑑𝑑𝑥𝑥, as dx would necessarily be the thickness of the chops. Then adding 

up the pieces of volume within each section would give the total volume of the entire solid. This 

creates a three-dimensional volume. The integral takes every small piece of volume and adds 

them together, giving us the overall volume. While all three conceptualizations are valid, AUP 

has a much stronger connection to the context of the problem. 

 The often-multiplicative nature of AUP is closely tied to the structure of Riemann sums; 

however, explicit attention to Riemann sums in instruction will not necessarily increase students’ 

tendency to use an AUP perspective (Jones, Lim, & Chandler, 2016). Teachers may undermine 

their student’s abilities to reason multiplicatively by reducing the idea of Riemann sums to an 

approximation tool. Jones, Lim, and Chandler (2016) observed teachers who presented the 

integral as the area under a curve and used Riemann sums to calculate the area. However, they 

did not use the Riemann sum as a way to build potential conceptual meaning for the definite 

integral. Rather, the Riemann sum was just a calculational tool to estimate the “real” meaning of 

integrals: area under the curve. 

While AUP is the most productive conception of the integral in contextualized problems, 

of the three conceptualizations discussed, students are far more likely to think of integrals as 

antiderivatives or as areas under a curve (Jones, 2015b). Integrals are often defined first by 

teachers as the area under a curve, which is why many students may gravitate towards this 

conceptualization (Stewart, 2016; Jones 2015b). Jones, Lim, and Chandler (2016) showed that 
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even when teachers introduced integrals first with Riemann sums, the teachers undermined this 

instruction by emphasizing Riemann sums only as a calculational device that would soon be 

exchanged for a quicker technique as soon as the class learned the Fundamental Theorem of 

Calculus.  

The disconnect between integration and the multiplication of quantities may also be 

because students are not viewing the function and differential pieces within an integral both as 

quantities that can be multiplied. Mathematicians themselves have a difficult time giving a 

definitive answer to what a differential means (McCarty & Sealey, 2019). When asked what the 

differential means in different contexts, they gave many different explanations, as reported in 

McCarty and Sealey (2019). A common response in relation to integration was the differential 

was simply a marker to indicate the variable to integrate with respect to. This view of 

differentials in integration does not attend to the multiplication of quantities and makes the 

differential seem more like a bookend than a critical piece of the integral. Ely (2017) provides a 

more useful approach to the differential, treating it as an infinitesimally small piece much like 

Leibniz did.  

When conceptualizing the differential in an integral as an “infinitesimally small” piece of 

the domain, the dx begins to have a quantitative meaning. This is illustrated in Jones (2015a), as 

students made sense of the integral ∫ 𝜌𝜌(𝑟𝑟) 𝑑𝑑𝑉𝑉𝑅𝑅 , where R is a three-dimensional object and ⍴ is its 

density at any point. A productive conceptualization of this integral included recognizing dV as a 

small piece of volume, multiplied by a density. The resulting product would be a small bit of 

mass and adding these pieces up would give the mass of the object. This attends to the quantities 

of volume and density and was critical for understanding the contextual meaning of the integral. 

Students who did not attend to the quantities were unable to explain that this integral calculated 
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the mass of the given object, or why it calculated mass. This demonstrates the potential benefit 

an AUP approach would have in students’ sense-making abilities.   

Frameworks for the Decomposition of Integrals 

 Sealey (2014) created a framework (Figure 1) for an understanding of integrals which 

was modeled after Zandieh’s (2000) framework decomposing derivatives. Sealey (2014) broke 

down integration into four layers: a) product, b) summation, c) limit, and d) function. She later 

added a preliminary step called the “orienting layer,” where students make sense of the problem 

and its relevant quantities. Within these layers, she analyzed student thinking during three 

different learning activities. These learning activities were three different contextual problems 

that students worked through dealing with velocity, force, and pressure. Sealey added the fourth 

layer of “function” as a next logical step following her learning activities, but this was not 

something the students grappled with in this particular study. Sealey described this function layer 

as recognizing a function where the input is the upper bound of a definite integral and the output 

is the value of the integral.  

Figure 1 

Sealey’s (2014) Preliminary Framework for Integration 

 

 Von Korff and Rebello (2012) built off Sealey’s (2014) work by providing a framework 
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of process-object routes which students take in learning integration (Figure 2). Their first layer is 

“quantity,” similar to the orienting layer that Sealey added to her framework. A significant 

change in Von Korff and Rebello’s framework is they argue that the jump to the “limit” stage, or 

working with infinitesimal quantities, can occur at earlier layers of understanding integration. As 

such, the four stages they use in their framework corresponding to the development of the 

integral are: a) a quantity, b) a product, c) a sum, and d) a function. These stages are then set 

within the “macroscopic” and “infinitesimal” layers. In the macroscopic layer, the quantity is a 

portion of the domain, which is then multiplied by a function to create a product. Adding these 

products then leads to the Riemann sum and a function for the approximation. The infinitesimal 

layer is similar, but the quantities involved are infinitesimally small. This leads to an integral 

rather than a Riemann sum. 

Figure 2 

Von Korff and Rebello’s (2012) Framework for Integration 

 

Accumulation Functions 

 Yerushalmy and Swidan’s (2012) work on students’ accumulation understandings is 

framed with a semiotics perspective. They focused on what meanings students make for the 

symbols through mostly independent interactions with dynamic software. While this identified 

connections between the symbolic structure of integrals and graphical accumulation, what it 
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lacks is a connection to the underlying quantitative structure of integration. On the other hand, 

Thompson and Silverman (2008) approach accumulation quantitatively by emphasizing the 

integrand function as always representing a rate of incremental bits being accumulated. While a 

rate is often an important feature in quantitatively assessing an integral, the literature does not 

support rates as always being a useful interpretation. Referring back to Ely’s (2017) example of 

arc length, ∫ �𝑑𝑑𝑥𝑥2 + 𝑑𝑑𝑦𝑦2𝑏𝑏
𝑎𝑎 = ∫ �1 + (𝑦𝑦′)2𝑑𝑑𝑥𝑥𝑏𝑏

𝑎𝑎 , it is possible to interpret �1 + (𝑦𝑦′)2 as the rate 

at which length is accumulated, but this feels like a forced interpretation. Further, even for more 

basic integrals like ∫𝐹𝐹𝑑𝑑𝑥𝑥, this approach would require thinking of force as the rate at which work 

accumulates, which is a somewhat unnatural interpretation. AUP appears to provide a much 

more flexible interpretation of quantity and allows for the definite integral to be developed first 

quantitatively, rather than a single value of an accumulation function. As explained earlier, this is 

why I am designing an HLT that begins with AUP and then extends to accumulation functions, 

rather than starting with accumulation functions as suggested by Thompson, Swidan, and 

colleagues. 

