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abstract

Coordinated Persistent Homology and an Application to Seismology

Nickolas Brenten Callor
Department of Mathematics, BYU

Doctor of Philosophy

The theory of persistent homology (PH), introduced by Edelsbrunner, Letscher, and Zomoro-
dian in [1], provides a framework for extracting topological information from experimental
data. This framework was then expanded by Carlsson and Zomorodian in [2] to allow
for multiple parameters of analysis with the theory of multidimensional persistent homology
(MPH). This particular generalization is considerably more difficult to compute and to apply
than its predecessor. We introduce an intermediate theory, coordinated persistent homology
(CPH), that allows for multiple parameters while still preserving the clarity and coherence
of PH.

In addition to introducing the basic theory, we provide a polynomial time algorithm to
compute CPH for time series and prove several important theorems about the nature of
CPH. We also describe an application of the theory to a problem in seismology.

Keywords: persistent homology, multidimensional persistent homology, coordinated persis-
tent homology, multifiltrations, time series
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Chapter 1. Introduction

1.1 Introduction

The theory of persistent homology (PH), developed by Robins [3], Edelsbrunner [1], and

Carlsson [4], is a relatively new tool for applying topological ideas to data analysis. This

theory utilizes the algebraic structure of homology to describe how the topological properties

of a dataset change relative to some parameter. Of particular importance in this theory is

the idea of stability: a small change in the original dataset will only produce a small change

in the result. This stability allows us to determine what topological features are likely to

be real features of the dataset, by considering how much the original dataset would need to

change in order to remove such a feature.

More recently, Carlsson and Zomorodian, in [2] and [5], introduced a generalization of

PH to involve multiple parameters simultaneously, the theory of multidimensional persistent

homology (MPH). They also showed that any generalization of persistent homology to mul-

tiple parameters must compromise on at least one of the following properties: invariance,

completeness, or discreteness. The rank invariant was then put forth as a good compromise,

being a discrete invariant that agrees with PH in one dimension. Cerri et al, in [6], construct

a metric on the space of rank invariants, so that this distance is also stable.

Our primary result is a new generalization of PH, which we call coordinated persistent

homology (CPH). The compromise we make is to consider invariants on a different class

of objects than MPH, which allows us to create a complete, discrete invariant that agrees

precisely with PH in the single dimensional case, but is easier to compute and analyze

than MPH in higher dimensions. We provide a polynomial time algorithm for computing

CPH, show that the output is stable, and demonstrate an application of this theory to

a classification problem in seismology [7]. The results of this application suggest several

additional interesting characteristics of the theory and these are presented as conjectures at

the end.
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1.2 Outline

In Chapter 2, we will give an overview of our motivation and approach as well as some

relevant basic facts that will be of use to us.

In Chapter 3, we will review the basic concepts of persistent homology and multidimen-

sional persistent homology. The concepts will be presented in close parallel to our develop-

ment of coordinated persistent homology, in order to highlight the similarities and differences

between the three theories.

In Chapter 4, we will define a labelled linear graph and show how to construct a certain

total order, which are the objects of study under coordinated persistent homology. We will

prove that these constructions are stable in a certain sense, that is to say, small changes in

the input will produce small changes in the resultant objects.

In Chapter 5, we will provide the algorithm for computing coordinated persistent homol-

ogy. We will prove that the algorithm is well-defined and agrees with persistent homology

when applied to single dimensional data. We close this chapter with a stability result for

the output of the algorithm.

In Chapter 6, we discuss an application of coordinated persistent homology to a classi-

fication problem in seismology. The full project is detailed in [7], but we will focus on the

mathematics involved, with special emphasis on the interpretation of the results. We close

this chapter by formalizing certain conjectures about coordinated persistent homology that

follow from several observations from this study.

2



Chapter 2. Background Information

We assume the reader has a basic knowledge of the real numbers, denoted R, and p-

dimensional real space, Rp. We will first introduce multifiltrations, which are the basic

object of study in persistent homology, multidimensional persistent homology, and coordi-

nated persistent homology, and then we will discuss the desired output of these theories. We

will close this chapter with two sections on order theory that are necessary to describe the

coordinated persistent homology algorithm.

2.1 Motivation

Consider any experiment in which we make a set of p measurements at fixed times. Assuming

these measurements are each numeric, we can think of this as taking samples of a curve

immersed in p-dimensional real space, Rp. Let T be the set of times at which measurements

are made and choose an order for the measurements. Then the results of our experiment are

encoded as a function f : T −→ Rp, such that the projection to the ith coordinate gives

the ith measurement taken at time t.

Given such a function, we naturally obtain a multifiltration, as in [2], by using each dimen-

sion as a parameter. More precisely, a multifiltration is a collection of objects {Au|u ∈ U ⊂ Rp}

together with maps φvu : Au → Av for pairs u, v ∈ Rp where the coordinates of u are less than

or equal to the coordinates of v, such that φuu is the identity map on Au and the following

diagram commutes whenever the maps φvu, φ
w
u , φ

x
v , φ

x
w are defined:

Av Ax

Au Aw

φxv

φvu

φwu

φxw

These conditions imply that whenever φxw and φwu are defined, we have φxu = φxw ◦ φwu .

Given any topological space X and a function f : X → Rp, we may obtain a multifiltration

from Xu = {x ∈ X|f(x) has coordinates less than or equal to u} with inclusion maps for φvu.

3



Example 2.1.1. Suppose we have recordings of birds vocalizing, with 2 audio channels for

stereo sound. Then we can treat each audio channel as a separate measurement, giving us a

function f : T −→ R2.

This gives us a multifiltration based on the amplitude of each channel,

X(α,β) = {t ∈ T |f(t) = (a, b), a < α, b < β}.

In our example, f(t) = (a, b) means that the first audio channel has amplitude a and the

second channel has amplitude b. Then X(α,β) consists of all times when each channel is below

the associated threshold and we have inclusion maps from X(α,β) to X(γ,δ) whenever α ≤ γ

and β ≤ δ. Studying this set of times is analogous to studying the frequencies present in the

recording.

Example 2.1.2. Suppose we record the daily open, high, low, and close values for a stock

over the course of a month. Then we can obtain a function f : T −→ R4 by choosing an

order for those 4 values. For instance, if we order the values as listed above, f(t) = (a, b, c, d)

means that on day t of our recording, this stock opened at a, had a high value of b, a low

value of c, and closed at d. Of course, there are 4! = 24 ways to choose the order of our

coordinates, but the multifiltrations we obtain correspond naturally to each other. A more

interesting variation comes from changing the order we use for each coordinate. For instance,

we could consider

X(α,β,γ,δ) = {t ∈ T |f(t) = (a, b, c, d), a < α, b < β, c > γ, d > δ}.

In this case, as we increased γ or δ, we would have fewer days included in X(α,β,γ,δ), consid-

ering only the days where the low value and closing value were sufficiently high. Accordingly

we have inclusion maps from X(α,β,γ,δ) to X(α′,β′,γ′,δ′) whenever α ≤ α′, β ≤ β′, γ ≥ γ′ and

δ ≥ δ′. See Chapter 7 for a visualization of such data using two parameters at a time, as

well as a walkthrough of CPH on the same example.

4



Example 2.1.3. Suppose that we have obtained seismograms for a given period of time,

which is the setting for [7]. In particular, suppose we have ground motion information

in the east-west direction, the north-south direction, and the vertical direction. Then our

seismogram is in fact a function f : T −→ R3.

In this instance, though, we could consider a more interesting function. Suppose we

know the direction from our recording instrument to the site of a seismic event that occurred

during our recording time. We can then define the radial axis to be the projection of that

direction onto the plane perpendicular to the vertical axis, and the transverse axis as the

direction perpendicular to both the radial axis and the transverse axis. We could then apply a

rotation to our data and obtain a new function g : T −→ R3 that gives the ground motion

information along the radial, transverse, and vertical axes instead. Figure 2.1 illustrates

a simplified seismogram curve, with both sets of axes, where the radial axis points in the

direction of the event.

North

East

Vertical

φ

Radial

Transverse

Figure 2.1: An Example Seismogram

This choice of function prompts us to consider how the multifiltration structures for f

and g compare, and subsequently how our analysis of these structures depends on our choice.

We will call a process stable if we can bound the difference in our analysis by a multiple of

distance between f and g. That is, a process is stable if we can define a distance on the

output and on the input so that the former is bounded by the latter.
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Many methods exist for studying such structures by reducing them first to single-dimensional

structures. Usually these methods involve fixing certain parameter values or calculating some

new parameter value from the original inputs. Of course, this requires knowing beforehand

the right choice for these parameter values or the correct formula for combining them. Mul-

tidimensional persistence and CPH bypass these concerns by considering each parameter

simultaneously and then applying persistence to analyze how the multifiltration changes

over every observed value of the parameters.

2.2 Approach

We seek to employ the general mathematics approach of creating a context-free tool for

studying the structure of a multifiltration. In particular, we follow a similar approach to [2]

by identifying multifiltrations using an invariant, a rule that associates equivalent objects

to equivalent multifiltrations. Of course, we would also like our invariant to assign different

objects to different multifiltrations. Such an invariant is called complete.

Two easy examples of invariants are the trivial invariant and the identity invariant. The

trivial invariant assigns the same object to all multifiltrations. This is an incomplete invariant

and cannot be used to distinguish the structure of a multifiltration. The identity invariant

assigns a multifiltration to itself. This is a complete invariant, but does not contribute

anything new to our ability to distinguish the structure of a multifiltration. The primary issue

with the identity invariant is that it preserves the context of the multifiltration. Accordingly,

we also desire our invariant to be context-free and, in order to actually compute the invariant,

finite. We shall follow the convention from [2] and call such invariants discrete.

We might now state our goal as finding a complete discrete invariant for multifiltrations.

However, [2] demonstrates that such an invariant does not exist for multifiltrations in general.

Therefore, we refine our objective in two ways. First, we consider only multifiltrations of

time-series as described earlier. Second, our classification will be for multifiltrations together

with a total order. A total order is a rule that decides how to compare any two objects in a

6



consistent manner. A partial order, by contrast, only allows comparisons for certain pairs of

objects. These concepts are explicitly defined in Section 2.3.

In a multifiltration where each parameter is ordered, the product order provides a natural

partial order: level (a1, a2, . . . , an) precedes level (b1, b2, . . . , bn) if ai ≤ bi for all i and for

some k, ak < bk. However, this rule does not allow us to compare, for instance, (1, 2, 3)

and (3, 2, 1), so this is only a partial order. If we denote the product order by ≺, then

(1, 2, 3) ≺ (1, 3, 3) and (1, 2, 3) 6≺ (3, 2, 1).

