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ABSTRACT 

Is Variability in Inhibition-Related Neural Activation After Sleep Restriction Associated with 
Eating Behavior in Adolescents? 

 
Kimberly A. Barnett 

Department of Psychology, BYU 
Doctor of Philosophy 

 
 The primary aim of the present study was to evaluate whether intra-individual variability 
in inhibition-related neural activation in response to sleep restriction is associated with eating 
behavior in adolescents aged 12-18 years. In addition, the potential moderating effects of sex and 
body mass index on the association between sleep and variability in neural activation were 
examined. This study employed a within-subjects crossover design that randomized subjects to 
both a 5 hours per night (sleep restricted) and 9 hours per night (well-rested) sleep condition for 
5 nights, with experimental conditions separated by four weeks. On the 6th day of each study 
phase participants completed a 24-hour diet recall and a food-related inhibitory go/no-go task 
while undergoing functional magnetic resonance imaging. Repeated measures multilevel models 
examined individual differences attributable to sleep duration and a series of separate 
multivariate analysis of variance models examined the effect that vulnerability to sleep 
restriction has on eating behavior as well as the moderating impact of sex and weight status. 
Findings suggest that adolescents who exhibited greater efficiency in inhibitory and reward-
related neural activation when sleep restricted demonstrated less pronounced decrements in 
neural activation when sleep restricted relative to when they were well-rested. These findings 
suggest that the effect of sleep restriction on inhibitory control may differ between individuals 
such that there are individuals who appear able to sustain inhibitory control comparable to when 
they are well-rested while other individuals show marked declines in executive functioning-
related neural activation when sleep restricted. Results from separate exploratory models 
including regions of interest associated with reward and across the whole brain were consistent 
with these findings. We also found that the effect of vulnerability to sleep restriction on 
inhibitory efficiency in the right inferior parietal lobule (R – IPL) and right middle frontal gyrus 
(R – MFG) differed by sex and was predictive of differences in overall eating behavior and sugar 
intake, respectively, when sleep restricted compared to well-rested. In addition, vulnerability in 
the inhibitory network was predictive of differences in individual eating behavior (i.e., total 
calories, added sugar, sugar, and total fat) for males and females across conditions. This finding 
demonstrates there is significant variability in the impact that sleep restriction has on inhibitory 
efficiency in adolescence relative to when they are well-rested, and vulnerability to inhibitory 
efficiency appears to effect male and female adolescent’s dietary behaviors differently when they 
obtain insufficient sleep. Vulnerability to inhibitory efficiency when sleep restricted compared to 
well-rested may cause males and females to consume more energy dense foods when they obtain 
insufficient sleep and also differs for males and females irrespective of their sleep duration. 
Given the pervasiveness of chronic sleep restriction in adolescence, males who are unable to 
counter the effect that insufficient sleep has on palatable foods may be at greatest risk of obesity. 
 
Keywords: individual variability, sleep restriction, inhibition-related neural activation, eating 
behavior 
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Is Variability in Inhibition-Related Neural Activation After Sleep Restriction Associated 

with Eating Behavior in Adolescents? 

Sleep is a fundamental physiological process that is essential for maintaining physical 

and mental health. Sleep is especially vital in adolescence given that sleep-dependent growth and 

developmental changes occur within the brain during these formative years (Telzer et al., 2015). 

In addition, adolescence is characterized by increased independence, responsibility, and an 

overall predilection to engage in risk taking and novelty seeking behavior (Arain et al., 2013). 

According to the National Sleep Foundation and the American Academy of Pediatrics, 

adolescents between the ages of 13 and 18 should obtain 8-10 hours of sleep per night (American 

Academy of Pediatrics, 2016; Owens et al., 2014; Paruthi et al., 2016). Prevalence estimates 

from a nationally representative survey conducted by the Center for Disease Control and 

Prevention indicate that 60-80% of adolescents regularly fail to meet these recommendations 

(Wheaton et al., 2016), which has since been corroborated by the American Academy of 

Pediatrics in a recent technical report. Inherent in this literature is the pervasive finding that 

adolescents in middle and high school consistently do not get enough sleep (Owens et al., 2014). 

Poor sleep in adolescence results in a number of negative consequences, including increased risk 

of accidental injury, poor school performance, cognitive deficits, obesity, sedentary activity, 

substance use, and mental health issues (Baum et al., 2014; Crowley et al., 2018; Lo et al., 2016; 

Moran & Everhart, 2012; Owens et al., 2014). Sleep also plays an important role in the 

maintenance of neurocognitive skills in adolescents (Beebe, 2011) and is necessary for 

maintaining cognitive function and attention processes (Crowley et al., 2018). However, recent 

findings from experimental studies and meta-analyses suggest that optimal sleep duration for 

adolescents is 9 – 9.25 hours of sleep, although teens obtain approximately 7 hours of sleep per 
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night during the week on average (Crowley et al., 2018). In fact, behavioral outcomes suggest 

that 8.16 – 9.3 hours are necessary for sustaining waking vigilance and alertness (Short et al., 

2018), while findings from a study using self-reported outcomes of sleep and externalizing and 

internalizing symptoms indicate that approximately 9 hours of sleep are necessary for 

maintaining optimal mood (Fuligni et al., 2019). Given the effects of sleep on adolescent 

functioning, sleep represents a crucial factor that may influence brain maturation and 

neurobehavioral outcomes during adolescence (Telzer et al., 2015).  

Effects of Insufficient Sleep on Cognitive Performance 

One of the most profound consequences of sleep restriction in adolescence is its impact 

on a broad array of executive function skills that involve inhibitory control, including attention, 

reaction time, working memory, decision-making, and emotion regulation (Chuah et al., 2006). 

Several studies within the adolescent literature highlight the relationship between insufficient 

sleep and neurocognition. For example, Beebe and colleagues (2008) explored behavioral 

consequences of experimentally restricted sleep in adolescents, reporting that, relative to normal 

sleep (10-hours), sleep restriction (6.5-hours) induced greater deficits in attention, 

oppositionality/irritability, behavior regulation, and metacognition. Similarly, a recent 

experimental study that examined the impact of sleep duration on cognitive functioning in 

children (ages 8-12) demonstrated that shortened sleep (1-hour later bed-time) produced 

impaired functioning on measures of affect, emotion regulation, memory, and attention (Vriend 

et al., 2013); a finding which has been corroborated by recent systematic reviews (Owens et al., 

2014). In addition, Gruber and colleagues noted that relatively modest levels of sleep restriction 

(sleep restricted by 1-hour) produced appreciable deterioration on measures of sustained 

attention, and vigilance (Gruber et al., 2011). Likewise, findings from a study in children (ages 
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10-11) found that a single night of sleep restriction produced slower reaction times and more 

lapses in attention versus control sleep (Peters et al., 2009). Taken together, these findings 

suggest that the effects of insufficient sleep on adolescents induce deleterious effects on an array 

of executive functions that involve inhibitory processes.  

Under the umbrella of executive functions lies the construct of inhibition. Inhibition 

refers to a specific sub-set of abilities ranging from vigilance, attention, and perception, that are 

designed to selectively regulate automatic attentional and behavioral responses (Lowe et al., 

2017; Miyake et al., 2000). Inhibition is important for preventing impulsive action, and 

impulsive decision-making (Demos et al., 2016). Impulsive action requires an individual to 

inhibit automatic responses, whereas, impulsive decision-making requires an individual to assess 

risk and rewards (Demos et al., 2016; Evenden, 1999). A recent meta-analysis investigating the 

neurocognitive consequences of sleep restriction suggests that sleep restriction negatively affects 

multiple domains of cognition, with the largest effects observed on attentional lapses and 

behavioral inhibition (Lowe et al., 2017). Findings from a within-subjects study in adults that 

investigated the effects of short (6-hours) compared to long sleep (9-hours) duration on 

impulsivity via behavioral inhibitions indicated that short sleep produced more inhibitory errors 

compared to long sleep (Demos et al., 2016). In addition, a study examining the impact that 

experimentally manipulated sleep has on go/no-go accuracy during a food inhibitory control task 

in a sample of obese/overweight and normal weight adolescents, provides evidence that short 

sleep negatively impacted reaction time and accuracy (Duraccio, Zaugg, et al., 2019). 

However, the effects of sleep restriction on cognitive performance vary substantially by 

age, sex, and individual vulnerability to sleep restriction (Alhola & Polo-Kantola, 2007; Durmer 

& Dinges, 2005). A study conducted by Louca and colleagues, demonstrated significant 
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individual differences in adolescents’ performance on objective measures of sustained attention, 

reaction time, and cognitive processing, following one night of total sleep deprivation (Louca & 

Short, 2014). Results showed increased inter-individual variance in lapses, fastest reaction times, 

and correct responses on a measure of cognitive processing speed (p < .008). In addition, they 

observed large between-subjects variance in performance on measures of sustained attention 

(e.g., errors of commission, errors of omission). Specifically, they observed that some subjects 

were able to sustain performance, while others had marked deficits in response to sleep 

deprivation. These findings mirror those reported by Demos and colleagues (2016), which found 

that the effect of sleep on inhibition was greater for those reporting longer habitual time in bed. 

Moreover, findings from this body of research provide evidence that the differential effects of 

chronic sleep restriction on neurocognitive performance are stable and trait-like, suggesting that 

insufficient sleep affect sensitive individuals consistently and across behavioral domains (Goel & 

Dinges, 2011; Krause et al., 2017; Rupp et al., 2012; Tkachenko & Dinges, 2018; Van Dongen et 

al., 2004).  