Theoretical Framework 

 The framework used in this study consists of a decomposition of the integral concept into 

its constituent parts. This decomposition takes into account both definite integrals with fixed 

bounds and accumulation function integrals. This decomposition takes the quantitative “adding 

up pieces” meaning as the central meaning of integrals and contains how the quantitative 

meaning can be represented in graphical, numeric, and symbolic ways. Because the integral 

framework is based on the idea of process-object duality, I begin this section with a discussion of 

processes and objects from Sfard (1991, 1992). 
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Process-Object Framework 

I will be using Sfard’s (1991, 1992) process-object theory as a framework for my study. 

Sfard outlined stages of development one takes to understand a concept: interiorization of some 

operation to become a process, then the reification of said process to an object. Note that in the 

history of mathematics education in recent decades, there have been many approaches that all 

have similar process-object ideas in them (Piaget, 1970, 1972, 1985; Davis, 1983, 1984; Greeno, 

1983; Dubinsky, 1986, 1991; Grey & Tall, 1994). Sfard (1991) drew specifically from Piaget’s 

(1970, 1972, 1985) work involving actions and operations becoming objects of thought. Davis 

(1983, 1984) describes sequences that become integrated and seen as a whole before becoming 

an entity itself. Greeno (1983) used the term “procedures,” which become conceptual entities. 

Dubinsky (1986, 1991) discussed how actions become interiorized to processes, then those 

processes are encapsulated into objects. Grey and Tall (1994) examined procedures linked to 

algorithms, which are then conceived as a process without reliance on the algorithm, before 

becoming what they called a “procept,” or a symbol evoking a concept or process. For a more 

detailed description of these approaches, refer to Tall et al. (2000).  

While there are many approaches, each with its nuances and distinctions, for this study I 

elect to use Sfard’s approach for two reasons. First, others in calculus education looking at the 

derivative and integral have explicitly built on Sfard’s work (Zandieh, 2000; Sealey, 2014). In 

order to stay compatible with these other researchers, I also use Sfard’s process-object approach. 

Secondly, I find her terminology to fit well with how I am thinking about a learning trajectory 

through definite integrals.  

Sfard (1991) differentiated first between structural and operational conceptions of an 

idea. A structural conception is much like viewing a mathematical entity as an object that can be 
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manipulated itself. In Sfard’s words, it “means being able to recognize the idea "at a glance" and 

to manipulate it as a whole, without going into details” (Sfard, 1991, p. 4). On the other hand, an 

operational conception is an attention to the actions or computations that lead to that same 

mathematical entity. Sfard (1991) gave the example of a function being viewed as a collection of 

ordered pairs (structural) or as a computational process taking one system to another 

(operational).  

However, Sfard (1991) used the word “operation” in a different way. She described a 

process as “operations performed on lower-level mathematical objects” (Sfard, 1991, p. 18). This 

use of operation is focused more on the actions a student performs rather than an understanding 

of the underlying process. I will be using the word operation in this way—to mean the initial 

actions or computations a student makes before conceiving of the process. For example, students 

may multiply a rate times a time, but they might not yet realize that with each new rate that 

occurs there would be a separate product to find the amount for that time interval. I acknowledge 

that this usage is influenced by Dubinsky’s (1986) use of “action” as the stage preceding a 

person conceiving of processes.  

As someone becomes comfortable with the operations, they can begin to imagine the 

operations being carried on without actually computing them (Sfard, 1991). Sfard (1991) called 

this “interiorization” of a process. Specifically, she drew on Piaget (1970) when she stated, “we 

would say that a process has been interiorized if it ‘can be carried out through [mental] 

representation.’ (Piaget, 1970, p. 14) and in order to be considered, analyzed, and compared it 

needs no longer to be actually performed” (Sfard, 1991, p. 18). Once the operations have been 

interiorized into a process, I will say that a student has a process-level understanding. Carrying 

on my previous example, a student with a process-level understanding of the products within 
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integration would recognize that each interval of time can be multiplied by the corresponding 

rate without needing to carry out the steps for each one.  

Sfard (1991) then describes the “condensation” of these processes as “a period of 

"squeezing" lengthy sequences of operations into more manageable units” (Sfard, 1991, p. 19). 

At this stage, students are more comfortable reasoning about the process as a whole without 

attending to the details (Sfard, 1991). While I would still denote this as process-level thinking, it 

is an important step in a student beginning to understand the entity as an object. 

As the processes become condensed, they become reified (Sfard, 1991). As Sfard 

describes, “The new entity is soon detached from the process which produced it and begins to 

draw its meaning from the fact of its being a member of a certain category (Sfard, 1991, p. 20). 

Once the entity is reified, I will say that a student has an object-level understanding. This means 

they view the mathematical concept as its own entity to be manipulated, independent of the 

processes that built it. The student should still be able to deconstruct the object into its processes 

if needed, but they are able to skip this process-level reasoning. A student with an object-level 

understanding of the products within an integral recognizes that the products they conceived of at 

the process level give small amounts of some new quantity. Each layer of my integration 

framework has process-object levels of understanding. I break down what each of these entails 

following an overview of my integration framework. 

Layers of Integration Framework 

 I will be using and extending both Sealey’s (2014) and Von Korff and Rebello’s (2012) 

frameworks for the layers of integration. Rather than referring to Sealey’s (2014) pre-layer of 

“orienting,” I feel Von Korff and Rebello’s (2012) layer of “quantity” better describes the design 

of my HLT. It seemed there was more involved in Sealey’s “function” layer, so we have broken 
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that up into two new layers. These layers are “variable upper bound'' and “accumulation 

function,” where in the variable upper bound layer, students conceive of the bound of the integral 

as something that can change. Then they can think of that varying bound as an input for some 

accumulation function.  

During the interviews and in preparing for analysis, we also found two more layers of 

understanding that did not fit well within any of the other layers. The first of these is a “chop” 

layer between quantity and product. This layer involves chopping the domain into intervals of a 

certain size, either macroscopic or infinitesimal. The other added layer is “net amount,” where 

students recognize that the added sum is a net change rather than a total amount. In summary, the 

layers of integration I used were quantity, chop, product, sum, net amount, variable upper bound, 

and accumulation function. A more in-depth description of student thinking in these layers can 

be found in Table 1 below. 