To obtain a complete and discrete invariant, we will choose a total order on the multifil-

tration that agrees with the product order in the following sense: if a ≺ b, then a is less than

b in the total order as well. The lexicographical order on a product space is one example of

a total order that extends ≺, namely, (a1, a2, . . . , an) is less than (b1, b2, . . . , bn) if ai < bi

the first time that ai 6= bi. For example, (1, 2, 3) is less than (1, 3, 3) and these are both less

than (3, 2, 1).

2.3 Orders

A weak partial order is a binary relation � that is reflexive, antisymmetric, and transitive.

That is to say, given objects u, v, w, (1) u � u, (2) if u � v and v � u, then u = v, and (3)

if u � v and v � w, then u � w. We obtain a strong partial order ≺ from � by defining

u ≺ v if u � v and u 6= v.

On the other hand, a weak total order is a weak partial order that is also connex, that is

to say, for any u, v, either u precedes v or v precedes u. We obtain a strong total order from

a weak total order in the same way we did for the partial orders: u < v if u ≤ v and u 6= v.

As explained above, the lexicographic order on Rp is a strong total order.

Connecting these two types of orders is the concept of extending an order. We say that a

total order extends a partial order if u preceding v in the partial order implies u precedes v in

the total order. For example, with � as the product order on Rp and �· as the lexicographic

order, we see that u � v implies u �· v.

7



It is important to note that in an application, � does not depend on the order we have

chosen for recording measurements, since it considers all coordinates simultaneously. On

the other hand, the lexicographic order does respect the order in which we have recorded

measurements. In this sense, one may consider multidimensional persistence as the study

of multifiltrations given only the product order, while CPH is the study of multifiltrations

given a total order that extends the product order.

Before leaving the discussion on orders, we should also present the idea of an induced

order. Suppose � is an order on a set A and f : B → A. Then we say an order v on B

is induced by f from � if u v v implies f(u) � f(v). If it is necessary to indicate what

function is being used, we will write vf . Note that there are in general multiple orders that

are induced by the same function f , but we will not need to consider more than one such

order at a time.

With these notions in mind, we will adopt the following conventions: we will take the

product order as our partial order for Rp and use � to refer exclusively to this order. We

will use �· to denote a total order on Rp that extends �, and we will use v to denote a

partial order induced by �. Finally, for a particular choice of v, we will show that for any

�·, there exists a total order v· that is induced by �· and extends v.

2.4 Joins, Meets, and Scott Continuity

Given any partially ordered set, P , the join of a subset S is the least upper bound of S in

the given partial order, if it exists, and is denoted
b
S. The meet of S is the greatest lower

bound, if it exists, and is denoted
c
S. In particular, if we consider the product order on

Rp, and let πi denote projection to the ith coordinate, then

πi

(j
S
)

= sup{πi(a) : a ∈ S} and πi

(k
S
)

= inf{πi(a) : a ∈ S}.

For example, if S = {(1, 2, 3), (3, 1, 2), (2, 3, 1)}, then
b
S = (3, 3, 3) and

c
S = (1, 1, 1).

8



A subset S is called an upward directed set if for every pair of elements a, b ∈ S, there

exists some c ∈ S such that a and b both precede c. Now, given a function φ : Rp −→ Rp,

we say φ is Scott-continuous if for every directed set S ⊂ Rp, we have

φ
(j

S
)

=
j

φ(S).

For example, the map φ that swaps a pair of coordinates is Scott-continuous with respect to

the product order on Rp, while the map that negates each coordinate is not Scott-continuous

with respect to that order. The interested reader is referred to [8] for more details on Scott-

continuity and related concepts, though we will only need the definition of Scott-continuity

and the next definition for this paper.

Given functions f, g : T → Rp, we say that g is a Scott-adjustment of f if there exists

a Scott-continuous function φ : Rp → Rp such that g = φ ◦ f . We call the function φ the

Scott-adjuster. If φ is injective on the image of f , then we say φ is an injective Scott-adjuster.

9



Chapter 3. Classical Persistence Theories

In this chapter, we briefly review the major points from the theories of persistent homology

(PH) and multidimensional persistent homology (MPH). We will present the theories in

parallel with how we develop coordinated persistent homology (CPH), rather than give a

full exposition. The interested reader is referred to the excellent survey article [9].

3.1 Filtrations and Multifiltrations from Data

The first step in either persistence theory is to obtain a filtration or multifiltration. With

our notation for the product order �, we can restate the definition of a multifiltration as

follows. A multifiltration is a collection of objects {Au|u ∈ U ⊂ Rp} together with maps

φvu : Au → Av whenever u � v such that φxv ◦ φvu = φxw ◦ φwu whenever u � v � x and

u � w � x. A filtration is a multifiltration in which the indexing set U is a subset of R, and

so we will henceforth use the term multifiltration as the general term.

While there are many ways to obtain a multifiltration from data, one simple method is

to consider a function f : X → Rp, where X is a topological space representing the data

points and f measures some quantity of interest, and then define Xu = {x ∈ X|f(x) � u},

with φvu being the inclusion map. For example, we could consider a function that gave the

elevation and temperature of the surface of the earth at some fixed time given a latitude,

longitude. Then our function could be described as f : S2 → R2. In turn this would give us

a multifiltration depending on elevation and temperature. Of course, we usually either do

not such a function or we might not know which space best represents our data.

Because experimental data is discrete, we typically envision our domain as a simplicial

complex X with a 0-simplex for each data point and then including higher-dimensional

simplices as needed. Given the values of f on the 0-simplex, we must then extend the map

to any simplices that we introduce. While there are various methods for doing so, we will

limit our current discussion to a generalization of the Rips complex described in [10]. That

10



is, given a function f defined on the 0-skeleton of a simplicial complex, we extend f to the

entire complex by

f([x1x2 · · ·xk]) =
j
{f(xi)|1 ≤ i ≤ k}.

In other words, the value assigned to a k-simplex is the least upper bound of the values

on its faces, and so in turn it is the least upper bound of the values on its vertices. Our

corresponding multifiltration is then constructed from spaces Xu = {∆ ∈ X|f(∆) � u} with

the natural inclusion maps as φvu. More generally, we might start with a function defined

on the n-skeleton of a complex and then extend it to the higher dimensional simplices. We

illustrate the latter approach in Example 3.1.1.

Example 3.1.1. Suppose we have collected survey data, where each response is encoded as

a pair of coordinates. We may wish to know how the responses cluster, so we let f(a) = 0

for each vertex a, f([a, b]) to be the distance between a and b, and then follow the Rips

construction for higher simplices. We can visualize this particular construction quite nicely

using circles around each point and increasing the radius gradually. In Figure 3.1, we see

two levels of the multifiltration represented. If two circles intersect, then the edge between the

corresponding points is present at that level. Likewise, if three circles all pairwise intersect,

then we have the corresponding triangle as well.

Figure 3.1: Two levels of the Rips multifiltration

We see that at the second level shown, we have captured the two cycles that appear to

represent our data. However, we do not yet have a reason to prefer the second level over the

first. This is where the various persistence theories come in, by providing a way to measure

how strong a given pattern is. In this example, persistence for a cycle corresponds to the

range of radii for which the cycle is present and not yet filled in.
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3.2 Taking Homology

Given a multifiltration of simplicial complexes modeling our data, we may now compute

the simplicial homology of each complex Xu and form a new multilfiltration from H(Xu)

and the induced maps on homology (φvu)∗ : H(Xu) → H(Xv). It is in this setting that

we may identify when topological features appear and disappear from the multifiltration.

Intuitively, if we think of the generators of each H(Xu) as a topological feature, then the

feature a appears at u if a is a generator of H(Xu) and for all v � u, a 6∈ (φuv)∗(H(Xv)).

Likewise, if a is a generator that appears at u, then we might think of a disappearing at v

if (φvu)∗(a) = 0 and for u � w � v we have (φwu )∗(a) 6= 0.

If we are considering one-dimensional data, as with PH, this intuition is pretty much

correct if we choose the correct set of generators. That is, there exists a choice of generators

of H(Xu) for each u so that φwu always sends a generator to either another generator or to

0 and if two generators map to the same element, then they both map to 0. Given such a

choice of generators, we identify generators that are mapped to one another and call this

equivalence class a feature. Then the birth value of a feature is the minimal u for which

H(Xu) contains a generator in the feature, and the death value of the feature is the maximal

u for which H(Xu) contains a generator in the feature. In particular, because � is in fact a

total order on R, each feature has at most one birth value and one death value, so there is

no ambiguity in the assignment. Thus we obtain a list of birth-death pairs corresponding to

each equivalence class of generators of the various H(Xu) groups.

If we are considering multidimensional data, our biggest issue with this intuition is that

a feature a may disappear at multiple incomparable locations v1, v2, . . . vn. The second issue

is that there may be interactions between H(Xv1) and H(Xv2) in H(Xb
v1v2). Fortunately

the first issue is easily remedied by considering a list of birth-deaths pairing when each

generator is allowed to have an arbitrary number of death values. Unfortunately, for general

multifiltrations the interaction between different incomparable homology groups is not easily

resolved, as proven in [2].

12



3.3 One Dimensional Persistent Homology Algorithm

We shall describe the PH algorithm following a slight modification of the sparse matrix

implementation given in [11]. Our presentation is designed to highlight the similarity between

the classic algorithm and the CPH algorithm we introduce in Chapter 5.

Let X be a p-dimensional simplicial complex with a map f : X → R and a filtration

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = X such that

• f is constant on each simplex and injective;

• for all σi ∈ K`, σj ∈ X −K`, f(σi) ≤ f(σj); and

• if σi is a face of σj, then f(σi) ≤ f(σj).

Then we pull back the total order on R to a total order X by defining σi ≤ σj if f(σi) ≤ f(σj).

Now fix some dimension n with 0 ≤ n < p and consider the ordered list of (n + 1)-

simplices. We will eventually include chains of simplices in this list as well, so we will call it

OrderedChainList. Given a chain α, we will define max(α) to be the maximal simplex that

appears in the boundary of α. Given two chains α, β with a common boundary element, let

α t β denote the formal sum of these chains with coefficients in Z2.

We will now recursively define a function DK that sends n-simplices to lists of (n + 1)-

chains. In describing the algorithm that defines DK , we will use a ← b to mean that the

variable a is assigned the value of b. We will use OrderedChainList[i] to denote the ith

element of OrderedChainList, where indexing begins at 0. The actual algorithm is provided

in Algorithm 1.