Furthermore, evidence from studies conducted in adolescents suggest that alterations in 

executive processes that involve inhibition may moderate the relationship between sleep and 

adolescent risky behavior. Specifically, a recent study found that adolescents most vulnerable to 

attentional decline after sleep restriction had poorer lateral vehicle control and reduced driving 

speeds (Garner et al., 2017). In addition, a study conducted by Telzer and colleagues (2013) that 

investigated the association between sleep quality and cognitive control, demonstrated 

adolescents who reported insufficient sleep displayed greater risk-taking behavior which 

corresponded to reduced activation in the dorsolateral prefrontal cortex, and greater insula 

activation. Furthermore, Mayes and colleagues reported that the mechanism responsible for the 
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relationship between sleep insufficiency and learning problems in children is symptoms of 

inattention (Mayes et al., 2008). Collectively, these findings provide evidence that cognitive 

control processes may explain the link between insufficient sleep and behavioral dysregulation in 

adolescents (Beebe, 2011). 

Although the biological basis for executive function deficits associated with sleep 

restriction has yet to be determined, preliminary research using functional magnetic resonance 

imaging (fMRI) has shown evidence that neural activation corresponds to neurocognitive 

performance. These findings indicate that the cognitive impairments following sleep restriction 

may be at least partially explained by its influence on neural structures and functions within 

frontal parietal regions of the brain (Chee et al., 2006; Epstein et al., 2009). fMRI studies have 

consistently shown that sleep restriction is associated with task-related reductions in activation in 

dorsolateral prefrontal cortex, and intraparietal sulcus (Krause et al., 2017). In addition, there is 

substantial evidence within the adult literature indicating that the degree of cognitive impairment 

and deficits in brain function associated with sleep restriction varies substantially between 

individuals (Krause et al., 2017; Van Dongen et al., 2004). However, the differential effects of 

sleep restriction on underlying brain functions associated with inhibition in adolescents is 

unknown (Beebe, 2011).   

Neural Consequences of Insufficient Sleep are not Uniform 

Research also suggests that sensitivity to insufficient sleep varies across individuals such 

that individuals with greater vulnerability to sleep restriction have decreased activation in brain 

regions associated with inhibition and other executive function processes. Conversely, less 

vulnerable individuals have increased activation in regions associated with executive functions 

including response inhibition (e.g., right inferior frontal region) and working memory (e.g., 
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prefrontal cortex, supplementary motor area, parietal cortex) after experimentally induced sleep 

restriction, suggesting a compensatory response in resistant individuals (Chee & Tan, 2010; 

Chuah et al., 2006; Mu et al., 2005). In addition, findings from Chee & Chuah (2008) suggest 

that the degree of task-related functional activation when well-rested predicts the extent of 

performance decline when sleep restricted. In an experimental research study that examined 33 

healthy young adult men, Mu and colleagues (2005) found that individual vulnerability to sleep 

restriction was predictive of neural activation during a working memory task when well-rested 

and following 30-hours of total sleep deprivation. Specifically, in this study they demonstrated 

that individuals resistant to sleep deprivation had more brain activation when both well-rested 

and sleep deprived compared to those that were most vulnerable to the effects of sleep 

deprivation. In addition, sleep deprivation also produced both within and between group 

differences in subject’s neural circuitry. Those subjects deemed most vulnerable to the effects of 

sleep deprivation exhibited reduced activation in circuits involved in executive function and 

working memory. Similarly, results from a study conducted by Chua and colleagues (2014) 

using electroencephalogram (EEG) measures found that variability in behavioral and physiologic 

measures at baseline was related to a decline in performance on sustained attention tasks when 

sleep deprived. Specifically, they found that vulnerability to sleep deprivation was predictive of 

slower reaction times and increased variability in response times as well as increased variability 

in EEG theta frequency. In addition, a recent study in adults showed that greater specificity in 

functional connectivity in cortical networks associated with externally focused attention when 

rested may predict vulnerability to sleep deprivation (Yeo et al., 2015). However, there is 

substantial variability in the effects of insufficient sleep on task specific prefrontal cortical 
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activation (Chee et al., 2006), indicating that individual differences in vulnerability to sleep 

restriction may vary by task. 

While the extent of individual differences in cognitive impairment and brain function 

from insufficient sleep is not as clearly established in adolescents, preliminary findings suggest 

that adolescents also differ in their response to sleep restriction (Louca & Short, 2014). Garner 

and colleagues (2017) illustrated this phenomenon in a recent experimental study that examined 

the impact of sleep restriction on adolescent drivers. In this study, they found that an 

adolescent’s vulnerability, measured using raw score change in attention ratings between sleep 

restriction and healthy sleep, to attention deficits following sleep restriction, moderated the 

association between inadequate sleep and lateral vehicle control. This line of research provides 

additional evidence for variability in the effect of sleep restriction on health behaviors in 

adolescents. 

Short Sleep Increases Dietary Consumption and Obesity Risk 

Inadequate sleep is significantly associated with an increased risk of obesity (Sluggett et 

al., 2019; Wu et al., 2017). Evidence from cross-sectional research suggests that for every hour 

of increased sleep time, the odds for obesity in adolescents decreases by 80% (Gupta et al., 

2002). Findings from recent meta-analyses of longitudinal, cross sectional, and prospective 

studies suggests that short sleep duration in children and adolescents confers substantial risk for 

developing overweight/obesity (OR: 2.15; 95% confidence interval; Fatima et al., 2015). Taken 

together, this body of research suggests, sleep duration is significantly associated with changes in 

weight status such that longer sleep duration during childhood is associated with decreased 

weight gain as one ages (Miller et al., 2018). In fact, Chen and colleagues published evidence in 

a meta-analysis that suggests youth who fail to meet sleep duration guidelines are at increased 
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risk for developing overweight and obesity (Chen et al., 2008). Based on findings from this 

literature, there is evidence that the obesity risk conferred by insufficient sleep is commensurate 

with if not greater than other risk factors for developing obesity, including parental obesity and 

screen time (Liou et al., 2010; Owens et al., 2014). Intervention studies have furthered this body 

of knowledge about the link between sleep and obesity, demonstrating that improvements in 

sleep duration led to positive changes in body mass index (Valrie et al., 2015) and food choices 

(Asarnow et al., 2017) in adolescents following participation in an intervention program 

(Sluggett et al., 2019).  

Previous research suggests that diet may play an important role in this relationship 

(Chaput & Dutil, 2016; Miller et al., 2015). Findings from literature investigating the effects of 

sleep on diet have shown that insufficient sleep is associated with increased caloric intake, higher 

energy-dense snack consumption, irregular eating patterns, decreased dietary quality, and 

increased consumption of highly palatable foods (Chaput & Dutil, 2016; Dashti et al., 2015; 

Miller et al., 2015; Sluggett et al., 2019). A recent systematic review of this scholarship noted 

that with regard to the impact that sleep duration has on caloric intake, findings are mixed. 

Authors of this review note that there is sufficient evidence from correlational research to 

conclude that simple counts of macronutrient intake have a weak or negligible association with 

pediatric sleep. Further they suggest that investigating the relationship between total sleep 

duration and macronutrient intake may not provide further insight into the link between 

shortened sleep and increased obesity risk; however, experimental paradigms that manipulate 

sleep duration may elucidate the causal relationship between sleep and obesity (Krietsch et al., 

2019).  
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Furthermore, research indicates that sleep deprivation also results in alterations in 

appetite regulating hormones (e.g., leptin, ghrelin) and increased insulin resistance (Leproult & 

Van Cauter, 2010; Matthews et al., 2012), which leads to greater caloric intake of sweet (Beebe 

et al., 2013), salty, and high calorie foods (Matthews et al., 2012; Moran & Everhart, 2012). 

Findings from an experimental study in young men found that, compared to 10 hours of sleep, 

sleep restriction of 4 hours per night over two days resulted in an 18% decrease in leptin, a 28% 

increase in ghrelin, and a 24% increase in hunger (Spiegel et al., 2004). Moreover, findings from 

cross-sectional research in adolescents suggests that short sleep duration (< 8 hours) is associated 

with alterations in the proportion of calories consumed daily from fat and carbohydrates, relative 

to longer sleep duration (> 8-hours; Weiss et al., 2010). Beebe and colleagues (2013) 

corroborated these findings in a randomized cross-over design study that explored the 

relationship between sleep and dietary intake in adolescents (ages 14-16). In this study, Beebe 

and colleagues found that sleep restricted adolescents consumed significantly more calories from 

foods high in sugar following 5-nights of sleep restriction (5-hours) compared to 5-nights of 

healthy sleep (10-hours). This same research group also found that adolescents rated pictures of 

sweet/dessert foods as more appealing during sleep restriction relative to healthy sleep (Simon et 

al., 2015). Furthermore, preliminary research in adults provides evidence that the effects of sleep 

deprivation on weight gain, late-night eating, and caloric and fat intake vary considerably 

between individuals, and are also stable over time (Spaeth et al., 2015). Evidence from 

longitudinal and cross-sectional findings, suggests that the relationship between sleep and 

obesity risk may be greatest for adolescent males, indicating that the strength of the relationship 

may vary by sex (Knutson, 2005). The effects of sleep on diet propose that sleep restriction may 

confer an increased risk of developing obesity by disrupting healthy eating habits and the 
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negative effects of sleep restriction on eating behavior are variable across individuals (Weiss et 

al., 2010). It is also possible that commonalities exist across individuals with greater sensitivity 

to sleep restriction and identifying subclasses of individuals with heightened sensitivity may be 

an important research aim.  