 I also draw on Zandieh’s (2000) and Roundy et al.’s (2015) frameworks for derivatives in 

my usage of numerical, graphical, and symbolic representations. Zandieh calls these “contexts,” 

as she argues that they do not represent the same concepts for students. However, in my 

conceptual breakdown, I believe these are representations of the underlying quantitative structure 

at the core of integration. Thus, they are actual representations rather than contexts in which to 

view the structure. Within each layer of integration, a student can represent process- or object-

level understanding. It is my goal in the HLT that students demonstrate understanding across all 

three representations.  

A Note on Macroscopic and Infinitesimal Levels 

 Von Korff and Rebello (2012) said that the jump from macroscopic to infinitesimal 

thinking can occur at any layer of integration. However, in my conceptual breakdown, the 
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infinitesimal jump would necessarily occur at the chop layer. For example, a student may think 

of infinitely skinny rectangles at the product layer, but that is due to the length of the interval of 

the domain and not the output height. This makes it seem like if a student is moving to the 

infinitesimal level, they have gone back to the chop layer and made their intervals smaller. 

Therefore, I have only included the infinitesimal level of thinking in the chop layer of my 

conceptual breakdown. A student could then carry this through to the other layers, reasoning 

about them similarly to before.  

Target Process-Object Student Thinking  

 The table below shows the operation-, process-, and object-level thinking a student would 

exhibit among the different integration layers and representations. The two purposes of the table 

are to illustrate to the reader the type of thinking I was looking for during the interviews, as well 

as to provide a guide for analyzing student work following the interview.  

Table 1 

Target Process-Object Student Thinking  

 Numerical  Graphical Symbolic 

Quantity Operation: Student can 
interpret the meaning of a 
set of values, e.g., a 4 is 4 
L/sec, rather than just 4. 
And this is associated 
with a particular value of 
time. 
Process:  Student 
recognizes that they 
could do this with any 
value, even the ones not 
present, without actually 
needing to interpret each 
one. 

Operation: Student can 
plot and interpret a 
point on the graph, e.g., 
the input as time and 
the output as the rate at 
that time. 
Process: Student 
recognizes that data 
points would exist 
between the graphed 
points, whether we 
know that data or not. 
Object: Student sees 
the collection of points 

Operation: Student 
interprets a single 
output for a single 
input, e.g., a rate at one 
time, R, at time t. 
Process: Student 
recognizes that there 
are different function 
outputs for different 
inputs, the output could 
change (or stay 
constant) for any of 
those inputs. 
Object: Student 
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Object: Student 
recognizes that all of 
these make up the 
function (typically, but 
not necessarily, a rate) at 
any given moment in 
time.  

overall as being the 
function of one quantity 
as a function of the 
other, e.g., rate as a 
function of time. 

understands the 
function notation as 
denoting all of the 
corresponding inputs 
and outputs, e.g., R(t) 
as the rate function at 
any given time, t. 

Chop Operation: Student 
subtracts two input 
quantities to find an 
interval of the domain. 
Process: Student 
recognizes they can find 
the difference between 
any two inputs as the 
output changes at those 
inputs, e.g., as the rate 
changes between two 
times, they can find the 
change in time. 
Object: Student sees 
each time interval being 
malleable and having a 
corresponding output as 
given by the data. 
 
The infinitesimal level 
makes calculations 
impossible, but students 
recognize that more data 
points provide them with 
smaller intervals of time. 

Operation: Student 
chooses a discrete 
segment length along 
the horizontal axis to 
examine the function 
output.  
Process: Student 
recognizes they can 
segment the horizontal 
axis into any size they 
want for the entire 
domain. 
Object: Student sees 
the intervals along the 
horizontal axis as 
having an output value 
associated with them on 
the graph (taking the 
left bound, right bound, 
average of the outputs, 
etc.) 
 
At the infinitesimal 
level, the student makes 
the discrete segments as 
small as they 
reasonably can on their 
graph. 

Operation: Student 
notates “change” using 
some kind of written 
inscription, e.g., 
writing 𝛥𝛥𝑡𝑡 to represent 
an interval of time. 
Process: Student uses 
“Δ” to consistently 
mean change, e.g., 
there is a change in 
time, 𝛥𝛥𝑡𝑡, between any 
time values in the 
domain.  
Object: Student sees 
𝛥𝛥[𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠] as 
inherently meaning a 
small change or 
amount of the quantity 
represented by the 
symbol corresponding 
to any change in time 
as the output changes. 
 
At the infinitesimal 
level, the student 
denotes the change in 
time as d[symbol], and 
conceptualizes this as a 
nonzero, infinitely 
small amount of the 
quantity represented by 
the symbol. 
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Product Operation: Student 
multiplies two quantities 
(such as rate and time). 
Process: Student 
recognizes that each 
interval will have a 
product, without 
necessarily needing to 
enact the computation.  
Object: Student 
recognizes the product 
found represents a small 
amount of the resulting 
quantity.  
 

Operation: Student 
uses a discrete segment 
along the horizontal 
axis and a height up to 
a point on the graph to 
draw a rectangle.  
Process: Student sees 
an interval as having an 
associated rectangle, 
without necessarily 
drawing it.   
Object: Student sees 
the area as a 
representation of the 
multiplication of the 
base and height 
quantities, producing a 
third quantity, which is 
the amount 
accumulated in that 
time interval. 

Operation: Student 
writes 𝛥𝛥𝑡𝑡 ∗ 𝑓𝑓(𝑡𝑡)(or 
other variables as 
determined by the 
student) to represent a 
specific computation. 
Process: Student 
recognizes that 𝛥𝛥𝑡𝑡 ∗
𝑓𝑓(𝑡𝑡) represents a 
product in an arbitrary 
interval, and this can be 
done for any interval in 
the domain. 
Object: Student 
perceives that asserts 
𝛥𝛥𝑡𝑡 ∗ 𝑓𝑓(𝑡𝑡) = 𝛥𝛥𝛥𝛥, or a 
small change in the 
amount of the resulting 
quantity.  

Sum Operation: Student adds 
the products they 
calculated. 
Process: Student can 
imagine summing the 
products, even if not 
necessarily calculated. 
Object: Students identify 
that the summation 
represents a change in 
amount over the interval. 

Operation: Student 
uses discrete segment 
lengths along the 
horizontal axis and a 
height up to a point on 
the graph to draw 
multiple rectangles. 
Process: Student 
imagines filling the 
graphical space with 
these rectangles, 
without necessarily 
drawing them in. 
Object: Student sees 
the summation of these 
rectangles as 
representing the amount 
over the entire interval. 