Now for each simplex α ∈ X, (f(α), f(DK [α])) gives us a (birth, death) pair of real

numbers if DK [α] has been defined, and otherwise we use the pair (f(α),∞). The list of all

such pairs is commonly referred to as the barcode for X, since it can be visualized as a series

of parallel intervals, as demonstrated in Example 3.3.1. We can also consider these pairs as

points in the extended real plane. Formally, we also include the diagonal R×R with infinite

13



Algorithm 1 n-th Persistent Homology Algorithm

1: while OrderedChainList 6= ∅ do
2: curChain← OrderedChainList[0]
3: Delete OrderedChainList[0] from OrderedChainList.
4: target← max(curChain).
5: while DK [target] 6= ∅ do
6: oldChain← the 0th entry of DK [target].
7: curChain← curChain t oldChain.
8: target← max(curChain).
9: end while
10: DK [target]← [curChain].
11: end while

multiplicity as part of the barcode. This means that if Y is obtained from X by subdivision,

then the barcodes for X and Y are equivalent since Y can only gain points on the diagonal.

Example 3.3.1. Suppose X is the 3-simplex with vertices {σ1, σ2, σ3, σ4}, with f(σi) = i,

f([σi, σj]) = ij + 3, f([σi, σj, σk]) = ijk+ 10, and f([1, 2, 3, 4]) = 35. It is easy to verify that

f satisfies the requirements for the PH algorithm, and the total order on the simplices is

1 < 2 < 3 < 4 < [1, 2] < [1, 3] < [1, 4] < [2, 3] < [2, 4] < [3, 4] <

[1, 2, 3] < [1, 2, 4] < [1, 3, 4] < [2, 3, 4] < [1, 2, 3, 4].

Now applying Algorithm 1 to the 0-simplices proceeds as follows. We start with all six

1-simplices in OrderedChainList, and consider the smallest of these, [1, 2]. max([1, 2]) = 2,

and since we have not yet defined any values for DK, we make the assignment DK [2] =

[1, 2]. Now we proceed similarly for [1, 3] and [1, 4] since their maximum faces are 3 and 4,

respectively, and DK has not been defined for either of these values.

The next edge on our list, though, is [2, 3] and this is where things become interesting.

Since max([2, 3]) = 3 and DK [3] is already defined as [1, 3], we enter the inner loop and

consider [1, 3]t[2, 3]. The boundary of [1, 3]t[2, 3] consists of 1 and 2, so max([1, 3]t[2, 3]) =

2. DK [2] = [1, 2], so we repeat the inner loop once more to obtain the chain [1, 3]t[2, 3]t[1, 2].

However, this has no boundary, so there is no target and no assignment is made before we

repeat the main loop and consider [2, 4]. We do note, though, that we have found a possible

14



Birth Value

Death Value
f(x) = x(1,∞)

(2, 5)

(3, 6)

(4, 7)

Figure 3.2: A visualization of the barcode

generator for H1(X;Z2) and if desired we could track this information to provide the actual

choice of generators for H(X;Z2) described in Section 3.2.

The algorithm proceeds similarly on [2, 4] and [3, 4]: max([x, 4]) = 4 and DK [4] = [1, 4],

so we enter the inner loop and consider [1, 4] t [x, 4]. Since max([1, 4] t [x, 4]) = x and

DK [x] = [1, x], we form another chain with no boundary, [1, 4] t [x, 4] t [1, x], so no new

assignments are made.

This leaves us with DK sending 1 7→ ∅, 2 7→ [1, 2], 3 7→ [1, 3] and 4 7→ [1, 4]. This

corresponds precisely with the fact that the component generated by 2 is identified with the

component generated by 1 when the edge [1, 2] enters the filtration, and likewise for 3 and

4, while the component generated by 1 yields a generator of H0(K`) for all ` once 1 has

appeared. Conversely, edges such as [2, 3] appear only after the components generated by 2

and 3 have already been identified, and hence do not appear as the output of DK.

Thus the 0-dimensional part of our barcode is (1,∞), (2, 5), (3, 6), and (4, 7). Figure 3.2

illustrates one way to visualize this information, and helps explain why this is called a barcode.
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We close this section with a comment on the complexity of the algorithm. As noted in

[1] and [11], the PH algorithm is a cubic time algorithm in the worst case. Furthermore,

[12] provides an explicit example of a filtration with N simplices for which the PH algorithm

requires Ω(N3) operations.

3.4 Multidimensional Persistent Homology Algorithm

For multidimensional persistent homology, the description of the algorithm itself is less en-

lightening and so we refer the reader to [5] for an implementation of such an algorithm.

However, we will give an overview of the process and discuss the complexity of the algorithm

given in [5] so that we may later compare it with the complexity of the algorithm we present

for coordinated persistent homology.

Let K be a p-dimensional multi-filtered complex with some multifiltration consisting

of subcomplexes Ku ⊂ K with inclusion maps φvu : Ku → Kv. In order to compute the

multidimensional persistent homology of K, we must compute the boundary module im ∂i+1,

the cycle module ker ∂i, and finally the quotient Hi = ker ∂i/ im ∂i+1. While the sparse

matrix implementation for one dimensional persistence does this computation quite nicely,

the presence of multiple parameters means that we would, at the least, require a sparse

multi-dimensional array. However, [2] shows that such an implementation would still be

insufficient to capture a discrete, complete invariant for K.

Accordingly, we are less concerned with the actual implementation of multidimensional

persistent homology than with the inherent complexity of such solutions. In other words, we

wish to generalize persistent homology in a simpler fashion than multidimensional persistence

does. To that end, it suffices to cite the complexity estimates given in [5]. For a given

dimension, let m be the number of simplices of that dimension, and let n be the number

of simplices one dimension higher. Then from Lemmas 4 and 6 of [5], the run-time of

the primary components of the multidimensional persistence algorithm are O(n4m3) and

O(n4m2) in the worst cases, so the overall algorithm is O(n4m3).
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3.5 Stability

Perhaps the most useful fact about persistent homology (PH) and multidimensional per-

sistent homology (MPH) are the stability theorems, which state how small changes of the

input affect the output. Since both theories arose from a need to analyze real world data,

it is important to understand how things like background noise and instrument error affect

our analysis. In essence, the stability theorems state that such errors translate to either

equal error on our analysis or less. We first need to understand how to measure distances

for functions and for barcodes. We will then state the stability theorems and discuss their

implications, but we will refer the reader to [13] and [6] for rigorous proofs of the PH and

MPH stability theorems, respectively.

First, given x, y ∈ Rp, let ‖x− y‖∞ = max{|xi − yi| : 1 ≤ i ≤ p}. Then, for functions

f, g : X −→ Rp, let ‖f − g‖∞ = supx‖f(x)− g(x)‖∞. Now for two barcodes Bf and Bg,

based on f and g respectively, we define the bottleneck distance, dB(f, g), by

dB(f, g) = inf
γ

sup
x
‖x− γ(x)‖∞,

where x ranges over all points in Bf and γ ranges over all bijections from Bf to Bg.

Next, for a topological space X and a continuous function f : X → R, a homological

critical value of f is a value a ∈ R such that for some k ∈ Z and all sufficiently small

ε > 0, the map Hk(f
−1(−∞, a − ε]) → Hk(f

−1(−∞, a]), induced by inclusion, is not an

isomorphism. In other words, the homology of the corresponding filtration changes at a. We

say f is tame if there are a finite number of homological critical values and Hk(f
−1(−∞, a]) is

finite-dimensional for all k ∈ Z and a ∈ R. These conditions are satisfied by Morse functions

on compact manifolds and piecewise linear functions on finite simplicial complexes.

Theorem 3.5.1 (PH is Stable with Respect to the Bottleneck Distance). If X is a trian-

gulable space with continuous tame functions f, g : X → R, then the barcodes Bf and Bg

satisfy dB(f, g) ≤ ‖f − g‖∞.
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Theorem 3.5.2 (MPH is Stable With Respect to some Distance). If X is a triangulable

space with continuous functions f, g : X → Rp, then there exists a metric on rank invariants

such that the distance between the rank invariant for f and g is at most ‖f − g‖∞.

An appropriate metric for the rank invariant that satisfies Theorem 3.5.2 is constructed

in [6], and is essentially the bottleneck distance with bijections taken between rank invari-

ants. The important thing is that both the bottleneck distance and the metric on rank

invariants work by considering bijections to compare the output of the persistence theo-

rems. In particular, these stability theorems imply that small changes in a function do not

compound themselves. Conversely, if we detect a significant feature, something that is far

from the diagonal, we can infer that the feature represents something inherent to the data

being studied, not a false pattern from background noise or small errors in our measurement

device. Of course, this presupposes that background noise is of small magnitude relative to

the data. By contrast, if we have a poor signal to noise ratio, the stability theorems mean

that neither persistence theory can confidently extract information about the data from the

overall signal.
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Chapter 4. Labeled Linear Graphs

The first step in our generalization of persistent homology to multiple parameters is to

provide a bit more structure on our multifiltration than either of the previous persistence

theories implement. Furthermore, for the current implementation, we consider only multifil-

trations of lines, so we will bypass the simplicial complex description of our space and instead

define a richer structure, which we call a labeled linear graph. We will then demonstrate how

to construct a certain kind of total order on the labeled linear graph and show that our

definition and construction are stable in certain senses.

Recall that � is the product order on Rp, namely (a1, a2, . . . , ap) � (b1, b2, . . . , bp) if

ai ≤ bi for 1 ≤ i ≤ p. We will use �· to denote a total order on Rp that extends �, and b

and c denote the join and meet operations, respectively. Note that these ‘curved’ symbols

all apply to Rp. In this chapter we will construct various orders and operations on a graph

and we will use ‘squared’ symbols for these as a visual reminder of which orders apply to

which space. In particular, v and v· will denote certain orders that depend in part on �

and �·, and t will denote a particular operation that relates to b.

4.1 Time-Series and Labeled Linear Graphs

A time-series is a function f : T −→ Rp from a discrete set T ⊂ R. For the remainder

of this discussion, f will denote a given time-series with domain T . Furthermore, we let

fi : T −→ R denote the projection of f to the ith coordinate of Rp and write f(t) = (fi(t)).

The assumption that T is discrete reflects the idea that T represents a set of times at which

measurements are made for some experiment.