Sleep Restriction Alters Food-Related Reward and Inhibition Processes 

One mechanism of action that might underlie the relationship between sleep, diet, and 

weight gain is altered recruitment of brain regions involved in inhibitory control. Inhibition is a 

central element of self-control and subsequent eating behavior that modulates appetitive drive 

and motivation (Hall, 2016). A previous study using a food-related go/no-go task and a self-

report measure of food reward found that sleep restriction resulted in impairments in food-related 

inhibitory control and increased reward sensitivity relative to normal sleep in both normal and 

overweight/obese adolescents (Duraccio, Zaugg, et al., 2019), which corroborates findings from 

similar studies that sleep restriction in adolescents has a negative impact on executive function 

(Beebe et al., 2008). Prior research conducted in obese and healthy weight adults using fMRI 

further suggests that activation in the medial prefrontal cortex (a brain region associated with 

inhibitory control) is negatively correlated with disinhibition when viewing food relative to non-

food images (Martin et al., 2010). In addition, fMRI studies have shown that sleep restricted 

adults and adolescents have greater activation in brain regions associated with food-related 

behaviors (e.g., superior and middle temporal gyri, middle and superior frontal gyri, left inferior 

parietal lobule, orbital frontal cortex, and right insula) when viewing food images (Demos et al., 

2017; Jensen et al., 2019; St-Onge et al., 2014). Similarly, neuroimaging studies in adolescents 

suggests that relative to lean subjects, overweight subjects exhibit reductions in fMRI signal in 

regions associated with inhibition, including superior frontal gyrus, middle frontal gyrus, 
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ventrolateral prefrontal cortex, medial prefrontal cortex, and orbitofrontal cortex, while 

performing a food-related attentional task (Batterink et al., 2010). Interestingly, although 

research findings in young adults and adolescents suggest that sleep restriction has a negative 

impact on food-related inhibitory control and reward valuation (Benedict et al., 2012), findings 

are mixed as to whether weight status affects this relationship (Duraccio, Zaugg, et al., 2019). 

For example, a study in obese and normal weight children found that relative to healthy weight 

subjects, obese children demonstrated increased inhibitory activation in response to food images 

(Davids et al., 2010). Davids and colleagues propose that the discrepancy in findings may be due 

to the fact that obese children have less mature, less focused patterns of brain activation (Davids 

et al., 2010). In addition, Black and colleagues (2014) illustrated differences in functional 

connectivity in brain regions associated with reward and self-control in obese and healthy weight 

children while viewing food-associated prompts. Specifically, they found that obese children had 

greater connectivity between self-control and reward regions of the brain, including the left 

middle frontal gyrus, left ventromedial prefrontal cortex, and left lateral orbitofrontal cortex 

when viewing food-related stimuli. Taken together, previous research provides evidence that 

alterations in neural activation in brain regions associated with reward processing and inhibition 

may underlie increased dietary consumption in sleep restricted adolescents. 

Inhibition Affects Dietary Behavior 

A recent study conducted in adults that examined the causal effects of inhibition on 

dietary cravings and eating behavior using active cortical modulation techniques found that 

temporary suppression of cortical activation in the dorsolateral prefrontal cortex resulted in 

greater cravings in response to food images, and increased consumption of high calorie foods. 

Furthermore, they found that the effects of cortical suppression on food intake were mediated by 
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alterations in Stroop performance (Lowe et al., 2014), an objective measure of executive function 

(Golden et al., 2003). These findings provide evidentiary support that inhibitory control directly 

influences appetitive motivation and subsequent dietary intake.  

Given the effects of sleep restriction on inhibitory processes, and the relationship 

between inhibitory control associated with food reward and dietary behavior, alterations in 

inhibition may mediate the relationship between sleep and dietary behavior. Preliminary findings 

from St-Onge and colleagues (2014) supports this theory. In this study, they found that reduced 

brain oxygenation level-dependent (BOLD) activity in the insula, a brain region associated with 

compulsive and impulsive behavior, corresponded to increased food intake when sleep restricted. 

Thus, it is hypothesized that sleep restriction alters recruitment of inhibitory control, which 

reduces an individual’s ability to resist high-calorie foods (Lowe et al., 2017). A recent study by 

Jensen and colleagues supports such a theory, which found that normal weight adolescents 

demonstrated significantly greater neural activation in brain regions associated with inhibition in 

response to food images when sleep restricted relative to adolescents with overweight/obesity,   

and greater reward activation when sleep restricted collapsing across weight groups (Jensen et 

al., 2019). Taken together inhibition-related neural responding may be one characteristic that 

distinguishes individuals at greater risk for increased consumption of high-calorie foods 

following sleep restriction from those with less risk for suboptimal eating behavior.  

Relatedly, although a substantial body of research has investigated whether differences in 

cognitive abilities, including inhibition and impulsivity, between adolescents of different weight 

statuses exist, the effects sizes have been small. A central criticism of this literature is that it 

relies on group level differences and has failed to account for variability in cognitive functions, 

suggesting that overweight/obese adolescents are not consistently impaired. In a recent study 
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conducted comparing obese and normal weight adolescent's cognitive ability using intra-subject 

variability, they found that relative to normal weight females those whose weight was in the 

obese category had greater variability in reaction times during a go/no-go task (Bauer & 

Houston, 2017).  

Primary Study Aims and Hypotheses 

Given the lack of research investigating neural activation following sleep restriction and 

its association with eating behavior in adolescents, the primary aim of this study is to determine 

whether intra-individual variability in inhibition-related neural activation in regions of interest 

(ROIs) as defined by automated meta-analyses, including the right middle frontal gyrus (R – 

MFG), right anterior insula (R – AI), right anterior cingulate cortex (R – ACC), and right inferior 

parietal lobule (R – IPL) when sleep restricted can be useful in predicting eating behavior (see 

Figure 1). These specific ROIs were chosen based on previously published research showing 

differences in adolescent neural activation while completing a food-related attentional task 

(Batterink et al., 2010). Specifically, we hypothesize that individuals with more marked 

reductions in intra-individual variability in inhibition-related neural activation after sleep 

restriction (relative to well-rested) will demonstrate increased consumption of dietary fat and 

sugar, in addition to higher total caloric consumption. By exploring potential risk profiles, this 

study may provide guidance regarding individual characteristics that make one particularly 

susceptible to dietary overconsumption following sleep restriction, which could have important 

clinical implications. Finally, we conducted an exploratory whole brain analysis to compare 

intra-individual differences in neural activation in response to food images under restricted sleep 

and habitual sleep conditions in order to evaluate whether differences in neural activation exist in 

brain regions outside of the specified ROIs.  
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Method 
 
Subjects 

 Data for this study were collected as part of a larger investigation which examined 

normal and overweight adolescents’ brain responses to high and low-energy food images under 

restricted and habitual sleep conditions. Fifty-three adolescent subjects were recruited for this 

study using fliers in public locations in the community. Subjects were excluded if they met any 

of the following criteria: history of bariatric surgery, binge eating, or psychiatric conditions (e.g., 

traumatic brain injury, schizophrenia), used weight loss medications, or medications that may 

affect salivation (e.g., antihistamines, antidepressants), were left-handed, or had food allergies. 

Subjects were also screened for standard MRI contraindications, such as ferrous implants, 

pregnancy, etc. Subjects received a prorated compensation of $150 for completion of all study 

procedures. One parent/guardian provided written permission for their child to participate, and 

all subjects provided written informed consent/assent.  

Procedures 

 This study consisted of a two-phase within-subjects cross over design that randomly 

assigned subjects to complete two separate sleep conditions (5-hour; sleep restriction, 9-hour; 

habitual sleep). Each phase lasted 6 days/5 nights and took place three weeks apart from each 

other to ensure that females were in the same phase of their menstrual cycle for both 

assessments. Subjects were instructed to wake up prior to 9 am and establish a bedtime 5 or 9 

hours before their established wake time, depending on experimental condition. Adherence to the 

sleep protocol was determined through self-reported sleep and wake times and accelerometry 

data (Actigraph GT3x+). During the final day of each sleep phase, subjects completed an 

assessment which included a 45-minute MRI protocol, 24-hour dietary recall, and self-report 
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questionnaires. During the 45-minute MRI protocol, participants completed a food-related go/no-

go task (Batterink et al., 2010) where they were instructed to respond using a button press to 

images of healthy foods and withhold their response when viewing unhealthy food images. Prior 

to the assessment, subjects were instructed to fast for four hours and avoid caffeine consumption 

for 24 hours. Data collection occurred over the course of two consecutive years between the 

months of May – August. All study related procedures and measures were approved by the 

institutional review board.  

As previously reported by Duraccio and colleagues (2019), adherence to the experimental 

sleep protocol was assessed using accelerometry. Based on analyses of subject’s total time in 

bed, subjects were generally adherent to the sleep conditions and deviated from their expected 

sleep duration on average by less than 1 hour (Duraccio, Zaugg, et al., 2019). 