Operation: Student 
writes 𝛴𝛴 to mean 
“sum”.  
Process: Students use 
sigma notation to 
denote adding up every 
product, since they 
cannot all be written. 
Object: Student sees 
the symbolic, sigma 
notation as equaling the 
amount over the 
interval. 
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Net Amount Operation: Student adds 
the value of the integral 
to a previously existing 
amount of a quantity. 
Process: Student 
imagines that whatever 
value the integral 
produces can be added on 
to a previously existing 
amount of the quantity. 
Object: Student views 
the numeric integral 
result as being an 
“additional” amount of 
the quantity. 

Operation: The area 
under a graph 
corresponding to the 
integral is literally 
connected to an 
adjacent area. 
Process: The student 
imagines the portion of 
the area corresponding 
to an integral as being a 
part of the larger area 
under a curve. 
Object: The area is 
viewed as a 
representation of the 
“additional” amount of 
the quantity. 

Operation: Student 
notates the 
combination of the 
integral’s value to an 
existing amount, such 
as “A+B.” 
Process: Student sees 
the integral value as 
always potentially 
existing in conjunction 
with a previous 
amount, “A+∫.” 
Object: Student views 
the integral symbols, 
“∫” as a “net amount.” 

Variable 
Upper Bound 

Operation: Student 
calculates an additional 
product to add to a 
previously calculated net 
amount (thus extending 
the bounds of their 
integration). 
Process: Student 
envisions the process of 
the upper bound 
continually changing, 
even without computing 
the new value (i.e., as the 
bound extends, they will 
accumulate a little more 
of the amount). 
Object: The bound 
becomes an object that 
the student knows can 
change and be tracked as 
its own variable.  

Operation: Student 
adds an additional piece 
of area onto the original 
graph. 
Process: Student can 
imagine adding several 
additional rectangles. 
Object: Student sees 
the bound as being able 
to change continuously, 
corresponding to 
increasing area. 

Operation: Student 
writes definite integrals 
for varying bounds, 
choosing a new number 
for the bound each 
time. 
Process: Student sees 
the bound can be any 
of the domain values, 
places a variable in the 
integral bounds. 
Object: Student sees 
the integral expression 
with the variable bound 
as giving the 
accumulated amount at 
that point.  
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Accumulation 
Function 

Operation: Student 
calculates the 
corresponding 
accumulated amount for a 
given input as the 
“stopping point.” 
Process: Student sees this 
stopping point as being 
the input, which can 
become any value. They 
can reason about the 
behavior of the 
accumulated amount 
without running every 
calculation. 
Object: Student sees the 
accumulated amount as a 
function of the input 
variable.  

Operation: Student can 
plot an individual 
bound value with its 
corresponding 
accumulated value. 
Process: Student 
conceptualizes each 
point as a new bound 
that can be calculated 
and plotted. Using ideas 
of concavity, students 
are able to plot a rough 
sketch of the graph. 
Object: Student sees 
the graph as an entity 
itself that contains all 
the information about 
different amounts in 
relation to different 
upper bounds.  

Operation: Student 
writes A to represent 
the accumulated 
amount. 
Process: Student sees 
the output of A as 
being dependent on an 
input of x. 
Object: Student 
conceives the function 
A(x) equal to the 
variable bound integral. 
A(x) now means every 
accumulation at any 
upper bound.  
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CHAPTER THREE: THE HLT 

 The first purpose of this thesis is to create a hypothetical learning trajectory (HLT) for 

quantitatively understanding the definite integral and accumulation function using AUP. This 

chapter addresses this purpose by detailing the HLT that was created after reviewing the 

literature. I first explain what an HLT is and then describe the learning activities and the 

students’ theoretical progression meant to develop these concepts.  

 According to Simon (1995), an HLT consists of “the learning goal, the learning activities, 

and the thinking and learning in which students might engage” (p. 133). Clements and Sarama 

(2004) further emphasize the importance of the interaction of these three components. They 

further explained the HLT as descriptions of children’s thinking and learning alongside a 

hypothetical route of tasks that engender the desired ways of thinking to reach a mathematical 

goal (Clements & Sarama, 2004). However, an HLT is not unique for each mathematical idea 

and there are multiple hypothetical routes that could be successful (Simon, 1995; Clements & 

Sarama, 2004). Thus, my proposed HLT is only one possible route for understanding definite 

integrals and later accumulation functions. I do not argue it is the best or only way for students to 

understand, but that it is a useful route for students to take.   

 I will now define more specifically what I mean by each of the three components for the 

HLT. First, the learning goals are what I hoped students understand mathematically throughout 

the teaching sessions. I had overarching goals for the entire HLT, but also smaller goals within 

each lesson that will be described alongside the learning activities. The learning activities are the 

tasks and interview questions I presented to the students. Sometimes these activities involved 

shared contexts but viewed through another form of representation. While impossible to know 

exactly how students were thinking about these ideas, I attempted to capture it as best as I can by 
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studying their verbal, written, and gestural responses throughout the interviews. The route I 

anticipated students taking prior to the interviews will be described in conjunction with the 

learning activities.  

The first two lessons aim to develop the definite integral quantitatively, then the next two 

lessons are designed to extend this quantitative understanding to an accumulation function. The 

lessons on the definite integral draw heavily from Jones (2014; in press). In addition to his lesson 

materials, I have added a third set of problems dealing with the context of road construction. 

Also, through multiple pilot studies, I determined that the students focused less on the “area 

under a curve” conceptualization when the order of the questions was changed. As such, there 

are differences in the order of Jones’ materials and the way I will present the lesson materials in 

my study. The third and fourth lessons are my own academic contributions based on the existing 

literature.  

To begin, my overall learning goal was (a) to have students develop strong quantitative 

meanings for definite integrals through an AUP perspective, and (b) to extend this AUP meaning 

to accumulation functions and integrals through quantitative reasoning. My chart of the 

conceptual breakdown of integration describes how I imagined this quantitative meaning would 

develop. The target understanding that I aimed for students to achieve in the learning activities 

consisted of understanding each layer of integration at both a process and object level, making 

connections between that layer and the quantities in the context, and the ability to view that layer 

at an infinitesimal layer. The exception is the quantity layer, which does not have an 

infinitesimal scale in the framework.  

Smaller-scale learning goals also accompany each part of the HLT. The following 

describes the learning activities that are to take place in this HLT in the form of the tasks, 
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contexts, and activities that can be used in an actual lesson. As I describe the learning activities, I 

also describe the hypothetical route a student might take in developing an understanding of 

definite integrals and accumulation functions, as they engage in these activities. These routes 

will each be summarized with a figure following the description. These routes are not meant to 

suggest students would spontaneously develop these ideas themselves. They are highly 

dependent on the structure of the learning activities and the questions asked by the researcher. 