We define a graph Γf whose vertex set is T and whose edge set consists of pairs [t, t′]

where t′ is the successor to t in T . We also define the set of paths in Γf , denoted Pf , to be

elements of the form [r, t] where r, t ∈ T and r < t, with the edge set as an obvious subset.

We also extend Γf to include Pf .
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We next define some operations for paths. Given a path x = [r, t], we let ←−x = r, −→x = t,

ð(x) = {x ∈ T |r ≤ x ≤ t}, and ∂(x) = {r, t}. Given a, b ∈ Pf with −→a =
←−
b , we define

a t b = b t a = [←−a ,
−→
b ].

Likewise, given S = {[t0, t1], [t1, t2], . . . , [tn−1, tn]}, we define

⊔
S = [t0, tn].

With this structure, we can now extend f from T to Γf , including Pf , by defining

f([t, t′]) = f(t)b
f(t′) and f(

⊔
S) = b(f(S)),

where f(S) = {f(a)|a ∈ S}. Note that every path in Pf is of the form
⊔
S for a unique S,

so this is well-defined.

We call the pair (Γf , f) a labeled linear graph structure on T relative to f , or if f is

understood from context, we just call this a labeled linear graph. We will write Vf , Ef , and

Pf for the set of vertices, edges, and paths, respectively, with Ef ⊂ Pf and Vf = T .

Our first lemma tells us that the extension of f to Γf is stable: a small change in the

original function f will only produce a small change in the extension.

Lemma 4.1.1. Suppose Γf and Γg are labeled linear graph structures on T relative to f and

g, respectively. Then Γf and Γg are equal as graphs and

∥∥f |Pf
− g|Pg

∥∥
∞ ≤ ‖f |T − g|T‖∞ = ‖f − g‖∞,

where ‖·‖∞ denotes the appropriate uniform norms, i.e., for h : X −→ Rp,

‖h‖∞ = sup{hi(x) : x ∈ X, 1 ≤ i ≤ p}.
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Proof. The definition Γf and Γg depend only on T , so we see immediately that they are

equal as graphs. We will use f and g to denote the extended versions of the functions, and

f |T and g|T to denote the original functions on T . Now, the definition of the uniform norm

gives us

‖f |T − g|T‖∞ ≤ ‖f − g‖∞ and
∥∥f |Pf

− g|Pg

∥∥
∞ ≤ ‖f − g‖∞,

since ‖f − g‖∞ is taken over all of Γf .

Suppose a ∈ Pf with a = [r, t]. There exists k ∈ {1, 2, . . . , p} such that

‖f(a)− g(a)‖∞ = ‖fk(a)− gk(a)‖∞ (4.1.2)

= |max fk(ð(a))−max gk(ð(a))|. (4.1.3)

If the maxima in Equation (4.1.2) both occur at some s ∈ ð(a), then

|max fk(ð(a))−max gk(ð(a))| = ‖fk(s)− gk(s)‖∞ ≤
∥∥f |Vf

− g|Vg

∥∥
∞. (4.1.4)

Otherwise, the maxima in Equation (4.1.2) occur at different points of ð(a), say x and y.

Since the equation is symmetric in f and g, we may assume

max fk(ð(a)) = fk(x) and max gk(ð(a)) = gk(y). (4.1.5)

We now consider the following cases.

4.1.1.1 If gk(y) ≤ fk(x), then gk(x) ≤ gk(y) ≤ fk(x) so

|max fk(ð(a))−max gk(ð(a))| = ‖fk(x)− gk(y)‖∞

≤ ‖fk(x)− gk(x)‖∞

≤ ‖f |T − g|T‖∞.
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4.1.1.2 If fk(x) ≤ gk(y), then fk(y) ≤ fk(x) ≤ gk(y) so

|max fk(ð(a))−max gk(ð(a))| = ‖fk(x)− gk(y)‖∞

≤ ‖fk(y)− gk(y)‖∞

≤ ‖f |T − g|T‖∞.

Thus we see ‖f(a)− g(a)‖∞ ≤ ‖f |T − g|T‖∞ for all a ∈ Γf . Since ‖f − g‖∞ is the supremum

of the left hand side over a set containing T , we will have

∥∥f |Pf
− g|Pg

∥∥
∞ ≤ ‖f |T − g|T‖∞ = ‖f − g‖∞.

Lemma 4.1.6. Suppose Γf and Γg are labeled linear graph structures on T relative to f and

g, respectively. Then g|T is a Scott-adjustment of f |T if and only if g is a Scott-adjustment

of f . Furthermore, the same Scott-adjuster may be used for both adjustments.

Proof. Suppose g|T is a Scott-adjustment of f |T with Scott-adjuster φ. Then for any t ∈ T ,

g(t) = g|T (t) = φ ◦ f |T (t) = φ ◦ f(t).

For any [t, t′] ∈ Ef , since φ is Scott-continuous, we have

φ ◦ f([t, t′]) = φ(f(t)b
f(t′)) = (φ ◦ f(t))b(φ ◦ f(t′)) = g(t)b

g(t′) = g([t, t′]).

Likewise, if a ∈ Pf , then a =
⊔
S for some S ⊂ Ef , and we have

φ ◦ f(a) = φ(f(
⊔
S)) = φ

(j
f(S)

)
=

j
φ(f(S)) =

j
g(S) = g(

⊔
S).

The reverse direction follows immediately from the fact that f |T and g|T are restrictions of

f and g.
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4.2 Partial Order on Labeled Linear Graphs

Now that we have extended f to a labeled linear graph Γf , including Pf , we can use it to

induce a partial order on Γf from � on Rp. This will generally result in a different order

on T than the one T inherits as a subset of R, which we will indicate by ≤. Intuitively, we

will start by defining a v b if f(a) � f(b), but to make this a partial order we will need to

break ties in the cases where f(a) = f(b) and a 6= b. Formally, we define a v b if any of the

following hold

(4.2.1) a = b,

(4.2.2) f(a) ≺ f(b),

(4.2.3) f(a) = f(b), a ∈ Vf , and b ∈ Pf , or

(4.2.4) f(a) = f(b), a, b ∈ Vf , and a < b.

If it is known that a v b and a 6= b, then we will write a @ b. Likewise, if it is important to

note which function induced the partial order, we will write a vf b to indicate that f was

the applicable function.

Proposition 4.2.1 (Product Order Pulls Back to Graph). As defined above, the relation

a v b is a partial order on Γf ∪Pf . Furthermore, if S ⊂ Pf , S contains at least two elements,

and
⊔
S is defined, then exactly one of the following hold:

4.2.1.1 f(a) = f(b) for all a, b ∈ S, or

4.2.1.2 a v
⊔
S for some a ∈ S.

Proof. Clearly v is reflexive.

To show that v is antisymmetric, suppose a 6= b and a v b. Since a 6= b, a and b must

satisfy one of Condition (4.2.2) to Condition (4.2.4).

If Condition (4.2.2) holds, then f(a) ≺ f(b) and the antisymmetry of ≺ implies b 6v a.
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If Condition (4.2.3) holds, then f(a) = f(b), a ∈ Vf , and b ∈ Pf . Thus b 6v a since

f(a) 6≺ f(b) and b 6∈ Vf .

If Condition (4.2.4) holds, then f(a) = f(b), a, b ∈ Vf , and a < b. Thus b 6v a since

f(a) 6≺ f(b) and < is antisymmetric.

Thus if a @ b in any case, b 6@ a, so v is antisymmetric.

To establish transitivity, suppose a v b and b v c, but a 6v c. Clearly a = b, b = c, or

a = c implies a v c. Therefore, we know a, b, c are all distinct and each pair (a, b) and (b, c)

must satisfy one of the other three conditions. In particular, we know that in any case

f(a) � f(b) � f(c). (4.2.2)

From Equation (4.2.2) and the transitivity of ≺, then f(a) ≺ f(b) or f(b) ≺ f(c) will

imply that f(a) ≺ f(c) and hence a v c, a contradiction. Therefore Condition (4.2.2) does

not apply to either of the pairs (a, b) or (b, c). Thus (a, b) and (b, c) must each satisfy one of

the remaining two conditions and so we know that f(a) = f(b) = f(c).

Since (a, b) must satisfy Condition (4.2.3) or Condition (4.2.4), we must have a ∈ Vf .

Likewise, (b, c) must satisfy Condition (4.2.3) or Condition (4.2.4), so b ∈ Vf . Thus if c ∈ Pf ,

we have a v c by Condition (4.2.3), a contradiction. Hence we know that c ∈ Vf .

Since a, b, c ∈ Vf , and f(a) = f(b) = f(c), then (a, b) and (b, c) must satisfy Condition

(4.2.4). The transitivity of < then implies that a v c, which is our final contradiction. Thus

we see that v is indeed transitive.

For the other part of our claim, suppose S ⊂ Pf ,
⊔
S is defined, and for some a, b ∈ S,

f(a) 6= f(b). Then without loss of generality there exists some k for which

fk(a) < fk(b) ≤ fk(
⊔
S).

In addition, since fi(a) ≤ fi(
⊔
S) for all i, then f(a) ≺ f(

⊔
S). Thus, by definition of v,

a v
⊔
S.
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Conversely, if f(a) = f(b) for all a, b ∈ S, then f(a) =
b
f(S) = f(

⊔
S). Since S contains

at least two elements, a 6=
⊔
S, so a 6v

⊔
S.

Lemma 4.2.3. If g is a Scott-adjustment of f with injective Scott-adjuster φ, then ∀a, b ∈ Γf ,

a vf b if and only if a vg b.

Proof. Clearly, if a = b then both a vf b and a vg b, so Condition (4.2.1) holds under f if

and only if it holds under g.

Likewise, since φ is injective on the image of f , we know that f(a) = f(b) if and only if

g(a) = g(b). This implies that Condition (4.2.4) and Condition (4.2.3) hold for f if and only

if they hold for g.

Finally, we must show that Condition (4.2.2) holds for f if and only if it holds for g.

That is, we must show f(a) ≺ f(b) if and only if g(a) ≺ g(b). Because φ is Scott-continuous,

we know that

g(a)bg(b) = φ ◦ f(a)bφ ◦ f(b) = φ(f(a)bf(b)).

Additionally, the definition of the join operator implies

f(a) � f(a)b
f(b) and g(a) � g(a)b

g(b).

Now, if f(a) ≺ f(b), then f(a)bf(b) = f(b) and f(a) 6= f(b). Therefore the injectivity of φ

and the transitivity of � implies g(a) ≺ φ(f(b)) = g(b).