MRI Data Acquisition. Neuroimaging data were obtained using a Siemens TIM Trio 3T 

MRI scanner using a 12-channel head coil. Functional data were collected during the go/no-go 

tasks using an echo planar imaging sequence with the following parameters: repetition time (TR; 

28ms), echo time (TE; 28ms), field of view (192 × 192mm), acquisition matrix (64 × 64), voxel 

size (3× 3 × 3mm), and slice thickness (3mm). A high-resolution T1-weighted structural brain 

scan used for functional localization was acquired with the following parameters: TE = 2.26ms, 

TR = 1900ms, field of view = 218 × 250mm, acquisition matrix = 215 × 256, slice thickness = 

1mm, voxel size = 0.98 × 0.98 × 1mm.  

MRI Data Processing and Analysis. All MRI data were processed using the Analysis of 

Functional Images (AFNI) suite of software applications (Cox, 1996). Slice-time correction was 

applied to the functional data as part of the preprocessing procedures to account for differences 

between slices within a single TR. In addition, motion correction procedures were applied to 
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align the data with the 50th acquisition volume. The structural scans and adjacent functional 

scans in the session were co-registered. We created a single subjects’ regression model for the 

go/no-go task that included six motion regressors and 10 polynomial regressors (5 per run 

accounting for the two runs and for scanner drift within a run). Three behavioral regressors 

coding for correct no-go trials, correct go trials, and fixation periods were also included. A model 

was created for the no-go trials by convolving the canonical hemodynamic response with a 1-

second boxcar function. Fixation crosses were presented for a duration that varied randomly and 

ranged from 7 to 11 seconds, and subsequent events’ durations were fashioned accordingly. TRs 

with significant motion events (> .6 mm translation or > .3° rotation; Jensen et al., 2017) were 

excluded from the analysis. Since an a priori ROI analysis was conducted, we did not blur the 

fMRI data as part of the preprocessing procedures. 

We utilized Advanced Normalization Tools (ANTs; Avants et al., 2008) to accomplish 

spatial normalization. A nonlinear diffeomorphic spatial transformation was processed from the 

individual subject’s structural scan to the study specific MNI template using ants.sh and applied 

to all functional data. A definition for the ROIs was obtained from a meta-analysis using the term 

“Inhibition” in the neurosynth.org database. The search for “Inhibition” produced 482 papers. 

We created ROI maps by identifying the regions with the strongest correlations using association 

test maps with a spatial extent threshold of k>20 contiguous voxels for the Inhibition maps. Four 

ROIs were associated with inhibition (R – MFG, R – AI, R – ACC, and R – IPL). We extracted 

and analyzed the mean activity within significant ROIs using SPSS Statistics (IBM, 2012).   

For the exploratory whole-brain analysis, anatomical ROIs for reward regions were 

defined based on meta-analyses conducted using neurosynth.org database for the general terms 

“Reward,” which yielded 671 papers. Using association test maps, six ROIs associated with 
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reward were identified (right striatum (R – STM), left striatum (L – STM), ACC, right 

orbitofrontal cortex (R – OFC), left orbitofrontal cortex (L – OFC), and midbrain (MDB)). 

Similarly to the process used for ROIs associated with inhibition, the mean activity within 

significant ROIs associated with reward were extracted and analyzed using SPSS Statistics 

(IBM, 2012). In addition, as reported by Jensen and colleagues (2019), an exploratory whole-

brain analysis was conducted using 3dMVM in AFNI. The following a priori criterion: voxel-

wise threshold of p < .02 and a spatial-extent threshold of 24 voxels, and a template brain mask 

created with a 5-mm FWHM spatial blur yielded a family-wise error rate p < .05. The mean 

coefficients for no-go and go trials within the significant clusters identified were extracted and 

analyzed using SPSS Statistics (IBM, 2012). 

Voxel specific data gathered during go- versus no-go trials were utilized to calculate an 

index of intra-individual coefficient of variation (ICV)2 in neural activation during no-go vs. go 

trials in specified ROIs when sleep restricted (5-hour condition) relative to well-rested (9-hour 

condition). The coefficient of variation is a measure of relative variability that for a defined 

variable is calculated by dividing the standard deviation (SD) of the variable by the mean of the 

variable. The ICV value for each sleep condition was created by calculating the SD/Mean for the 

no-go beta value and go beta value, which were derived using the mean activation during the 

trial type and fixation cross for each specified ROI. Therefore, an ICV value that is greater would 

suggest that there was increased activation in inhibitory regions (i.e., the activation relative to 

baseline for no-go trials was greater than the activation relative to baseline for go trials) and is a 

proxy for inhibitory control or efficiency (no-go greater than go). ICV when sleep restricted and 

well-rested was then used to determine if the variability in inhibitory control (i.e., coefficient of 
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variation) when sleep restricted is greater than when well-rested. Thus, the independent variable 

is operationalized as the variability in neural activation for no-go vs. go trials within subjects.  

Measures  

 Demographics. Demographic information including subject’s height, weight, race, 

ethnicity, age, and sex were collected from subjects during both assessments.  

 Dietary Recall. Subjects recorded their food intake for the 24-hours prior to each 

scanning appointment using the Automated Self-Administered 24-hour Dietary Assessment Tool 

for Children (ASA24-Kids-2014), 2014 version. The ASA24 is an online tool used to determine 

portion sizes and energy, nutrient, and total food consumption in the last 24-hours (National 

Cancer Institute). Study staff provided verbal instructions and were available to assist subjects as 

they completed the assessment. The ASA24 – Kids – 2014 has been shown to be a reliable and 

valid measure of adolescent dietary intake comparable to that of interviewer administered 

assessments and other dietary intake questionnaires (Hewawitharana et al., 2018; Hughes et al., 

2017).   

 Go/No-Go Task. During each MRI scan, subjects completed a food-based go/no-go task 

to determine food-related inhibitory control (Batterink et al., 2010). For this task, subjects were 

shown pictures of food, and instructed to respond using a button press when they saw pictures of 

healthy foods and withhold their response when they saw a picture of an unhealthy food. 

Subject's responses and reaction times were recorded using a fiber-optic response system. Two 

blocks of 48 food images (75% go trials, 25% no-go) were presented for 500 milliseconds 

separated by a fixation cross that was presented for 7-11 seconds. Pictures were randomly chosen 

from a standardized database of food images (FoodPics; Blechert et al., 2014), displayed using 

E-Prime software (Psychology Software Tools, 2012), and synchronized with MRI image 
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acquisition. Previous studies utilizing a similar go/no-go paradigm have demonstrated increased 

neural activation in regions associated with response inhibition for no-go/go contrasts, and 

increased inhibition-related neural activation (Blechert et al., 2014).  

Data Analytic Procedure Overview 

 Specific Aim 1. To evaluate the extent of individual differences in inhibitory control 

following sleep restriction, we calculated the ICV in neural activation during no-go vs. go trials 

in the specified ROIs for each sleep condition. To evaluate individual change in inhibitory 

efficiency in the specified ROIs when sleep restricted relative to well-rested, we performed a 

repeated measures multilevel mixed model. This analysis is most suitable for examining data that 

include nested or repeated measurements where subjects are nested within conditions (Heck et 

al., 2013) and is appropriate for modeling complex hierarchical structures. Given the study 

design, the data were treated as a type of two level-data where ROIs and condition were crossed 

within-subject factors such that measurements were made for the same ROIs and the same 

conditions within each subject. A model was constructed to examine changes in neural activation 

in four regions associated with inhibitory control (R – MFG, R – AI, R – ACC, and R – IPL) for 

go versus no-go fixation trials (Durmer & Dinges, 2005).  

Next, we conducted an exploratory whole brain analysis to compare intra-individual 

differences in neural activation in response to food images under restricted sleep and habitual 

sleep conditions in order to evaluate whether differences in neural activation exist in brain 

regions outside of the specified ROIs. We again calculated an ICV in neural activation during 

no-go vs. go trials in each specified ROI for each sleep condition and performed a series of two 

separate repeated measures multilevel mixed model where subjects are nested within condition 
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(Heck et al., 2013). Of which one model included ROIs previously identified as coupled with 

food reward and another with the remaining ROIs across the brain. 

Specific Aim 2. Based on the extent of an individual’s change in inhibitory efficiency in 

neural activation during the go/no-go task when sleep restricted, we created a variable to 

estimate vulnerability to sleep restriction that accounted for inhibitory activation when they were 

well-rested at the individual level, using the following equation (ICVSleep Restricted (SR)  – ICVWell-

rested (WR)) × ICVWR. Using this value, we were able to quantify the magnitude of an individual’s 

change in inhibitory efficiency on the go/no-go task when sleep restricted relative to well-rested 

in each ROI specified. Consistent with previous literature, to delineate subjects based on the 

extent of change in inhibitory efficiency when sleep restricted, we divided subjects into tertiles 

based on individual vulnerability to sleep restriction (Chuah et al., 2006). To evaluate the effect 

individual vulnerability to sleep loss has on caloric intake a series of repeated-measure 

MANOVAs were conducted to examine whether vulnerability in each of the ROIs is useful in 

predicting eating behavior. Due to interest in determining how efficiency in neural activation in 

ROIs across the brain affects vulnerability to sleep restriction and whether vulnerability to sleep 

restriction is useful in predicting eating behavior, we chose to divide subjects into tertiles on an 

ROI by ROI basis to elucidate the relationship between vulnerability to sleep restriction in 

specific ROIs and eating behavior. We hypothesized that individuals belonging to tertiles with 

increased susceptibility to sleep restriction in terms of neural responding will demonstrate 

increased dietary consumption (e.g., total calories, sugar, added sugar, carbohydrate, protein, 

total fat) relative to resistant individuals.  