For example, the interview questions prompt students to create a graph after completing certain 

work. Students would likely not create this graph otherwise. Therefore, these are anticipated 

routes I would expect students to take as guided by the interviewer.  

As this is a hypothetical trajectory planned prior to the interviews, I use the future tense 

in these lessons as I describe the thinking students might do. This portion of the thesis does not 

indicate exactly what thinking occurred, as that follows in the results. Note that the map figures 

used to show the trajectories do not always have the numerical, symbolic, and graphical 

representations in the same order across the top of the charts. This was done in order to clean up 

the way the arrows traced through the graph to prevent too much overlap or clutter.  

Lesson One 

Finding Amount Using Constant Rate 

To begin, I will present students with the following context: “A fuel pipe leading to a 

tank has a device on it that records the fuel’s flow rate through the pipe. Over a 4-minute 

interval, the flow rate is 10 liters per minute.” 

Key Questions: 

1. What quantities are part of this context? What are their units?  

2. Can we determine the amount of fuel in the tank after the 4 minutes? 
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3. Were we given any information about the tank before the 4-minute interval 

occurred?  

4. What symbols would you use to write the computation you made in this problem? 

This is meant to focus attention on quantity from the start of the interview. Also, the 

constant rate is a much easier situation to deal with than a varying rate. It will help to have dealt 

with the quantities in this easier context as the situation becomes more complex. I anticipate 

students will have little difficulty identifying the quantities of time, flow rate, and fuel amount. I 

also anticipate students will say that there are 40 liters in the tank, which may or may not be 

accurate. In pilot studies, each student multiplied the 10 L/min by 4 minutes to get 40 L, but they 

did not account for any fuel that might have been in the tank prior to the 4-minute interval. 

Question (3) is meant to draw attention to a possible initial amount if students do not recognize 

that possibility. Students could then determine the 40 liters is what has been added to the tank 

regardless of the beginning amount. After this discussion, I will tell the students that we will 

assume from this point forward that the tank had 9 L before the 4-minute interval. The reason for 

this is to keep this initial amount in their minds throughout each problem.  

Figure 3 below shows the path I anticipate students to take towards understanding. The 

solid dots denote both a process- and object-level understanding of the cell, which includes the 

ability to connect that layer back to quantities from the given context. The “S” indicates where I 

anticipate students beginning in the framework and the “E” indicates where I think they would 

end their work in the particular context. Using the given data, students would likely calculate 

numerically first, then translate their work to symbols when prompted by the interviewer.  
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Figure 3 

Anticipated Student Trajectory for Initial work in the Constant Fuel Rate Context 

 

Developing the Riemann Structure  

 Following the constant rate fuel context, I ask students to consider a similar situation 

where the fuel flow rate is not constant. Specifically, where R is a function of time, R(t). I also 

give students the information that at 𝑡𝑡 = 0, the rate is 𝑅𝑅(0) = 18 𝐿𝐿/𝑠𝑠𝑖𝑖𝑖𝑖. 

Key Questions: 

1. Can I multiply 18 L/min by 4 minutes to get the amount of fuel? 

2. Does multiplying 18 by 4 give me any useful information? 

3. What might I need to do to better approximate how much fuel was added to the tank over 

the 4 minutes? 

 I anticipate students will see the problem with using 18 multiplied by 4 since the rate is 

not constant. The point of question (2) is for students to see that this product does give us some 

estimate of the fuel, but it is not very precise. In pilot studies, students reasoned about how they 

believed the rate would either slow down or speed up based on their real-world experiences. This 

leads to the obvious need for more detailed information about the rate throughout the time 

interval, which I provided with the chart below. Specifically, the goal of my questions is to guide 

students toward the actions they will need to do in order to calculate an approximation.  
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Table 2 

Table of Values for the Varying Fuel Rate Context 

t (min) 0 1.25 2 2.5 3 3.75 4 

R(t) 
(L/min) 

18 12 7 6 4 3 2.5 

  

Key Questions: 

1. Can we find the total amount of fuel now, assuming it still began with the same amount 

as before?  

2. Is your answer the exact amount? What assumptions are you making about R(t) that leads 

you to that answer? 

3. How would you symbolically represent what you calculated with the varying rates?  

4. What has changed between the procedure with the constant rate and your procedure for 

the varying rate function? 

By asking them to identify differences in the procedure between constant rate and 

varying rate, I am trying to get them to conceptualize the steps that make up the process-level 

understanding. Students will not likely be at this stage yet but seeing a bigger picture may help 

them begin to interiorize these operations into a process. I also begin to establish part of the 

symbolic representation here because it naturally flowed with the numerical representation. 

In order to symbolically represent the summation of the rates, students may need some 

short instruction about sigma notation. My goal is for them to informally write the idea of adding 

up products of 𝑅𝑅(𝑡𝑡) ∗ 𝛥𝛥𝑡𝑡, then I can introduce the symbol 𝛴𝛴 to mean adding up every product we 

could have. Once 𝛴𝛴 𝑅𝑅(𝑡𝑡) ∗ 𝛥𝛥𝑡𝑡 is established, I can then demonstrate to students how to denote the 

indices in summation notation. Again, my focus is more on the quantitative structure of the 
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symbols than the sigma notation, so this instruction will be kept brief.  

 The anticipated trajectory in Figure 4 shows a similar path as the constant fuel rate 

context, but with the added steps of chop and sum since there are more rate values to consider 

than before. I anticipate students to work numerically through the entire problem, then I will ask 

them to translate their work to symbols. 

Figure 4 

Anticipated Student Trajectory for Initial Work in the Varying Fuel Rate Context 

 

Next, I will ask students to return to the constant rate of change context and to sketch a 

graph of R as a function of time. It is tempting for students to instead draw the graph of fuel 

amount, or the change in fuel, over time. If this happens, I will redirect them to the question and 

ask them to first label the appropriate axes for the graph. After graphing this context correctly, 

students will then graph the context with a varying rate.  

Key Questions: 

1. How do you see 10 𝐿𝐿/𝑠𝑠𝑖𝑖𝑖𝑖 ∗  4 𝑠𝑠𝑖𝑖𝑖𝑖 = 40 𝐿𝐿in the graph? 

a. Where is 10 L/min on the graph? 

b. Where is the 4-minute interval on the graph? 
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2. Do we know what the rate is between the times given on the chart?  

a. What would the graph look like if we assume the rate remained constant until the 

next data point? 

b. Do you think it’s likely that the graph would really look like this? 

3. How do you see the products that you calculated earlier in the graph? (Point to a specific 

product, like 18 𝐿𝐿/𝑠𝑠𝑖𝑖𝑖𝑖 ∗  1.25 𝑠𝑠𝑖𝑖𝑖𝑖) 

4. What does each rectangle on the graph represent? What are the units? 

a. Why are the units not squared, like the units of area normally are? 