Conversely, suppose f(a) 6≺ f(b), so f(a)bf(b) 6= f(b). Since φ is Scott-continuous,

φ(f(a)b
f(b)) = φ(f(a))b

φ(f(b)) = g(a)b
g(b),

and φ(f(b)) = g(b).

However, φ is injective on the image of f , so g(a)bg(b) 6= g(b), which means g(a) 6≺ g(b).
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4.3 Total Order on Labeled Linear Graphs

The last construction we need to complete our labeled linear graph is to pull back a total

order from Rp to Γf . More precisely, given a total order �· on Rp that extends �, we will

show that there exists a total order v· on Γf induced by �· and that extends v. We note our

convention for order symbols means that any order on Rp is curvy, while any order on Γf is

linear. We hope that this convention will aid the reader in determining what elements are

being considered for a given order statement. For example, a v b presupposes that a, b ∈ Γf .

We also adopt another convention regarding orders: for any order relation ∼ on a space

X and A ⊂ X, min∼A is the minimum of A with respect to ∼, if it exists. We define max∼,

inf∼ and sup∼ similarly.

Now, given Γf a labeled linear graph structure on T and �· an extension of ≺, define the

following subsets of Γf ×Γf .

S0 Γf = {(a, a) ∈ Γf ×Γf : a ∈ Γf}.

S1 Γf = {(a, b) ∈ Γf ×Γf : f(a) ≺· f(b)}.

S2 Γf = {(a, b) ∈ Vf ×Pf : f(a) = f(b)}

S3 Γf = {(a, b) ∈ Vf ×Vf : f(a) = f(b), a < b}.

For a, b ∈ Vf we define a v· b if (a, b) ∈
⊔3
i=0 Si Γf .

P� = {(a, b) ∈ Pf ×Pf : f(a) = f(b), a 6= b}

X Γf =

{
(a, b) ∈ P� : f

(
max
v·

(∂(a))

)
= f

(
max
v·

(∂(b))

)}
S4 Γf =

{
(a, b) ∈ P� \X Γf : f

(
max
v·

(∂(a))

)
≺· f

(
max
v·

(∂(b))

)}
.

S5 Γf =

{
(a, b) ∈ X Γf : f

(
min
v·

(∂(a))

)
≺· f

(
min
v·

(∂(b))

)}
.

S6 Γf =

{
(a, b) ∈ X Γf : f

(
min
v·

(∂(a))

)
= f

(
min
v·

(∂(b))

)
,←−a ≤

−→
b

}
.
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Now we finish defining a v· b for a, b ∈ Γf : a v· b if (a, b) ∈
⊔6
i=0 Si Γf . Note that the Si Γf

sets are mutually exclusive and that a v· b implies f(a) �· f(b). While this relation is not

quite a total order on Γf , it is a total order on Vf and Vf ∪Ef (see Proposition 4.3.2) and

provides a sufficient ordering on some subsets of Pf for our purposes (see Theorem 5.1.1).

As usual, if we need to specify which function was used to define v·, we will write v·f ;

furthermore, a @· b means a v· b and a 6= b.

Proposition 4.3.1. v· is a total order on Vf .

Proof. First, v· is clearly connex on Vf from S0 Γf , S1 Γf , S3 Γf , and the fact that ≺· and

< are connex.

Next, suppose a, b ∈ Vf with a @· b. Since a 6= b, then (a, b) ∈ S1 Γf ∪S3 Γf . In either

case, since ≺· and < are antisymmetric, then b 6@· a, so v· is antisymmetric on Vf .

Finally, suppose a, b, c ∈ Vf with a v· b and b v· c. Clearly a = b or b = c immediately

imply a = c and thus a v· c, thus we may assume that a, b, c are all distinct and f(a) �·

f(b) �· f(c). Then, if f(a) ≺· f(b) or f(b) ≺· f(c), we have f(a) ≺· f(c) and thus a v· c

again. Thus we may now assume that f(a) = f(b) = f(c), so a < b and b < c. Since < is

transitive, this implies a < c and thus a v· c. Therefore v· is transitive on Vf .

Proposition 4.3.2. v· is a total order on Vf ∪Ef .

Proof. We will follow the same basic structure of the definition of v· to show connexity and

antisymmetry first, and then we will give a similar proof of transitivity. Let a, b ∈ Vf ∪Ef

be given, then consider each of the following cases.

Case 0: Suppose a = b. Clearly we have both a v· b and b v· a. Thus we may now assume

a 6= b.

Case 1: Suppose f(a) 6= f(b). Since �· is a total order, we must have exactly one of f(a) ≺· f(b)

or f(b) ≺· f(a) and therefore exactly one of a v· b or b v· a. Thus we may now assume

f(a) = f(b).
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Case 2: Suppose f(a) = f(b) and either (a, b) ∈ Vf ×Ef or (b, a) ∈ Vf ×Ef . Depending on

which element is the vertex, we have a v· b or b v· a, but not both. Thus we may now

assume (a, b) ∈ Vf ×Vf ∪Ef ×Ef .

Case 3: Suppose f(a) = f(b), (a, b) ∈ Vf ×Vf , and a 6= b. Proposition 4.3.1 covers this case.

Thus we may now assume (a, b) ∈ Ef ×Ef .

For the remaining cases, we define the following:

a1 = min
v·

(∂(a)), a2 = max
v·

(∂(a)),

b1 = min
v·

(∂(b)), b2 = max
v·

(∂(b)).

Recall that we have reduced to the cases where a 6= b, f(a) = f(b), and (a, b) ∈ Ef ×Ef .

Case 4: Suppose f(a2) 6= f(b2). �· is a total order, so exactly one of f(a2) ≺· f(b2) or f(b2) ≺·

f(a2) holds. This means that exactly one of a v· b or b v· a holds. Thus we may now

assume f(a2) = f(b2).

Case 5: Suppose f(a1) 6= f(b1). �· being a total order again implies exactly one of f(a1) ≺·

f(b1) or f(b1) ≺· f(a1) holds and therefore exactly one of a v· b or b v· a holds. Thus

we may now assume f(a1) = f(b1).

Case 6: Now we have f(a1) = f(b1) and f(a2) = f(b2). Since we know ≤ is a total order on

Vf , we may define the following

x1 = −→a , x2 =←−a ,

y1 =
−→
b , y2 =

←−
b .

Suppose that y1 < x2. Since ≤ is a total order, we have

x1 ≤ x2, y1 ≤ y2, y1 < x2.
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Recall that [t, t′] ∈ Ef only if t′ is the ≤-successor of t. In particular, a ∈ Ef and

y1 < x2 implies y1 ≤ x1. On the other hand, b ∈ Ef and a 6= b, so y1 < x1 and so

y2 ≤ x1, which means b v· a. Likewise x1 < y2 implies a v· b.

Furthermore, at least one of y1 < x2 or x1 < y2 holds, since otherwise x2 ≤ y1 and

y2 ≤ x1 implies x1 = x2, which is a contradiction. Conversely, if we have both y1 < x2

and x1 < y2, then a = b, which is also a contradiction. Therefore exactly one of a v· b

or b v· a holds.

We have thus established that v· is connex and antisymmetric, since only the first case

allowed a v· b and b v· a simultaneously.

Now let us suppose a v· b and b v· c, but a 6v· c. We may assume a, b, c are all distinct,

since otherwise we have an immediate contradiction from S0 Γf .

Since a, b, c are distinct, we must have f(a) �· f(b) �· f(c) from the definition of the

various Si Γf groups. In particular, if either of these inequalities is strict, then by transitivity

of �· we have f(a) ≺· f(c) and hence a v· c from S1 Γf , which is a contradiction. Thus we

may assume f(a) = f(b) = f(c).

If b ∈ Ef , then b v· c implies c ∈ Ef . Thus b ∈ Ef implies a ∈ Ef as well, since otherwise

a v· c from S2 Γf . Similarly, if b ∈ Vf , then a ∈ Vf from a v· b and so c ∈ Vf since otherwise

S2 Γf would imply a v· c. Thus we may now assume either a, b, c ∈ Vf or a, b, c ∈ Ef .

If a, b, c ∈ Vf , then Proposition 4.3.1 gives us a v· c. Therefore, we may now assume

a, b, c ∈ Ef . As we did for proving connexity and antisymmetry, we will now define some

values for our convenience is analyzing the last cases, namely

a1 = min
v·

(∂(a)), b1 = min
v·

(∂(b)), c1 = min
v·

(∂(c)),

a2 = max
v·

(∂(a)), b2 = max
v·

(∂(b)), c2 = max
v·

(∂(c)),

x1 = −→a , y1 =
−→
b , z1 = −→c ,

x2 =←−a , y2 =
←−
b , z2 =←−c .
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If a v· b and b v· c, then f(a2) �· f(b2) and f(b2) �· f(c2) from the definitions of

S4 Γf , S5 Γf , and S6 Γf . Thus, by transitivity of �·, if either of these inequalities is strict,

f(a2) ≺· f(c2) and so a v· c from S4 Γf . Thus we see f(a2) = f(b2) = f(c2).

From S5 Γf and S6 Γf , we must have f(a1) �· f(b1) �· f(c1). Again, the transitivity of

�· and the definition of S5 Γf imply f(a1) = f(b1) = f(c1) since a 6v· c.

This leaves us with x2 ≤ y1 and y2 ≤ z1, but the transitivity of ≤ and the fact that

y1 ≤ y2 implies x2 ≤ z1 and thus a v· c from S6 Γf . Therefore v· must be transitive.

While v· does not provide a total order on all of Γf , we will later show that v· is a total

order for certain larger subsets of Γf than just Vf ∪Ef . Before we expand our view, though,

we will first look back at the partial order @ we previously defined, and show that v· also

extends @.

Proposition 4.3.3. v· extends v to a total order on Vf ∪Ef , and more generally a v b

implies a v· b for all a, b ∈ Γf .

Proof. This follows almost immediately from comparing the definition of a v b and a v· b,

particularly the sets S0 Γf , S1 Γf , S2 Γf , and S3 Γf . However, we must remember that if

f(a) ≺ f(b) then f(a) ≺· f(b) since ≺· is an extension of ≺.

We close this section with another stability result.

Lemma 4.3.4. If g is a Scott-adjustment of f with injective Scott-adjuster φ, then for all

a, b ∈ Γf , the following hold.

4.3.4.1 a vf b implies a v·g b. That is, v·g extends vf .

4.3.4.2 a vg b implies a v·f b. That is, v·f extends vg.