Consistent with specific aim 2 we created a variable to quantify vulnerability to sleep 

restriction at the individual level for an exploratory whole-brain analysis using the following 
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equation (ICVSR – ICVWR) × ICVWR and divided subjects into tertiles based on their individual 

vulnerability to sleep restriction (Chuah et al., 2006). To evaluate the effect individual 

vulnerability to sleep loss has on caloric intake a series of 19 repeated-measure MANOVAs were 

conducted to examine whether vulnerability in each of the ROIs included as part of an 

exploratory whole brain analysis is useful in predicting eating behavior.  

Specific Aims 3 & 4. For the exploratory moderator analyses we conducted a similar 

series of repeated-measure MANOVA models, adding the between-subject potential moderators 

of sex, and weight category in separate analyses. Due to the inclusion of ROIs across the whole 

brain and moderator variables an additional 57 exploratory analyses were conducted, therefore 

we used the Bonferroni correction to set the significant value threshold to p = .001 to reduce the 

likelihood of obtaining false positives. 

Analysis Steps Aim 1  

 For aim 1 a top-down modeling strategy was used with repeated measure variables 

included at level 1 (Sleep condition, brain region, index of intra-individual coefficient of 

variation (ICV)2 in neural activation during no-go vs. go trials) and individual subject variables 

at level 2.  

Step 1. The primary aim of step 1 was to fit a model with a loaded mean structure and 

random subject-specific intercept, which included fixed effects associated with specified ROIs, 

sleep condition, and the interaction between ROIs and sleep condition. This model included a 

single random effect associated with the intercept for each subject and a residual associated with 

each observation. The residual variance associated with each observation is assumed to be 

independent and to have the same variance across all ROIs and conditions.  
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Step 2. A second model was fit by adding a random subject specific effect for sleep 

condition, which allowed the marginal variance of observations for the well-rested condition to 

differ from that of the sleep restricted condition such that there are two random intercepts for 

each subject. In Step 2, we assume that the residual variance is constant across all levels of 

region and sleep condition. We tested the hypothesis that the variance of the residuals is constant 

across both sleep conditions using a REML-based likelihood ratio test, which is calculated by 

subtracting the -2 REML log-likelihood value for Model 2 (the reference model) from that for 

Model 1 (the nested model).  

Step 3. We fit a third model to explore whether there is heterogeneity in the residual 

variance by specifying heterogenous residual variances for each sleep condition to decide 

whether the model should have homogenous or heterogenous residual variances. In this model 

we assume that the variance of the residuals is different across levels of condition. We test the 

hypothesis that the variance of the residuals is constant across both sleep conditions and select a 

structure for the random effect using a REML-based likelihood ratio test, which is calculated by 

subtracting the -2 REML log-likelihood value for Model 3 (the reference model) from that for 

Model 2 (the nested model).  

Step 4. For the fourth and final step, we decide whether to keep the fixed effects of the 

ROI by sleep condition interaction in Model 3. A final model (Model 4) was reduced by 

removing nonsignificant fixed effects and model diagnostics were assessed. To test the 

hypothesis that the fixed effects associated with the ROI by sleep condition interaction can be 

omitted we use an F-test, based on the REML estimation of the parameters in Model 3.  

In addition, a similar stepwise approach was utilized to conduct an exploratory whole 

brain analysis to determine whether intra-individual differences in neural activation exists in 
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brain regions outside of the specified ROIs. We ran separate models, one that included ROIs that 

previous research suggests are involved in reward seeking behavior and reward valuation, 

including the PCC, R – OFC, L – OFC, MDB, ACC, R – STM, and L – STM. In addition, a final 

series of models were conducted which included fitting a final model with all remaining ROIs, 

including the right supplementary motor area (R – SMA), right lingual gyrus (R – LG), right 

triangularis (R – TG), inferior lateral operculum (ILO), right angular gyrus (R – AG), left 

inferior occipital gyrus (L – IOG), left precentral gyrus (L – PcG), left medial operculum (L – 

MO), right hippocampus (R – Hip), right caudate (R – Cau), superior temporal gyrus (STG), and 

right temporal pole (R – TP).  

 Results 
Data Screening 

 Data were screened prior to conducting analyses to identify significant outliers and 

missing data. ICV outliers for go/no-go activation varied by ROI. For ROIs associated with 

inhibitory control we observed two very high outliers in ICV within the R – ACC (> 250,000), 

for reward valuation we observed two very high outliers in ICV within the R – OFC 

(>1,000,000), and for the whole brain analyses, we observed six very high outliers within the 

ILO (n = 1), L – PcG (n = 2), R – AG (n = 1), R – Hip (n = 1), and R – LG (>100,000). All 

outliers identified came from 3 subjects, with one subject containing 7/10 outliers. Given the 

large discrepancy in the outlier values relative to the overall study sample, as well as the 

localization of the outlier data, we chose to exclude outlier data within ROIs by subject from the 

study analyses. Such that for a given subject whose data contained an outlier within a specific 

ROI, only that ROI data was excluded from the analyses. 

 In order to examine how the presence of outliers affected the statistical analyses, we ran a 

series of mixed models that included outliers and one without. When we examined the model 
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that included outliers, it is notable that we received the following error message: “Iteration was 

terminated but convergence has not been achieved. The MIXED procedure continues despite this 

warning. Subsequent results produced are based on the last iteration. Validity of the model fit is 

uncertain.” This suggests that the parameter estimates, and standard errors may be invalid and 

should be interpreted with caution. Results from this model do not appear to be redundant; 

however, based on the model’s fixed effect estimations the outliers observed appear to have 

implications on the model results. Specifically, we observe that the fixed effects estimates are 

only significant within ROIs that contain the significant outliers. The influence of the outliers on 

our results, provides further support for removing outlier data from our primary analyses.  

 Data missingness was also assessed. With regard to fMRI data, all data were complete. 

We were unable to collect dietary data from three subjects. Two subjects were missing dietary 

data for the 5- hour condition and one subject was missing dietary data for the 9-hour condition. 

Data Analytics    

  We divided subjects into tertiles based on their individual vulnerability to sleep 

restriction within each ROI. Individual vulnerability was determined using the following 

equation (ICVSR – ICVWR) × ICVWR. Using this value, we were able to quantify the magnitude of 

an individual’s change in inhibitory efficiency on the go/no-go task when sleep restricted relative 

to well-rested. While the range and standard deviation of vulnerability scores for each 

vulnerability group varied by ROI, we observed a consistent pattern when examining the 

relationship between ICV values and vulnerability group categorization. Specifically, individuals 

in Group 1 generally had greater ICV values when well-rested relative to sleep restricted and 

were categorized as those that were most vulnerable to sleep restriction. Group 2 exhibited 

generally consistent ICV values for both conditions, and Group 3 had greater ICV values when 
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sleep restricted and were deemed least vulnerable to the effects of sleep restriction (see Table 1 – 

3). Of note, within the R – SMA vulnerability Groups 1 and 3 exhibited increased activation 

when sleep restricted relative to well-rested with Group 2 exhibiting relatively consistent 

activation across conditions. 

Subjects 

 Fifty-three subjects (45.3% female; 79.2% Caucasian) between the ages of 12-18 (Mage = 

16.51, SD = 1.65) were included in the final analyses. The final sample included twenty-seven 

normal weight adolescents (body mass index percentile ≥ 5 and ≤ 85; MBMI% = 57.19, SD = 

23.94), and twenty-six overweight/obese adolescents (body mass index percentile ≥ 85; MBMI% = 

91.35, SD = 11.92). See Table 4 for detailed demographic information. 

Specific Aim 1  

 Model 1. To test whether the random effects associated with condition for each subject 

can be omitted from subsequent models, we first fit a model with a loaded mean structure and 

random-subject intercept. Results from the first model suggest there was a main effect for sleep 

condition in each of the specified ROIs, indicating that the average difference in inhibitory 

efficiency, as measured by the intraindividual coefficient of variation in beta activation for the 

No-go versus Go trials, between the sleep restricted and well-rested condition was significant (F 

= 5.88, p = .02). We also observed a significant main effect for variability in inhibitory 

efficiency differences by condition in each of the ROIs, suggesting that there were significant 

differences in the average variability in each of the specified ROIs when well-rested versus sleep 

restricted, (F = 4.16, p = .01). We also observed a significant interaction between condition and 

ROI, suggesting that condition was a significant predictor of variability in inhibitory efficiency, 

(F = 2.58, p = .05). In addition, with respect to the random effects estimate, the residual variance 
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associated with the intercept for each subject (Wald Z = 19.76, p = .00) and the residual 

associated with each observation were statistically significant (Wald Z = 3.87, p = .00), 

suggesting that there is statistically significant variability at the between-subject and within-

subject level. Based on the estimates of the variance components, 18.4% of variability in 

inhibitory efficiency occurred between subjects. 