5. What do all the rectangles represent together? 

6. How can we get a more accurate total for the amount of fuel? 

 Now my goal is to introduce students to graphical representation so they can make 

connections between the different representations without relying on the area under the curve as 

their core understanding. I ask students to explain what the rectangles represent because I want to 

assess their level of understanding at the product level. I also ask about the summation level, 

which may still be developing at this stage of the lesson. My goal is that through their previous 

numerical work, they can draw parallels to reason about the graphical representation.  

 Figure 5 shows the trajectory of students moving through the integration layers in the 

constant fuel rate context with a graphical representation. The lighter color of the dot indicates 

previous understanding of the cell has been shown, whereas the darker color is the trajectory of 

this specific portion of the lesson. Figure 6 shows a similar trajectory with the varying fuel rate, 

with one notable difference—after moving through each layer from quantity through net amount 

graphically, students would return to the chop layer as they reason about how they could produce 

a more accurate estimation of the net amount of fuel. By drawing more rectangles within the 
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interval, they can get more accurate. By prompting them to continue increasing accuracy, it is 

intended that students conjecture that chopping the time into infinitesimally small pieces will 

produce the exact net amount.  

Figure 5 

Anticipated Student Trajectory for Continuing Work in the Constant Fuel Rate Context 

 

Figure 6 

Anticipated Student Trajectory for Continuing Work in the Varying Fuel Rate Context 

 

Note: The * denotes a jump to the infinitesimal level. 
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Building the Limit Idea 

Table 3 

First Option for Increasing the Number of Data Points 

t 0 1.25 2 2.25 2.5 3 3.25 3.5 3.6 3.75 3.9 4 

R(t) 18 12 7 6 6 4 4 4 3 3 3 2.5 

 

Table 4 

Second Option for Increasing the Number of Data Points 

t 0 0.5 1 1.25 1.75 2 2.25 2.75 3 3.25 3.75 4 

R(t) 18 21 16 12 9 7 6 5 4 4 3 2.5 

 

Key Questions: 

1. Now that we know we need more information, which of these two tables would give us a 

better approximation? Why? 

a. Sketch a rough graph of R(t) based on each of the two charts. Do you notice 

anything about the intervals? 

2. How can we increase the accuracy of our calculation even more? Can you write this 

symbolically? 

3. There will always be physical limitations, but let’s assume that we can be infinitely 

accurate with our measurements. How can we write that summation symbolically? 

4. Why can’t the time interval be zero?  

5. To summarize, can you explain how this notation connects to both the calculations you 
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made, and also to the graphs you drew? 

 The purpose of the two tables is for students to confront the idea of how to shrink the 

intervals. Only shrinking the middle intervals will not improve the accuracy of the estimate. My 

goal is that this line of thinking helps them conceive the process of shrinking all the rectangles 

graphically and connecting that back to the quantitative structure that the area represents. The 

symbolic representation will be key here because that is where students can apply the limit 

notation to their work. It also is the only representation where their answers can be exact, as it is 

not possible to find the exact answer given the numerical data.  

Question (4) is meant to help avoid the “collapsing” metaphor students may use for limits 

(Oehrtman, 2009). This means that they imagine the width of their intervals collapsing into zero. 

From a quantitative perspective, this is problematic because then the resulting product will be 

equal to zero. As such, this will be a good point in the interview to give them a brief overview of 

the history and development of infinitesimals. Then I can establish a quantitative approach much 

like Ely’s (2017) where the symbol dx can represent an actual size of the interval, leading nicely 

to the development of integral notation. 

Developing Integral Notation 

 This will require instructor explanation since students cannot create the integral notation 

without this guidance. However, after introducing the idea of dx as an infinitesimal piece of x, I 

can ask students how we can represent that piece in our context. Rather than x, we have been 

using the variable t. So, rather than our previous symbolic notation of 𝛴𝛴 𝑅𝑅(𝑡𝑡) ∗ 𝛥𝛥𝑡𝑡, we now can 

use dt in place of 𝛥𝛥𝑡𝑡. Then, rather than “𝛴𝛴 ,” we use the new symbol of “∫” to denote the sum of 

these infinitesimal products. We need to somehow identify the interval bounds, so I will show 

students where the bounds are placed on the integral. Therefore, our integral structure is 
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∫ 𝑅𝑅(𝑡𝑡)𝑑𝑑𝑡𝑡𝑏𝑏
𝑎𝑎 . My final task for students is for them to summarize how this integral notation aligns 

with the work they have done that day.  

Lesson Two 

Reinforcing Ideas and Identifying Thinking in Road Construction Context 

The goal of the Road Construction context is to solidify the idea of AUP and as a way for 

the interviewer to see the students applying the ideas from the previous lesson in a new context. 

Students were given a simpler version first to help situate themselves in the new context and to 

identify the relationship of the quantities before complicating the context. This simpler situation 

will make the product layer of integration clearer, thus reminding them of the previous interview 

and setting them up for the rest of the lesson. 

Figure 7 

Constant Weight Road Construction Context 

Engineers want to build a road connecting two cities, but while building they come across a 
dirt mound that needs to be removed.  

 

 

Key Questions: 

1. What do we need to know in order to find the weight of the dirt the engineers need to 

remove? 

2. Do we know what the front of the mound looks like?  

Impose the units of pounds/ft on the y-axis, and feet on the x-axis. 
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3. Why is the shape of the mound the same as the graph of pounds of dirt per foot as a 

function of horizontal distance?  

4. Does this new graph show me how tall the mound is? 

5. Why would we need a pounds per foot graph to solve this problem? 

6. How is your calculation similar to other work we have done? 

7. If we were to cut up the graph into rectangular slices, what would the area represent? 

What would be the units? 

 The goal of this task is to orient students to the graph we will be using in the task below. 

The units of pounds per foot as the dependent variable may be hard to conceive, so I introduce it 

within a simplified context. Then, once students have made sense of the quantities, they can 

work productively on the next task.  

 Figure 8 shows the trajectory as students may begin within any representation here and 

may also transition between them. Based on pilot study work, it seems most likely that the 

transitioning among different representations would occur at the quantity layer, but there may be 

more transitioning across representations than shown in the anticipated path. I placed in E in 

every cell of the “net amount” row to indicate students could end in any representation 

depending on their preferences. It is my goal that students can describe the layers in all three 

representations, so I may ask questions prompting them to explain their work again through the 

lens of a different representation.  
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the exception, as he wrote a general integral first with an x as the upper bound (Figure 31). He 

initially wrote 10𝑡𝑡 𝑑𝑑𝑡𝑡inside the integral. When asked what the rate would be after two minutes, 

he realized his mistake and erased the extra t, as his work in Figure 31 shows. His partner was 

working numerically from the start like the other groups did, then began working with Brian 

once he was ready to work symbolically. 