4.3.4.3 If f(x) �· f(y) implies g(x) �· g(y) for all x, y ∈ Vf , or if g(x) �· g(y) implies

f(x) �· f(y) for all x, y ∈ Vg, then v·f and v·g are equivalent, that is a v·f b if and

only if a v·g b.
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Proof. Conclusions 4.3.4.1 and 4.3.4.2 follow directly from Proposition 4.3.3 and Lemma 4.2.3.

For Conclusion 4.3.4.3, first suppose by way of contradiction that there exists a, b ∈ Γf

for which the claim is false. Clearly if a = b, then a v·f b and a v·g b, so 4.3.4.3 holds

trivially. Thus a 6= b.

For a moment, we restrict ourselves to the case where a, b ∈ Vf . Then since @·f and @·g

are total orders on Vf , we may assume without loss of generality that a @·f b and b @·g a. If

f(a) 6= f(b), then we have f(a) ≺· f(b); and since φ is injective on the image of f , g(a) 6= g(b)

so g(b) ≺· g(a). However, this contradicts the hypothesis of 4.3.4.3, so we know f(a) = f(b)

and, by the injectivity of φ, g(a) = g(b).

Now with a, b ∈ Vf , then a @·f b implies a < b, from S3 Γf , and hence a @·g b, a

contradiction. Thus we see that the claim holds for vertices.

Now we may assume that one of a or b is in Pf . Suppose f(a) 6= f(b), and so g(a) 6= g(b)

by the injectivity of φ. Since ≺· is a total order on Rp, then without loss of generality we

must have f(a) ≺· f(b) and g(b) ≺· g(a) since we assumed our conclusion was false. However,

this contradicts our hypothesis that f(a) ≺· f(b) implies g(a) ≺· g(b) or g(a) ≺· g(b) implies

f(a) ≺· f(b). Therefore we see that f(a) = f(b) and g(a) = g(b).

Now we easily see that if one of a or b is in Vf , then we get a contradiction from S2 Γf ,

and hence a, b ∈ Pf , with f(a) = f(b) and g(a) = g(b). However, the remaining sets S4 Γf ,

S5 Γf , and S6 Γf only depend on the behavior of @· for vertices, which we have already

established in equivalent for f and g.
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Chapter 5. Coordinated Persistent Homology

As with multi-dimensional persistent homology, we wish to describe time-series using the

homology of a multi-filtration. In particular, we wish to identify how the homology changes

between different levels of the multi-filtration. In Chapter 4 we first encoded a multi-filtration

as a labeled linear graph and then endowed it with a total order. Now we must identify when

new homology elements are created and when old homology elements become trivial. The

encoding as a labeled linear graph structure enables us to identify new homology elements

from Vf . The FindDeaths algorithm described in this chapter identifies when old homology

elements become trivial.

As in previous chapters, Γf is a given labeled linear graph structure on T , though here we

will assume that T is in fact a finite subset of R so that the algorithm can actually terminate.

We will continue to use � to denote the product order on Rp described in Section 2.2, �· is

a given total order on Rp that extends �, v is a partial order on Γf induced by � and f as

constructed in Section 4.2, and v· is a relation on Γf induced by �· and which extends v to

a total order on Vf ∪Ef , as described in Section 4.3.

Given a vertex v, we will determine the parameters values at which the component of Γf

generated by v first merges with a component generated by some other vertex w with w @· v,

recorded by the path from w to v. This pairing of vertices and sets of paths is the CPH of

the given multifiltration and total order. By way of comparison, persistent homology is the

pairing of vertices with a single path of this type.

5.1 The FindDeaths Algorithm

Let OrderedEdgeList be the totally-ordered list of edges using the order v·. We will

recursively define a new function Df that sends elements of Vf to lists of paths. In describing

the algorithm that defines Df , we will use a← b to mean that the variable a is assigned the

value of b. We will use OrderedEdgeList[i] to denote the ith element of OrderedEdgeList,
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where indexing begins at 0. The actual algorithm is provided in Algorithm 2.

Algorithm 2 FindDeaths Algorithm

1: while OrderedEdgeList 6= ∅ do
2: curEdge← OrderedEdgeList[0]
3: Delete OrderedEdgeList[0] from OrderedEdgeList.
4: target← maxv·(curEdge).
5: while Df [target] 6= ∅ do
6: preEdge← the 0th entry of Df [target].
7: chord← curEdge t preEdge.
8: if preEdge v curEdge or f(preEdge) = f(curEdge) then
9: curEdge← chord and target← maxv·(curEdge).
10: else
11: Df [target]← [preEdge, curEdge].
12: OrderedEdgeList← OrderedEdgeList ∪ {chord}.
13: curEdge← OrderedEdgeList[0]
14: Delete OrderedEdgeList[0] from OrderedEdgeList.
15: target← maxv·(curEdge).
16: end if
17: end while
18: Df [target]← [curEdge].
19: end while

Let us study the algorithm by considering it at various points of execution, starting at

the beginning. If Ef is empty, then of course the algorithm does nothing. Otherwise, we

select the smallest element of Ef . Since we have not yet assigned any values for Df , we get

Df [target] = [curEdge]. Note that OrderedEdgeList has decreased in size by 1 since nothing

has been added to it.

We continue in the same fashion until we hit an edge a = [r, r′] that has the same target

vertex as a previous edge b = [s, s′]. In particular, we know that b v· a and either r = s′ or

s = r′. Let us consider from a homological point of view what is happening at that point.

Suppose f(b) � f(a). Since b has already entered the multi-filtration, s′ − s is already

a trivial element of the homology and we have now made r′ − r trivial. However, if r = s′,

then we see that r′ − s has also been made trivial; while r′ = s implies that s′ − r is now

trivial. In either case, this is the boundary of the chord at b. Therefore, in listing the edges
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or paths that make certain homology elements trivial, we may use b and a t b instead of b

and a. This is carried out by replacing the first curEdge with the chord.

On the other hand, suppose f(b) 6� f(a). Since f(a) � f(b) implies a v· b, we see that

f(a) and f(b) are actually incomparable by �. This means there are levels of the multi-

filtration at which a alone is present, levels at which b alone is present, and levels at which

both a and b are present. Therefore, our list of which paths trivialize homology elements

must include a, b and a t b separately. This is carried out by adding the chord as a distinct

element.

Observe that once a chord is formed, the vertex common to the edges involved can never

be visited again since each vertex belongs to at most two edges. Therefore Df [target] will

never consist of more than two paths. On the other hand, because the algorithm runs

through all edges and the underlying complex is connected, there will be exactly one vertex

for which Df [target] is empty. This represents the v·-minimum vertex, which of necessity

will also be a v-minimal vertex.

Theorem 5.1.1. At each stage of the FindDeaths algorithm, v· restricted to OrderedEdgeList

is a total order on OrderedEdgeList.

Proof. By Proposition 4.3.2, we know the statement is true when the algorithm initiates.

Furthermore, removing an element from OrderedEdgeList cannot change T and neither can

lines that do not affect OrderedEdgeList. Therefore T holds at least until Line 12 is first

executed. Let n be the number of times that Line 12 has been executed and let T (n) be the

statement that v· restricted to OrderedEdgeList is a total order on OrderedEdgeList when

Line 12 has been executed n times.

If n = 1, then chord = a t b for some pairs of edges a = [r, r′] and b = [s, s′] such that

r′ = s, r v· r′, and s′ v· s. Furthermore, because of the conditional on Line 8, f(a) 6= f(b),

a 6v b and b 6v a. Therefore, f(a) ≺ f(a t b) and f(b) ≺ f(a t b), which also implies that

a v· a t b and b v· a t b. This assures us that a t b did not need to be considered before a

or b.
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Since a and b were both previously removed from OrderedEdgeList, and this is the first

time a path has been added, there are no paths in OrderedEdgeList with r′ as an endpoint.

Therefore, given c = [t, t′] ∈ OrderedEdgeList, we know that exactly one of c @· a t b or

a t b @· c holds, since otherwise we obtain a contradiction as follows.

Suppose c 6@· a t b and a t b 6@· c. Since c, a t b ∈ Pf , the definition of S1 Γf implies

f(a t b) = f(c). Likewise, the definition of S4 Γf implies f
(
maxv·f (a)

)
= f

(
maxv·f (b)

)
. In

turn, this means that the definition of S5 Γf implies f
(
minv·f (a)

)
= f

(
minv·f (b)

)
. However,

we also know that

−−→
a t b = r

←−−
a t b = s′ −→c = t ←−c = t′.

From S6 Γf , we must conclude that r < t′ and t < s′. However, t and t′ are consecutive,

so t′ ≤ s′. Furthermore, s and s′ were consecutive, so t′ ≤ s. Finally, r and r′ = s were

consecutive, so t′ ≤ r, a contradiction.

Thus we see that the insertion of at b into OrderedEdgeList preserves the total order by

v·, so T (1) is true.

Note further that each time Line 12 is executed, the paths making up chord were removed

from OrderedEdgeList before chord is added. Thus OrderedEdgeList always consists of paths

such that no two paths overlap at more than one vertex, when two paths do overlap at a

vertex it is always an endpoint of the paths, and any given vertex is an endpoint of at most

two paths in OrderedEdgeList.

Now suppose that T (k − 1) holds and that Line 12 will be executed at least k times.

Consider the value of chord at n = k. Now chord = a t b where a = [u, v] and b = [v, w]

are paths and not necessarily edges. Nevertheless, because of Line 8, we still conclude that

f(a) ≺ f(a t b) and f(b) ≺ f(a t b). We also know that a and b were both previously

removed from OrderedEdgeList and that no other paths contain any of the vertices strictly

between u and w. Therefore, the same argument used for n = 1 shows that given any element

c = [t, t′] ∈ OrderedEdgeList, exactly one of c v· a t b or a t b v· c holds, so T (k) is true.

The theorem follows by induction.
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5.2 Properties of Df

A comparison of FindDeaths algorithm with those given for standard persistent homology,

as in [1] and [4], yields an obvious connection: if � is also a total order on the image of

f , the FindDeaths algorithm calculates the persistent homology birth-death pairs in each

parameter simultaneously. This may happen, for instance, if the parameters are correlated.

On the other hand, if � is not a total order on the image of f , the output of FindDeaths

may depend on which extension of� is chosen. For example, consider f : {0, 1, 2} → R3 given

by f(0) = (1, 0, 0), f(1) = (1, 1, 1) and f(2) = (0, 1, 0). If we use the usual lexicographic

order for �·, then v· gives us [1, 2] @·0,1 and 2 @· 0 @· 1, so the FindDeaths algorithm

proceeds as in Algorithm 3. On the other hand, using a different lexicographic order where

we consider the coordinates in reverse, we have [0, 1] @·1,2 and 0 @· 2 @· 1, so the FindDeaths

algorithm proceeds as in Algorithm 4.