Model 2. In our second step, a random condition effect for each subject was added, 

allowing the effect of the sleep restricted condition vs. well-rested to vary from subject to 

subject. In the parameterization of the model, we assume that fixed effects associated with the 

ROI, R – IPL, and sleep restriction are set to zero representing the reference categories 

throughout the results. Consistent with the first model, there was a significant condition by ROI 

interaction effect on inhibitory efficiency, (F = 3.47, p = .02), suggesting that inhibitory 

efficiency in ROIs differed by condition. There was also a significant main effect of ROI on 

inhibitory efficiency, (F = 5.24, p = .00). The fixed effects estimate from this model indicate that 

the effect of inhibitory efficiency significantly differed between the R – IPL vs. the R – ACC (β 

= -523.79, p = .00), R – MFG (β = -585.40, p = .00), and R – AI (β = -564.38, p = .00) when 

sleep restricted. The parameters for the fixed effects associated with the ROI by condition 

interactions suggest there were significant changes in the ROI effects for the sleep restricted 

condition relative to the well-rested condition in the R – ACC (β = 548.27, p = .03), R – MFG (β 

= 743.24, p = .00), R – AI (β = 571.29, p = .02), and the R – IPL (β = -767.19, p = .01). In regard 

to the level 2 variance components, findings suggest that there was significant variability in 

individual ROI’s inhibitory efficiency around the individual regression lines for each subject 

(Wald Z = 18.81, p = .00), variability in the condition-inhibitory efficiency slope across subjects 

(Wald Z = 4.35, p = .00), and variance in the intercepts across subjects (Wald Z = 4.64, p = .00; 
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see Table 5). To determine whether the random condition effects can be omitted from Model 1, 

we performed a likelihood ratio test (see Table 6). Based on a significant result in this test (p = 

.00), we decided to retain the random condition effects as a result of this significant test and 

reject the null hypothesis; thus, model 2 is deemed the preferred model at this stage in the 

analysis.  

Model 3. In this step of the analysis, we fit model 3 to allow the residual variances to 

vary for each level of condition by including separate residual variances for the sleep restricted 

and well-rested condition. This process allows a more flexible specification of the residual 

variance by allowing observations at different levels of the condition on the same subject to have 

different residual variances. Similar to model 2, we observed a significant main effect for ROI (F 

= 2.75, p = .04) on inhibitory efficiency as well as a significant ROI by condition interaction (F 

=3.50, p  = .02). The fixed effects estimate from this model indicate that the effect of inhibitory 

efficiency significantly differed between the R – IPL vs. the R – ACC (β = -519.63, p = .03), R – 

MFG (β = -585.40, p = .01), and R – AI (β = -564.38, p = .02) when sleep restricted. In all ROIs 

the coefficients suggest decreased variability in inhibitory efficiency when well-rested relative to 

sleep restricted. The parameters for the fixed effects associated with the ROI by condition 

interactions suggest there were significant changes in the ROI effects for the sleep restricted 

condition relative to the well-rested condition in the R – ACC (β = 540.90, p = .03), R – MFG (β 

= 743.24, p = .00), R – AI (β = 571.29, p = .02), and the R – IPL (β = 767.19, p = .01). Again, 

we observe all variance components are significant, including the random intercept, random 

linear slope, and an estimate of the covariance between them. These data suggest that there is 

significant variability in the random intercept to be explained between individuals (Wald Z = 

4.42, p = .00). The linear time slope also varies significantly across individuals (Wald Z = 4.41, p 
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= .00). In this equation we define the parameterization of the heterogeneous residual variances by 

estimating two parameters which define the variance as a function of condition. Based on this 

parameterization we observed the residual variance for the sleep restricted condition 

(3004774.23; corresponds to observations for the four ROIs in the sleep restricted condition) to 

be greater than the residual variance in the well-rested condition (132925.81; corresponds to 

observations for the four ROIs in the well-rested condition), which contradicted the hypothesis of 

within-group homogenization. In addition, the significant negative covariance between the 

random slopes and intercepts (Wald Z = -4.41, p = .00), suggests that those who exhibited 

greater inhibitory efficiency when sleep restricted exhibited less change in terms of inhibitory 

efficiency compared to when well-rested. To verify that different residual variances be estimated 

for the residuals we performed a likelihood ratio test to determine whether the model should 

have homogenous residual variances or heterogeneous residual variances. Based on the results of 

this test, we reject the null hypothesis that the residual variance is equal for the sleep restricted 

and well-rested conditions, p = .00, and retain the heterogenous residual variances as our 

preferred model. 

Model 4. For the fourth final model, we decide whether to keep the fixed effects of the 

ROI by condition interaction in Model 3 by assessing the F-test based on the results of the 

REML estimation of Model 3. As noted previously, the Type III F-test were significant at p = 

.02, which indicates that the fixed effect of condition on inhibitory efficiency differs by ROI and 

we retain the fixed effects associated with the ROI by condition; thus, selecting model 3 as our 

final model.  

Model Diagnostics. We checked the assumptions underlying of our final model. We 

conducted a Kolmogorov-Smirnov test for normality of the conditional residuals. This test was  
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significant, D(844) = 0.40, p = 0.00, suggesting that the conditional residuals from this analysis do 

not appear to follow a normal distribution. We then examined normality using Q-Q plots of the 

residual and found that most of the data followed a normal distribution fairly well with only a few 

outliers, suggesting that the residuals followed a fairly normal distribution. In addition, a 

scatterplot of the conditional residuals against the conditional predicted values showed some 

asymmetry within each sleep condition group, with the well-rested condition exhibiting less 

variability than the sleep restricted condition, suggesting that the variance within each group likely 

differed. Of note the DF is representative of the total “N” included in the model. Given that our 

study design is within subjects, and the use of a nested model in our analyses, the DF is 

representative of ICV nested within ROI (n = 4), nested within sleep condition (n = 2) for each 

subject ID (n = 53). In the dataset, the ICV value is calculated from the Go versus No/Go trials 

when sleep deprived versus well-rested, therefore the ICV value is repeated within the dataset (n 

= 2) and trial type is included in the analysis to uniquely identify each ICV value. Based on model 

diagnostics, the conditional residuals from this analysis appear to follow a normal distribution 

fairly well and the assumptions of the model were reasonably met. 

Exploratory Analyses 
 

For the exploratory whole brain analysis, a series of repeated measure multilevel mixed 

models were conducted to examine intra-individual differences in neural activation. Areas 

associated with reward valuation (e.g., PCC, R – OFC, L – OFC, MDB, ACC, R – STM, and L – 

STM)) were analyzed together in the same model. We then analyzed the remaining ROIs in a final 

repeated measures multilevel mixed model. Of note during an initial evaluation of the subject data, 

there were two subject ROIs whose ICV values were significantly greater than other subject ICV 

values. As such, we chose to exclude the two subject ROIs from the next series of mixed modeling. 
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Reward Regions Exploratory Analysis 

Model 2.1. To test our first hypothesis that the random effects associated with condition 

for each subject can be omitted from subsequent models, we first fit a model with a loaded mean 

structure and random-subject intercept. Results from the first model suggest the main effect for 

condition in each of the specified reward ROIs was not significant, indicating that the average 

difference in reward sensitivity, as measured by the intraindividual coefficient of variation in 

beta activation in ROIs associated with reward for the No-go versus Go trials, between the sleep 

restricted and well-rested condition was not significant, (F = 2.40, p = .12). We also observed a 

non-significant main effect for variability in reward activation, (F = 1.56, p = .16). In addition, 

the interaction between condition and reward ROIs was not significant, suggesting that condition 

was not a significant predictor of variability in reward sensitivity, (F = .65, p = .69). In addition, 

with respect to the random effects estimate, the residual variance associated with the intercept for 

each subject (Wald Z = 18.54, p = .00) was statistically significant; however, the residual 

associated with each observation was not statistically significant (Wald Z = 1.54, p = .06), 

suggesting that there is statistically significant variability at the between-subjects level but not 

the within-subject level. Based on the estimates of the variance components, 3.02% of variability 

in activation in reward ROIs occurred between subjects (see Table 7). 

Model 2.2. In our second step, a random condition effect for each subject was added, 

allowing the effect of the sleep restricted condition vs. well-rested to vary from subject to 

subject. In the parameterization of the model, we assume that fixed effects associated with the 

ROI, ACC, and sleep restriction are set to zero. When we attempt to fit this model, the following 

warning message appeared in the output: “The final Hessian matrix is not positive definite 

although all convergence criteria are satisfied. The mixed procedure continues despite this 
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warning. Validity of subsequent results cannot be ascertained.” Although, this warning message 

is not an indication of a critical error, investigation of the estimates of covariance parameters 

suggests that the variance of the random effects associated with condition for each subject is 

redundant. However, due to the inclusion of multiple ROIs per subject in the analysis we chose 

to retain the random effects associated with condition in the subsequent model, which includes a 

repeated measures effect that specifies that repeated measures uniquely indexed by levels of 

condition are collected for each combination of the subject and ROI variables.  

Model 2.3. A repeated measures effect that specified repeated measures collected for 

each combination of the subject and ROI variables were uniquely indexed by levels of condition 

was added to model 2.2 and convergence was achieved. Consistent with the first model, in model 

2.3 the interaction between condition and ROIs associated with reward was not significant, (F = 

.68, p = .67), suggesting that activation in ROIs associated with reward did not differ by 

condition. In addition, the main effects associated with condition and ROI were not significant (F 

= 1.64, p = .21, F = .82, p = .56, respectively). The fixed effects estimates from this model 

indicate that the effect of reward sensitivity in the R – STM was significantly greater when sleep 

restricted relative to well-rested (β = 3207.92, p = .03); however, activation in the PCC, R – 

OFC, L – OFC, L – STM, MDB, and ACC did not differ between conditions. The parameters for 

the fixed effects associated with the ROI by condition interactions suggest there were not 

significant changes in the ROI effects for the sleep restricted condition relative to the well-rested 

condition (all ps > .05). 