 When prompted by the interviewer, they could explain how this would appear 

graphically, where the fuel increased at a constant rate producing a linear graph. In fact, this 

confused the students in Group A. Alan said, “I didn't see the need and I didn't really make the 

connection and make an integral. I just recognized it's a very simple rate. It's going to be some 

sort of linear line that I can follow. And I'm just calculating a certain specific point.” Alice then 

doubted their previous work, questioning the need for an integral in the first place. The students 

were not incorrect here—since the rate was constant, the net amount of fuel could be calculated 

without integral notation. However, looking back at their equation, they recognized their set up 

still made sense. We discussed how you could still chop up the interval into infinitely small 

intervals and find the amount accumulated in that time, even if the rate is constant.  

Figure 30 

Path Through the Framework for All Groups in the Constant Fuel Rate Context 
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Figure 35 

Cassie’s Graph of the Accumulated Fuel 

 

 

Accumulation in the Road Construction Context 

 Students then seemed to have an understanding of the underlying process for the 

accumulation function graph. Moving to the Road Construction Context, students used a similar 

tactic of assessing the relative size of the added rectangles as the distance increased. Groups A 

and B had similar trajectories (Figure 36), where they first began with numerical calculations for 

various bounds on the integrals, representing this symbolically, then graphing the accumulated 

dirt.  

Group C differed slightly, in a way that was also different from the anticipated trajectory. 

Their trajectory is summarized by Figure 37. They began and ended in the graphical 

representation but had lots of movement between the representations throughout both the 

variable upper bound layer and accumulation function layer. For example, while they began with 

the given graph, Cassie quickly moved to a symbolic representation, saying, “We need to write 

an integral right? If we want to get the exact amount.” They then reasoned numerically about if 
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their integral included the “pit” on the graph, or if they needed to subtract a separate integral to 

represent filling the “pit.” Calleigh says their integral already covers this subtraction, and Cassie 

added, “So it'll like add the negative, which will make it even out.” This thinking was similar to 

that of the other students, it just occurred closer to the beginning of Group C’s work on the task. 

The different trajectories do not seem to impact the kind of understanding students gained. All 

ended with fairly accurate graphs of the accumulated amount of dirt and showed evidence they 

understood the underlying process to create the graph. 

Figure 36 

Path Through the Framework for Groups A (Left) and B (Right) in the Varying Weight Road 

Construction Context 
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Figure 37 

Path Through the Framework for Group C in the Varying Weight Road Construction Context 

 

 While creating the graph of the accumulated dirt, students began making connections 

between their new graph and the original graph of the rate. An example of Brian’s work is shown 

in Figure 38. The marked 15 and 22 on his graph represented amounts of feet along the 

horizontal axis, as he explained verbally in the interview. 
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Figure 38 

Brian’s Graph of the Accumulated Dirt 

 

 

Brian and Brad (along with the two pairs) recognized that when the given function had an 

output of zero, no dirt was gained or lost which would correspond to plateauing in their sketched 

graphs. These are the points at 15 and 22 on Brian’s graph (Figure 38). When asked at what point 

on the accumulation graph would correspond to gaining the most dirt for a given stretch of 

distance, Cassie answered, “It'd be the highest point on it. Wait no. It would be the steepest 

point.” Which was simultaneously confirmed by Calleigh. All three pairs made these 

observations. 

Revisiting the Volume of a Solid Context 

 There was some time at the end of the fourth interview, so I referred students back to the 

Volume of a Solid Context to see how they interpreted accumulation functions in that context. At 

first glance, students recognized that if we were to graph the accumulation function 𝐻𝐻(𝑋𝑋) =

∫ 𝛥𝛥(𝑥𝑥)𝑑𝑑𝑥𝑥𝑋𝑋
0 , the volume would increase as X increases. However, there was some uncertainty 

about the concavity of the function. Below is an exchange from Group C that illustrates this. 
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Cassie: “H(X) is the volume of the shape. The volume as a function of how far you’ve 

gone along.” 

Interviewer: “Oh, okay. So it’s not necessarily a set point?” 

Calleigh: “No because X is a variable. You don’t know what X is, it could be as long as 

you want it to be.” 

Interviewer: “Can you draw for me the general shape of the graph of H? 

Cassie: “Well, volume starts off small and then it just gets bigger. It's pretty steady. So 

wouldn't that just be like, it starts at zero.” 

Calleigh: “Oh wait...doesn't it...just go like that [draws a linear positive slope]. 

Cassie: “Yeah. Wait, would it be exponential?” 

I presented the students with three different increasing functions—a curve with negative 

concavity, a curve with positive concavity, and a line. Both students chose the curve with 

positive concavity. Calleigh described why that shape made the most sense, saying, “You said x 

is going that way [to the right], So it's going to start with a smaller sliver and then slowly the area 

is going to get bigger for every sliver.” Alice described it similarly: 

So as the area increases, the volume will increase at a larger rate because the—I think I 

agree with what [Alan] said. I think he said it really well. But we know that the volume is 

going to get exponen—not exponentially. It's going to get larger because there's going to 

be a larger area because it's going to, because each section is going to continue to get 

bigger. 

Note that all six students in the study described this curve as being exponential, and while the 

function is not exponential, that was not the mathematical understanding being assessed. In 

Group A, this misconception was addressed due to a little extra time in the interview.  
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These responses were very promising and showed the students were able to translate their 

accumulation function work into this other context. 

Toward the Fundamental Theorem of Calculus 

 Towards the end of the fourth interview, the students were beginning to conjecture the 

connection between integrals and derivatives. I began asking students about connections between 

the graph they were given and the accumulation graph they drew. Below is an example of this 

questioning with Group B, but all three groups had similar exchanges. 

Interviewer: “What about when [the given graph] is negative? What do you notice about 

your graph?” 

Brad: “The slope was negative because it was going down.” 

Interviewer: “What do you notice when [the given graph] is positive?” 

Brad: “Um, the slope was going up.” 

 Interviewer: “What does this tell you?” 

 Brad: “When it’s positive it goes up, when it’s negative it goes down.” 

 Interviewer: “What does this tell you about the two graphs in relation to each other?” 

Brain: “It means that, it means that the value of our initial graph is kind of providing the 

instantaneous slopes of our graph right here.” 