Algorithm 3 FindDeaths Example: Standard Lexicographical Order

1: OrderedEdgeList← [[1, 2], [0, 1]].
2: curEdge← [1, 2];
3: OrderedEdgeList← [[0, 1]].
4: target← 1.
5: Df [1]← [[1, 2]].
6: curEdge← [0, 1].
7: OrderedEdgeList← [].
8: target← 1.
9: preEdge← [1, 2].
10: chord← [0, 1] t [1, 2] = [0, 2].
11: curEdge← [0, 2] and target← 0.
12: Df [0]← [[0, 2]].

We now present a stability-like theorem for CPH, but we note that it differs from the

stability theorems in Section 3.5 in two significant ways. First, we can compare CPH results

directly, without the need for a bijection. Second, we use the idea of Scott adjustments to

compare f and g instead of the difference ‖f − g‖∞. This does not mean CPH does not

admit a classical form of stability, but we do not give an argument for or against such a

theorem at this time.
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Algorithm 4 FindDeaths Example: Reverse Lexicographical Order

1: OrderedEdgeList← [[0, 1], [1, 2]].
2: curEdge← [0, 1];
3: OrderedEdgeList← [[1, 2]].
4: target← 1.
5: Df [1]← [[0, 1]].
6: curEdge← [1, 2].
7: OrderedEdgeList← [].
8: target← 1.
9: preEdge← [0, 1].
10: chord← [0, 1] t [1, 2] = [0, 2].
11: curEdge← [0, 2] and target← 2.
12: Df [2]← [[0, 2]].

Theorem 5.2.1 (Coordinated Persistent Homology is Stable with Respect to Scott Adjust-

ment). Suppose g is a Scott-adjustment of f with injective Scott-adjuster φ. Furthermore,

suppose that either f(x) �· f(y) implies g(x) �· g(y) for all x, y ∈ Γf or that g(x) �· g(y)

implies f(x) �· f(y) for all x, y ∈ Γf . Then Df (a) = Dg (a) for all a ∈ Vf , and hence the

coordinated persistent homology of Γf and Γg are equivalent.

Proof. By Lemma 4.3.4, the hypotheses are sufficient to ensure v·f and v·g are equivalent.

Furthermore, since φ is injective on the image of f we know f(preEdge) = f(curEdge) if

and only if g(preEdge) = g(curEdge). Since the execution of the algorithm depends only on

the labeled linear graph structure Γf and these preceding facts, we see that it will produce

the same output whether f or g is used.

This alternate kind of stability offers a certain advantage: because we are concerned

with the orders induced by f and g rather than the actual difference between the values, we

can still compare functions that are very different under the uniform metric. Furthermore,

we obtain an exact correspondence between our lists, without the need for considering all

possible bijections between the lists. Nevertheless, we are interested in determining whether

CPH satisfies a more classic kind of stability as well, though we do not have any such result

at this time.
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It may help to consider a few examples of Scott-continuous functions to see how our

stability result differs from the classical result. First, consider a simple rescaling of each

dimension. This is in fact order preserving, but the difference between f and φ ◦ f can be

made arbitrarily large. A more interesting would be rounding coordinates up to the next

integer, or more generally to any precision.
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Chapter 6. Applying CPH to Seismic Data

We shall now seek to address the age-old question posed by countless mathematics students,

“When will I ever use this?” In particular, we present a current problem in seismology and the

results of a joint project with Sandia National Laboratories that used coordinated persistent

homology (CPH) to address the problem. We shall focus specifically on the application of

CPH to this problem and leave a detailed description of the data gathering and generation

processes to the joint paper by Callor et. al. [7].

We wish to acknowledge here again the contributions of those who worked on the project.

Erik Webb, Steven Vigil, and Jason Heath presented the problem to me and provided in-

valuable leadership throughout the project. The real world data we considered was compiled

by Brian Young and Katherine Aur, while the synthetic data was produced by Christian

Poppeliers. Greg Conner was a crucial asset in developing the actual computer code that

implemented the CPH algorithm and in refining the algorithm to its current elegance.

6.1 The Seismic Classification Problem

We shall first define some basic terms to ensure consistency and then state the seismic

classification problem. A seismograph is an instrument used to record the motion of the

ground, and a seismogram is the record of this motion for a particular period of time. Because

the ground may move in 3-dimensional space, we may record the motion along a set of three

orthogonal directions and thus obtain a full description of the motion in a 3-component

seismogram. If the primary source of energy in a seismogram is a natural phenomenon, such

as a sudden slip on a fault, then we call that an earthquake. This is meant to distinguish

such events from similar ground motion caused by the denotation of a man-made device,

and we will call these latter instances explosions. The seismic classification problem is to

determine whether a given seismogram represents an earthquake or an explosion.
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We have hope to solve the seismic classification problem due to the differences in how

energy is generated by different sources. In particular, earthquakes are thought to generate

energy over an area, while explosions behave more like point-sources, as in [14, 15]. In

particular, an ideal explosion would result in motion only along the radial and vertical axes,

while an earthquake should produce motion along all three axes. Recall that the radial axis

is the direction from the seismograph to the actual event source, and the transverse axis is

the direction perpendicular to both the radial and vertical axes.

Unfortunately, matters are complicated by the fact that energy is not produced uniformly

in all directions from an earthquake source. In [14, 15], a certain kind of seismic source,

called a double-couple source, is shown to have notably different patterns of energy dispersal

than a point-source explosion. In particular, given a good spread of seismographs around an

explosion, the seismograms should look quite similar; but the seismograms for an earthquake

will vary considerably as the direction from the event changes.

6.2 Approach

Our goal is to correctly distinguish a given set of three-component seismograms that are

known to be explosions from a larger set that includes known earthquakes. Because of time

constraints, we were limited to seven real world and 240 synthetically generated seismograms.

Because we are interested at present only with the application of CPH, we will refer the

reader to [7] for a description of these datasets, though we again credit Katherine Aur and

Brian Young with obtaining the real world data and Christian Poppeliers with generating

the synthetic seismograms. For our current purpose, it suffices to consider our seismic data

as a set of functions into R3.

In order to choose an appropriate total order on R3, we first apply a rotation to the data

so that the first coordinate is motion along the radial axis, the second coordinate is along

the transverse axis, and the third component is along the vertical axis. Now let �· be the

lexicographical order on R3 and define Γf , v, and v· as in Chapter 4. In particular, recall
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that v is a partial order on the graph Γf induced by �, and v· is a total order on Γf that

extends v and is induced by �·.

We can then calculate the coordinated persistent homology of f , which is a pairing of

vertices of Γf with lists of paths in Γf . For this application, however, we further simplify

our invariant. First, for any v ∈ Vf such that Df (v) is an empty list, we redefine Df (v) to

be
⊔
V . Next, we define the persistence vector at v to be

P(v) =
(k

f(Df (v))
)
− f(v).

Finally, we define the characteristic vector of a set of labeled linear graphs as the average of

the persistence vectors of those graphs.

6.3 Motivation

Each of these additional steps taken to simplify our description of a seismogram serves a

specific purpose, which we explain here before discussing our results.

First, the convention that empty lists are filled in as
⊔
V is analogous to assigning a

death value of ∞ to unpaired objects in persistent homology, but because our signals are

always bounded, it should suffice to use the greatest observed values for a given signal, which

come from f(
⊔
V ) =

b
f(V ). The need to choose a finite value for this assignment becomes

apparent later. However, we make no claim that this particular choice is optimal, merely

that it is convenient and is the choice we made in obtaining our results.

The idea of the second step, defining the persistence vector, is to obtain a kind of multidi-

mensional barcode, but with only the change in values being preserved. This was motivated

by the idea that earthquakes and explosions would produce different ratios of energy along

the three axes. Accordingly, we only needed to preserve the ratio of displacement, not actual

position. The most surprising part of this step is probably the use of c to handle the case

where Df consists of multiple paths. However, this is actually motivated by mathematics, not
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our application. By comparing the PH and CPH algorithms, one sees that
c
f(Df (v)) gives

the corresponding death values of v obtained by running PH on each dimension separately.

The third step of combining persistence vectors from multiple seismograms allows us

to leverage the differences in energy distribution. If the energy source was a point source,

we would expect multiple, evenly space seismographs to experience similar ground motion.

However, for an earthquake, if we have a good distribution of instruments, we expect some

seismograms to actually look quite similar to an explosion, while most of the seismograms

should be different [14, 15]. Thus averaging our results allows us to offset the seismograms

that were poor discriminators.

6.4 Results

Since the final output of our analysis of the seismograms is a vector in R3 with non-negative

entries, we can visualize these using spherical coordinates. The accompanying figures have

been reproduced and edited from [7]. In order to account for differences in magnitude

between events and to allow for a 2-dimensional figure, we plot the azimuth and elevation

angles of the characteristic vectors, where the azimuth angle is measured from the radial

axis and the elevation angle is measured from the radial-transverse plane.

We shall first consider the results of our analysis on the synthetic data generated by

Christian Poppeliers. This set consists of 240 seismograms that represent 12 different seis-

mographs recording 10 simulated earthquakes and 10 simulated explosions. In Figure 6.1,

we group the seismograms according to which event they recorded and then calculate the

corresponding characteristic vector for each group. From the figure we see that explosions

strongly clustered away from the earthquakes. As expected, the explosions typically have

a lower ratio of transverse to radial energy than the earthquakes and this ratio is fairly

consistent between explosions. This is seen in the horizontal clustering of explosions in the

figure. We also see a clear vertical division between the explosions and the earthquakes,

which corresponds to a greater ratio of vertical motion vs horizontal motion. In fact the
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vertical distance between the closest explosion-earthquake pair is nearly the same as the

vertical distance between the furthest pair of earthquakes.

We must also note from Figure 6.2 the importance of considering multiple seismograms

for a given event. Though the majority of explosions continue to plot some ways above π/4,

and the majority of earthquakes plot at or below π/4, there are many exceptions. However,

by comparing both plots we conclude that for a given event, most seismograms for the event

will correctly discriminate.