In this model, the variance components suggest there is significant variation in activation 

in ROIs associated with reward across subjects (Wald Z = 0.08, p = .05), variation in the 

influence of sleep condition on reward sensitivity across ROIs associated with reward (Wald Z = 
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1.71, p = .04), and covariance between the random intercepts and slopes (Wald Z = -1.70, p = 

.04). We observed residual variance for the sleep restricted condition (100523868.65) was again 

higher than the residual variance for the well-rested condition (1336457.01), which is in 

contradiction to the hypothesis of within-group homogenization. We performed a likelihood ratio 

test to determine whether the model should have homogenous residual variances or 

heterogeneous residual variances. Based on the results of this test, we reject the null hypothesis 

that the residual variance is equal for the sleep restricted and well-rested conditions, p = .00, and 

retain the heterogenous residual variances as our preferred model (see Table 8). 

Model 2.4. For the fourth model, we decide whether to keep the fixed effects of the ROI 

by condition interaction in Model 2.3 by assessing the F-test. As noted previously, the Type III 

F-test was not significant at p = .67, which indicates that the fixed effects of condition on reward 

sensitivity does not differ by ROI. However, we also performed a likelihood ratio test to 

determine whether the model fit improved after eliminating the interactions. Based on the non-

significant results of this test, we retain the interaction effects in the final model and keep model 

2.3 as our final model, p = .67 (see Table 8).  

Model Diagnostics. We checked the assumptions underlying the final model. We 

conducted a Kolmogorov-Smirnov test for normality of the conditional residuals, which was 

significant, D(740) = 0.44, p = 0.00, suggesting that the conditional residuals from this analysis do 

not appear to follow a normal distribution. We then examined normality using Q-Q plots of the 

residual and found that most of the data followed a normal distribution fairly well with only a few 

outliers, suggesting that the residuals followed a fairly normal distribution. A scatterplot of the 

conditional residuals against the conditional predicted values showed some asymmetry within each 

sleep condition, with the well-rested condition exhibiting less variability than the sleep restricted 
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condition, suggesting that the variance within each group likely differed. Based on the model 

diagnostics, the conditional residuals from this analysis appear to follow a normal distribution 

fairly well and the assumptions of the model were reasonably met. 

Whole Brain Exploratory Analysis 

 Model 3.1. To test our first hypothesis that the random effects associated with condition 

for each subject can be omitted from subsequent models, we first fit a model with a loaded mean 

structure and random-subject intercept. Results from model 3.1 yielded a non-significant F ratio 

for condition (F = .73, p = .40), suggesting that condition may not be an important predictor of 

neural activation. Similarly, the F ratio for ROI (F = 1.48, p = .13) and the condition by ROI 

interaction (F = 1.27, p = .23) were also not significant. In addition, with respect to the random 

effects estimate, the residual variance associated with the intercept for each subject was 

significant (Wald Z = 24.27, p = .00). In contrast, the residual associated with each observation 

did not reach statistical significance (Wald Z = 1.52, p = .06). These findings suggest that there is 

statistically significant variability at the within subject level; however, at the between-subject 

level there is not significant variability (see Table 9).  

Model 3.2. In our second step, a random condition effect for each subject was added, 

allowing the effect of the sleep restricted vs. well-rested condition to vary from subject to 

subject. In the parameterization of the model, we assume that fixed effects associated with the 

ROI, R – LG, and sleep restriction are set to zero. Consistent with the first model, there was no 

significant condition by ROI interaction effect on neural efficiency, (F = 1.41, p = .16), nor a 

significant main effect of condition on neural efficiency (F = .60, p = .44). In addition, although 

we observed a significant F ratio for ROI in model 1, it did not appear to remain significant in 

this model (F = 1.60, p = .09). Regarding the level 2 variance components, findings suggest that 
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there was significant variability in the random intercept to be explained between individuals 

(Wald Z = 3.47, p = .00), variability in the linear time slope across individuals (Wald Z = 2.95, p 

= .00), and covariance between the well-rested intercept and growth status (Wald Z = -3.41, p = 

.00). The significant negative covariance estimate suggests that those subjects who had lower 

neural activation experienced higher rates of growth and vice versus such that those who 

exhibited greater efficiency when sleep restricted exhibited less change in terms of efficiency 

compared to when well-rested. To test and determine whether the random condition effects can 

be omitted from Model 3.1, we performed a likelihood ratio test. Based on the significant results 

(p = .00), we decide to retain the random condition effects as a result of this significant test and 

reject the null hypothesis; thus, model 3.2 is deemed the preferred model at this stage in the 

analysis (see Table 10).  

Model 3.3. In this step of the analysis, we fit model 3.3 to allow the residual variances to 

vary for each level of condition by including separate residual variances for the sleep restricted 

and well-rested condition. This specification allows a more flexible specification of the residual 

variance by allowing observations at different levels of the condition on the same subject to have 

different residual variances. Like model 3.2, the main effect for ROI (F = 1.11, p = .35), 

condition (F =.57, p = .45), and the condition by ROI interaction (F =1.36, p = .19) were not 

significant. Again, we observe all variance components are significant, including the random 

intercept, random linear slope, and an estimate of the covariance between them. This data 

suggests that there is significant variability in the random intercept to be explained between 

individuals (Wald Z = 2.72, p = .01), the linear time slope across individuals (Wald Z = 2.53, p = 

.01), and the covariance between the random intercept and slope (Wald Z = -2.68, p = .01). We 

also observed that the residual variance for the sleep restricted condition (15289804.92) was 
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higher than the residual variance in the well-rested condition (6561798.46), which is in 

contradiction to the hypothesis of within-group homogenization. To verify that different residual 

variances be estimated for the residuals we performed a likelihood ratio test to determine 

whether the model should have homogenous residual variances or heterogeneous residual 

variances. Based on the results of this test, we reject the null hypothesis that the residual variance 

is equal for the sleep restricted and well-rested conditions, p = .00, and retain the heterogenous 

residual variances as our preferred model (see Table 10). 

Model 3.4. For the fourth model, we decide whether to keep the fixed effects of the ROI 

by condition interaction in Model 3.3 by assessing the F-test based on the results of the REML 

estimation of Model 3.3. As noted previously, the Type III F-test was not significant at  p = .19 

and we reduce the model by removing the fixed effects associated with the ROI by condition 

interaction. We performed a likelihood ratio test to determine whether the model fit improved 

after eliminating the interactions. Based on the significant results of this test, we chose to keep 

the reduced model, 3.4, as our final model, p = .00 (see Table 10).  

Model Diagnostics. A Kolmogorov-Smirnov test for normality of the conditional residuals 

was significant, D(1266) = 0.43, p = 0.00, suggesting that the conditional residuals do not appear 

to follow a normal distribution. Q-Q plots of the residual found that most of the data followed a 

normal distribution fairly well with a few outliers, suggesting that the residuals followed a fairly 

normal distribution. A scatterplot of the conditional residuals against the conditional predicted 

values showed some asymmetry within each sleep condition, with the well-rested condition 

exhibiting less variability than the sleep restricted condition, suggesting that the variance within 

each group likely differed. Based on model diagnostics, the conditional residuals from this analysis 
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appear to follow a normal distribution fairly well and the assumptions of the model were 

reasonably met. 

Specific Aim 2: Effects of Vulnerability to Sleep Restriction on Eating Behavior  

A series of repeated measures MANOVAs were conducted to test the effect that 

individual vulnerability to sleep restriction within each ROI has on eating behavior. In addition, 

given the subjects included in this study were recruited as part of a larger study investigating the 

effect that sleep restriction has on neural processes associated with inhibitory control and reward 

in normal weight and overweight/obese adolescents, we ran separate MANOVAs that also 

investigated whether BMI as well as sex moderated the relationship between vulnerability to 

sleep restriction and eating behavior.  

Consistent with the primary aims of this study a series of repeated measures MANOVA 

were conducted to test the effect that individual vulnerability to sleep restriction within each 

reward ROI (e.g., PCC, R – OFC, L – OFC, MDB, R – STM, L – STM, ACC) and each whole 

brain ROI (e.g., R – SMA, R – LG, R – TG, ILO, R – AG, L – IOG, L – PcG, L – MO, R – Hip, 

R – Cau, STG, R – TP) has on eating behavior. For additional details, including outcomes from 

the exploratory analyses and null findings please see Table 12 – 13.  

Inhibitory ROIs. The results showed there was no difference between vulnerability groups 

due to sleep restriction in the R – IPL, R – ACC, R – MFG, and R – AI on overall eating behavior 

when sleep restricted relative to well-rested. Univariate tests also indicated that there was no 

vulnerability group effect on individual eating behavior when sleep restricted versus well-rested 

(see Table 11).  

Reward ROIs. Although the interactions between condition and vulnerability group 

within the L-STM, MDB, ACC, and PCC, respectively, approached significance, no interaction 
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effects between sleep condition and vulnerability group within ROIs associated with reward met 

the corrected threshold for significance to predict differences in caloric intake when sleep restricted 

relative to well-rested (see Table 12).  

Whole Brain ROIs. Univariate tests approached significance suggesting that there was a 

condition by vulnerability group effect within the R – TG on individual eating behavior for protein 

consumption. In addition, the vulnerability group within the R – Hip effect also approached 

significance suggesting there were vulnerability group differences in individual eating behavior 

across conditions for added sugar intake; however, they did not meet the corrected threshold for 

significance. All other findings within the ILO, R – SMA, R – AG, L – IOG, L – PcG, L – MO, R 

– Cau, STG, R – TP, and R – LG, as well as the vulnerability group by condition interaction effect 

on caloric intake were not significant (see Table 13). 