 There had not been previous mention of derivatives or instantaneous rates of change 

before this point. When working with the Road Construction Context, Alice said, “So this here 

[the given graph] is the derivative…we found the original function...So there's a way to go, like 

once you have a derivative, there's a way to like go back from it.” Cassie called the process they 

had just done of graphing the integral “reverse differentiating.” It should be noted that the graph 

given to students did show a rate function, however, this was not the justification students were 
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using to say it was the derivative of their graphs. In fact, after conjecturing the connection 

between the graphs, Calleigh said, “Oh wait yeah. That makes sense, duh. Wait, we literally 

could have figured that out.” The students later realized they could have drawn this conclusion 

based on the units of the graph after they developed their hypothesis.  

The students were right at the cusp of constructing the Fundamental Theorem of Calculus 

on their own accord, and they showed a lot of excitement over the connections they were 

making. This can be summed up by Calleigh’s statement: “Oh it's like if you have the derivative, 

doing it the other way around, oh my gosh. So like the derivative, if you started with the original 

function, you have the derivative definition, but then if you start with the derivative, you use the 

integral to find the original function!”  
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CHAPTER SIX: DISCUSSION 

In this chapter, I will first summarize my findings to answer my research question. Then, 

I will discuss how this study connects and builds upon the literature. Finally, I will address the 

limitations of the study and potential ideas for further research.   

Answering the Research Question 

 My research question was: as a student progresses through the HLT, what understandings 

do they have of the definite integral and accumulation function? According to the data, the 

students had process- and object-level understanding of each layer of integration within each 

representation at some point in the interview process. They also regularly made connections back 

to quantities in the context. The actual routes throughout the layers and representations differed 

slightly from the original HLT, but mostly in movement between representations and less in the 

movement between layers. For example, see the anticipated path for the Varying Fuel Rate 

Context in Figure 39 as compared to the actual paths in Figure 40. The overall paths are identical 

to the anticipated path, with some retracing movements occurring between the layers.  

Figure 39 

Anticipated Path Through the Framework for the Varying Fuel Rate Context  
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Figure 40 

Actual Paths Through Framework for the Varying Fuel Rate Context in Order of Group A, B, 

Then C 

 
 
 The most drastic differences in the anticipated and actual paths occurred with Group B, 

as they did not attend to numerical calculations in their Varying Weight Road Construction 

Context work as thoroughly as the other groups. Due to time constraints and their previous 

evidence of numerical understanding, I did not push this pair away from their graphical and 

symbolic work because they were making great connections.  

Figure 41 

Anticipated Path Through the Framework in the Varying Weight Road Construction Context 

(Left) Compared to the Actual Path for Group B (Right) 
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 Other than this instance, only small deviations from the anticipated path occurred, which 

is to be expected. For example, comparing the paths for Groups A and C for the same Varying 

Weight Road Construction Context show that each group began in different representations 

based on what felt most comfortable and what came naturally out of the interviewer’s questions. 

This suggests in teaching the lessons, students may direct the lesson towards a different order of 

representations. However, they can make connections across representations when prompted. 

Figure 42 

Actual Paths Through the Framework for Group A (Left) and Group C (Right) in the Varying 

Weight Road Construction Context 

 
 
 Utilizing each representation was crucial for students to have a complete view of the 

underlying quantitative structure of the integral. Students drew on all three representations 

frequently to be able to fully describe what an integral represented. When they were insecure or 

incorrect about their answers, referring back to the initial quantity layer helped them to make 

sense of their work. Overall, the HLT seems to be a viable pathway for student understanding of 

the definite integral and accumulation function. 
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 Jones (2015a) found that an “adding up pieces” (AUP) perspective of integration was 

most useful for interpreting real-world integrals. The students in this study constructed a rich 

AUP meaning for definite integrals. For example, in lesson three when discussing the Volume of 

a Solid Volume Context, Brian described, “So we're adding up all of the little volume discs from 

the x values of zero to 83.” Even when using the idea of the integral as the area under a curve, 

when pressed the students could explain how they were adding up small bits of area to get the 

larger area. Rather than thinking of the entire area under the curve as one piece, they were still 

thinking of adding up bits to make up that area.  

When students were only thinking of the integral as the area under a curve, they often lost 

sight of the quantities as well. In the same Solid Volume Context, Alice first described the 

integral as “the area of this kind of this cone from zero to 83 [feet].” However, she quickly 

realized when looking back at the quantities that the multiplication of feet-squared by feet should 

produce a volume. This led her to thinking about the discs of volume being added up, rather than 

her initial “area under a curve” interpretation. Alice seemed to be somewhat of an anomaly in 

this study. The only qualification given for participation in the study was to have no previous 

calculus experience, but she frequently brought up concepts from a college physical course 

throughout her work. She was the only student who had any preconceived notions of integrations 

influencing her thinking, which may be why she was more inclined to think of areas under a 

curve. However, she was still able to make sense of the integral through AUP with minimal 

questioning from her peer or the interviewer. 

Students generally moved through the process and object levels of understanding quickly 

in the first five layers of integration (quantity, chop, product, sum, and net amount) in the first 

two lessons, whereas the last two layers (variable upper bound and accumulation function) took 
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up two lessons. I believe this to be the case because the underlying mathematics in multiplying 

two quantities and adding the products is not new content for calculus students. The integral is 

based on simple mathematical ideas. The concept of “chopping up” the quantities was not likely 

something students had seen before, which may explain why more significant mental work was 

spent moving through that layer in the first two interviews. Likewise, varying the upper bound 

and creating an accumulation function were new concepts for students and took longer for them 

to develop their understanding. 

Contributions of the Study 

The first contribution of this thesis to the literature is the inclusion of various 

representations in an integration framework. I have adapted the representations or contexts from 

Zandieh’s (2000) and Roundy et al.’s (2015) framework for derivatives into a corresponding 

framework for integration built from Sealey’s (2014) and Von Korff and Rebello’s (2012) 

previous integration frameworks. This can allow us to more closely examine the different ways 

students reason about integration among numbers, graphs, and symbols. The layers in Sealey’s 

(2014) framework for integration could be clearly seen in the students’ verbal explanations and 

written work. The added layer of “quantity” by Von Korff and Rebello (2012) also played a key 

role in the students’ work. The data shows significant work being done in each of these layers on 

the way towards understanding the definite integral and accumulation function.  

In addition to bringing these frameworks together, this integration framework adds two 

additional layers of integral understanding. Building from Jones’ (2014; in press) work on the 

action of “chopping '' in AUP, I have incorporated a “chop” layer between quantity and product. 

A critical step for understanding in the interviews was for students to realize that they were 

working with an interval of their domain quantity rather than the quantity itself. For example, for 