Figure 6.1: Azimuth and elevation plot of the grouped characteristic vectors for the synthetic
seismograms

We now consider the few real world datasets that could be released to us for study, which

were compiled by Katherine Aur and Brian Young. In order to keep the current manuscript
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Figure 6.2: Azimuth and elevation plot of the characteristic vectors for the synthetic seis-
mograms
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clear of any possible sensitive information, however, we have sanitized the actual details about

these datasets, though they can be found in [7] when it is published. It suffices here to state

the these events were chosen because of their similarities to one another. Though we have

already established the importance of considering multiple stations, technical limitations

forced us to consider only one seismogram per event for this dataset. Nevertheless, as we

see in Figure 6.3, the characteristic vector for the individual seismograms was sufficient to

separate the explosions from the earthquakes by a horizontal band. Though the dividing

band is lower for this dataset than for the synthetics, we suspect the difference is simply the

presence of real-world background noise lowering all of the signals.

Figure 6.3: Azimuth and elevation plot of the characteristic vectors for the real seismograms

6.5 Additional Observations

We close this chapter with some observations about the characteristic vectors for our syn-

thetic dataset and a corresponding conjecture for the overall theory of coordinated persistent

homology. After obtaining the positive results discussed in the the previous section, a ques-

tion arose about how much noise would affect the characteristic vector. At the time we had
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no version of a stability theorem. A few people, and in particular Jason Heath and Greg

Conner, suggested running simulations to see what kind of stability was present experimen-

tally.

Due to time constraints, we were only able to consider simple noise models. We ultimately

chose to look at the effect of adding pink noise because it was suggested that this would be

a good approximation of typical seismic noise and still be simple enough to work with. We

then used a custom Matlab script to add pink noise to our synthetic data at various signal-

to-noise ratios. In particular, we ran simulations where the energy present in the original

signal and the energy present in the added noise were at ratios of 16:1, 8:1, 4:1, 2:1, 1:1,

1:2, 1:4, 1:10, 1:100, 1:1000, 1:10000, 1:100000, and 1:1000000. That is to say, in our last

simulation, the energy present in the added noise was 106 times the energy originally present

in the signal. At each simulation level, we generated a random pink noise signal for each of

the original 240 synthetic seismograms and ran a full analysis on the new noisy signals. We

then repeated this process 10 times for each simulation level.

In order to compare different analyses, we computed the difference in elevation angle

between the lowest characteristic vector for an explosion event and the greatest characteristic

vector for an earthquake event. We plot the results of this inquiry in Figure 6.4 as a box-

and-whisker plot. As we can see, in every instance CPH was able to discriminate explosions

from earthquakes with a gap of about 3π/64.

Surprisingly, the variation within a single signal-to-noise ratio level was greater than the

variation between different levels! This suggests that CPH is resistant to the effect of adding

pink noise, at least for discriminating earthquakes and explosions. By contrast, the stability

theorems for PH and MPH suggest that they would be unlikely to resist noise at ratios below

1:1. At levels like 1:1000, the noise is numerically far more important than the original signal,

and so those classic theories should start to extract information about the so-called noise

and override the signal as a numerical recording error.
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Unfortunately, we have yet to prove that CPH resists pink noise, or perhaps even other

kinds of noise. However, this question and the question of classical stability provide a good

course forward to expand the theory.
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Figure 6.4: Comparison of the effect of pink noise on CPH
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Chapter 7. Appendix: Stock Market Example

7.1 The Original Data

Suppose we have collected stock market values for a particular stock over an 11-day period,

as listed in Figure 7.1. The Open value for a date is the value of the stock when trading

opened in a particular market, while the Close value is the value when trading closed for the

same market. Likewise, the High and Low values are the maximum and minimum values for

the stock while trading was open for that market. Because the value of a stock can change

while a particular market is closed, the Close value for day t is not necessarily the Open

value for day t+ 1.

Date Open High Low Close
0 42.2 42.2 39.4 39.4
1 40.2 41.8 40.1 40.6
2 39.5 42 39.2 42
3 41 41.7 41 41.7
4 42 42 38.7 39.4
5 38.9 40.6 38.9 40.6
6 40.3 41.3 40.3 41.3
7 41.6 41.6 39.2 40
8 40.6 41.7 39.3 39.3
9 39.5 40.9 39.5 40.9
10 39.8 41.4 39.8 39.8

Figure 7.1: Sample Stock Market Data

7.2 Multifiltrations

We can visualize one multifiltration on the data by letting X(α,β) consist of stocks whose

High value was at least α and whose Low value was at most β and for pairs α ≥ γ, β ≤ δ,

we have the inclusion map φ
(γ,δ)
(α,β). Figure 7.2 provides a visualization of this multifiltration,

where lines are drawn between consecutive dates when both are present in a given X(α,β),

and we have inclusion maps going to the right or up from a given space. Note that the
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top-right space X(40.6,41) contains the entire space since 40.6 is the minimum High value for

these dates and 41 is the maximum Low value.

Figure 7.2: Multifiltration using High and Low Values

While the preceding multifiltration may be interesting, it may cause confusion to use a

partial order on R2 that comes from a mix of ≥ on one coordinate and ≤ on the other.

While this is not a problem for CPH, we will continue our example using the more natural

multifiltration given by letting X(α,β,γ,δ) be the dates for which the Open value was at most

α, the High value was at most β, the Low value was at most γ, and the Close value was

at most δ. Then we have inclusion maps φvu when u � v with the standard product order

formed by considering ≤ on each coordinate. We will let f(a) = (u, v, w, x), where u, v, w,

and x are the Open, High, Low, and Close values of the stock on day a.
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7.3 Orders

With the product order �, we obtain the partial order v on our labelled linear graph as

described in Section 4.2. In particular, a v b if f(a) � f(b). The Hasse diagram for this

partial order is given in Figure 7.3, where an arrow from a to b means a v b.

Figure 7.3: Hasse diagram for v

We will use the lexicographic order on R4 for our total order �· and we will follow the

construction in Section 4.3 to obtain a total order v· on our labeled linear graph. This gives

us the following ordered lists of vertices and edges.

5 @· 9 @· 2 @· 10 @· 1 @· 6 @· 8 @· 3 @· 7 @· 4 @· 0

[9, 10] @· [1, 2] @· [5, 6] @· [8, 9] @· [2, 3] @· [6, 7] @· [7, 8] @· [4, 5] @· [3, 4] @· [0, 1]

7.4 Find Deaths

In order to illustrate the algorithm from Section 5.1, we represent OrderedEdgeList and

the information regarding maxv·(curEdge) by forming the table in Table 7.1a. As we see
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from Table 7.1a, the first time we see an edge whose maximum endpoint has already been

considered is at [7, 8] and the comparison edge preEdge is [6, 7]. These two edges are in-

comparable with v, so we add [7, 8] to the list of death values for 7 and add the chord

[6, 7] t [7, 8] = [6, 8] to OrderedEdgeList. 6 v· 8, so the maximum endpoint of [6, 8] is 8.

f([6, 8]) = (41.6, 41.7, 40.3, 41.3), so [6, 8] is inserted between [7, 8] and [4, 5], which means

[6, 8] is the next path we would consider. The new OrderedEdgeList with maxv· is given

in Table 7.1b.

The maximum endpoint of [6, 8] is 8 and the edge [8, 9] also had 8 as its maximum

endpoint. Since f([6, 8]) = (41.6, 41.7, 40.3, 41.3) and f([8, 9]) = (40.6, 41.7, 39.5, 40.9),

[8, 9] v6,8 and so we form the chord [6, 8]t[8, 9] = [6, 9] and replace [6, 8] in OrderedEdgeList.

However, the maximum endpoint of [6, 9] is 6, which was also the maximum endpoint of [5, 6].

Since f([6, 9]) = (41.6, 41.7, 40.3, 41.3) and f([5, 6]) = (40.3, 41.3, 40.3, 41.3), [5, 6] v6,9 and

so we form the chord [5, 9] and replace [6, 9] in OrderedEdgeList. The maximum endpoint

of [5, 9] is 9, which is not the maximum endpoint of any previous edge or path. We give

OrderedEdgeList at this point in Table 7.1c.

The next edge in our list, [4, 5], has a maximum endpoint that has not yet had a death

value assigned, so we make the assignment and move to [3, 4], which also has 4 as its maximum

endpoint. [4, 5] v3,4, so we replace [3, 4] with the chord [3, 5]. This new path has 3 as its

maximum endpoint, which is also the maximum endpoint of [2, 3]. These edges are not

v-comparable, so insert the chord [2, 5] in OrderedEdgeList and add [3, 5] to the list of

death values for 3. f([2, 5]) = (42, 42, 41, 42) so [2, 5] is inserted between [3, 5] and [0, 1].

The maximum endpoint of [2, 5] is 2, which is not the maximum endpoint of any previous

edge or path, so we assign [2, 5] as the death value for 2 and move on to our final edge [0, 1].

Table 7.1d gives OrderedEdgeList at this stage of the process. In fact, since the maximum

endpoint of [0, 1] is 0, which is not the maximum endpoint of any other edge or path, then

we finish the algorithm by assigning [0, 1] as the death value for 0 and so Table 7.1d is the

final state of OrderedEdgeList.
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Path [9,10] [1,2] [5,6] [8,9] [2,3] [6,7] [7,8] [4,5] [3,4] [0,1]
maxv· 10 1 6 8 3 7 7 4 4 0

(a) The initial OrderedEdgeList together with maxv· for each path.

Path [9,10] [1,2] [5,6] [8,9] [2,3] [6,7] [7,8] [6,8] [4,5] [3,4] [0,1]
maxv· 10 1 6 8 3 7 7 8 4 4 0

(b) OrderedEdgeList and maxv· after considering the edge [7, 8].

Path [9,10] [1,2] [5,6] [8,9] [2,3] [6,7] [7,8] [5,9] [4,5] [3,4] [0,1]
maxv· 10 1 6 8 3 7 7 9 4 4 0

(c) OrderedEdgeList and maxv· after considering the paths [6, 8], [6, 9], and [5, 9].

Path [9,10] [1,2] [5,6] [8,9] [2,3] [6,7] [7,8] [5,9] [4,5] [3,4] [2,5] [0,1]
maxv· 10 1 6 8 3 7 7 9 4 4 2 0

(d) OrderedEdgeList and maxv· after considering [4, 5], [3, 4], [3, 5], and [2, 5].

7.5 CPH and Persistence Vectors

Note that the table in Table 7.1d also gives us the list of death values if we look in the second

row for our vertex. For instance, we see 10 is associated with [9, 10], while 7 is associated

with both [6, 7] and [7, 8]. Only vertex 5 is missing from the table, and this is because it was

assigned no death value. This follows from the fact that 5 was the v·-minimum vertex and

therefore the component it represents is present in each level of the multifiltration once the

parameter values are all sufficiently large.
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