Specific Aim 3: Vulnerability to Sleep Restriction and the Moderating Effect of Sex on 

Eating Behavior 

 Inhibitory ROIs. In contrast, there was a significant three-way interaction effect between 

condition, vulnerability group in the R – IPL, and sex on overall eating behavior (F = 2.14, p = 

.02, ηp2 = .25). Results from the univariate tests, indicated that there was no sex by vulnerability 

group effect on individual eating behavior between the two conditions. In addition, we observed a 

significant interaction between sex and group vulnerability that was predictive of individual eating 

behavior across the two conditions for total calories (F = 3.37, p = .04, ηp2 = .13; see Figure 2), 

and total fat (F = 5.15, p = .01, ηp2 = .19; see Figure 3) (all ps < .05, see Table 11). Specifically, 

males that demonstrated increased vulnerability to inhibitory efficiency when sleep restricted 

relative to well-rested had the greatest intake across all nutritional domains. Conversely, females 

demonstrated an opposite effect across conditions; those with greater variability in go versus no-
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go activation when well-rested relative to sleep restricted consumed the most calories across 

dietary domains. 

In addition, we observed a significant three-way interaction between sex, vulnerability 

group within the R – MFG, and condition on individual eating behavior when sleep restricted 

relative to well-rested for sugar intake (F = 3.51, p = .04, ηp2 = .14; see Figure 4). Inspection of 

the estimated means suggest that the impact of vulnerability group varied by sex. Males with 

decreased activation when sleep restricted relative to well-rested consumed more sugar when sleep 

restricted, with those in the vulnerability group with the least amount of change in activation 

between conditions consuming the most calories from sugar when sleep restricted and 

demonstrated the greatest difference in sugar intake. In contrast, females who demonstrated a 

decrease in vulnerability to inhibitory efficiency when sleep restricted consumed more calories 

from sugar overall; however, those with increased inhibitory efficiency when sleep restricted had 

the greatest difference in sugar intake between conditions. Furthermore, results indicated that the 

interaction between vulnerability group and sex was predictive of differences in eating behavior 

across conditions for added sugar (F = 3.31, p = .04, ηp2 = .13; see Figure 5). Females in Group 1, 

who demonstrated a decrease in vulnerability to inhibitory efficiency when sleep restricted relative 

to well-rested consumed the most calories from added sugar, followed by females in Group 3, and 

Group 2. In contrast, males in Group 1 and 3, who demonstrated a change vulnerability to 

inhibitory efficiency between conditions consumed a similar amount of added sugar across 

conditions, with males who exhibited relatively consistent inhibitory efficiency between 

conditions consuming the most calories across conditions. 
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In contrast, there were no significant interactions between the effect of vulnerability group 

in the R – ACC and R – AI, and sex on overall caloric intake when sleep restricted relative to well-

rested (see Table 11).  

Reward ROIs. In separate MANOVAs investigating the moderating effect sex has on the 

relationship between vulnerability to sleep restriction in bilateral regions of the OFC and STM, as 

well as MDB, PCC, and ACC and eating behavior when well-rested relative to sleep restricted, no 

interaction effects met the corrected threshold of significance (see Table 12).  

Whole Brain ROIs. Furthermore, although the three-way interaction between sex, 

vulnerability group within the R – TP, and condition on individual eating behavior when sleep 

restricted relative to well-rested approached significance for protein intake, they did not meet the 

corrected threshold for significance. Similar findings were observed suggesting that the 

interaction between sex and vulnerability group within the R – TP, L – PcG, L – MO approached 

significance for predicting sugar, added sugar, and total caloric intake, respectively across 

conditions, but did not meet the corrected threshold for significance. In addition, all results from 

MANOVAs investigating the moderating effect of sex on the relationship between vulnerability 

to sleep restriction in the ILO, R – SMA, R – TG, R – AG, L – IOG, R – Hip, R – Cau, STG, and 

R – LG, and eating behavior were not significant (see Table 13). 

Specific Aim 4: Vulnerability to Sleep Restriction and the Moderating Effect of BMI on 

Eating Behavior 

Inhibitory ROIs. Findings from a separate MANOVA suggested that the BMI by 

vulnerability group within the R – ACC interaction was predictive of differences in overall eating 

behavior across conditions for total calories (F = 3.14, p = .05, ηp2 = .13; see Figure 6), 

carbohydrate (F = 5.33, p = .01, ηp2 = .20; see Figure 7), sugar (F = 4.26, p = .02, ηp2 = .16; see 
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Figure 8), and added sugar intake (F = 4.41, p = .02, ηp2 = .17; see Figure 9). Inspection of the 

results suggested that adolescents in the overweight/obese weight category who fell in the 

vulnerability group (Group 2) demonstrating the least amount of change in inhibitory efficiency 

consumed the most calories across dietary domains. 

All findings from MANOVAs investigating the effect that BMI and vulnerability to sleep 

restriction in the R – IPL, R – MFG, and R – AI have on eating behavior were not significant (see 

Table 11).  

Reward ROIs. In addition, although the interaction between vulnerability group within 

the R – STM and BMI approached significance for predicting differences in caloric intake across 

conditions, no other interaction effects including vulnerability group within bilateral regions of the 

OFC and STM, as well as MDB, PCC, and ACC and BMI met the corrected threshold for 

significance. See Table 12 for complete results.  

Whole Brain ROIs. Results from a MANOVA investigating the effect that BMI has on 

the relationship between vulnerability to sleep restriction in the R – SMA and R – TG, and caloric 

intake approached significance suggesting there was a significant three-way interaction effect 

between condition, vulnerability group, and BMI on individual eating behavior for total fat 

consumption; however, they did not meet the corrected threshold for significance. In addition, all 

results from MANOVAs investigating the effect BMI has on the relationship between vulnerability 

to sleep restriction in the ILO, R – AG, L – IOG, L – PcG, L – MO, R – Hip, R – Cau, STG, R – 

TP, and R – LG and eating behavior were not significant. See Table 13 for all results. 

Discussion 
 

Findings from research examining associations between sleep restriction and eating 

behavior in adolescents are equivocal, highlighting the need for experimental studies to 
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investigate mechanistic factors that may elucidate this relationship. In addition, there is a notable 

gap in this body of research regarding our understanding of individual differences in this 

relationship as well as the factors that may cause an individual to be more susceptible to the 

negative consequences sleep restriction has on weight-related behavior (Krietsch et al., 2019). As 

such, the aims of this study were two-fold. First, this study examined whether intra-individual 

variability in neural activation associated with inhibitory control in response to sleep restriction 

occurs in adolescents. Second, the study evaluated whether the extent of variability in inhibitory 

efficiency predicted dietary behavior. The study examined ROIs associated with inhibitory 

control in addition to an exploratory whole brain analysis.  

Aim 1: Sleep Duration and Neural Activation 

 Given the pervasiveness of insufficient sleep in adolescents, with more than half of 

adolescents regularly sleeping less than the recommended guidelines for sleep, there is a critical 

need to understand the consequences of insufficient sleep. Further, previous research suggests 

that inadequate sleep impacts cognitive processes (e.g., inhibitory control, reward valuation) and 

brain function, and that these consequences vary substantially between individuals. However, 

much of this research has been conducted in adult samples, demonstrating a visible gap in the 

adolescent literature. In addition, inadequate sleep is significantly associated with an increased 

risk of obesity. Alterations in inhibitory control have further been shown to impact food reward 

and dietary behavior. Therefore, individual variability in inhibitory control attributable to 

insufficient sleep may be an important mechanism explaining individual differences in sleep-

related changes in eating behavior.  

Inhibitory ROIs. For the first aim, we sought to investigate the extent to which intra-

individual variability in inhibitory efficiency occurs in response to sleep restriction in a sample 
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of adolescents. Within ROIs associated with inhibition, including the R – ACC, R – MFG, R – 

AI, and R – IPL, we observed decreased variability in inhibitory efficiency when viewing food 

images under habitual sleep conditions relative to restricted sleep. In addition, there was a 

significant ROI by condition interaction effect, suggesting that there were significant changes in 

all the inhibition-related ROI effects when sleep restricted relative to well-rested. Results from 

this study help illuminate the effect of sleep restriction on neural mechanisms associated with 

inhibitory control in adolescents. Adolescence is a crucial stage of development that is 

characterized by brain maturation and myelination of neurons within the prefrontal cortex (Arain 

et al., 2013). The prefrontal cortex plays a central role in executive function processes, including 

inhibitory control (Aron et al., 2014). Successful maintenance of sustained executive function 

processes is contingent upon obtaining sufficient sleep (Krause et al., 2017; Lo & Chee, 2020). A 

significant body of literature indicates that chronic sleep restriction impairs function in the 

prefrontal cortex, and contributes to neurocognitive deficits (Krause et al., 2017). Specifically, 

neuroimaging research demonstrates that insufficient sleep negatively impacts outcomes during 

cognitive function tasks that corresponds to alterations in neural activity (Lowe et al., 2017). 

Findings from previous neuroimaging research in adolescents are comparable. These study 

findings show that adolescents who obtain short sleep exhibit impaired inhibitory control or 

suboptimal neural activation in brain regions associated with inhibitory control (Jensen et al., 

2019) and have impaired performance on inhibition-related tasks (Duraccio, Zaugg, et al., 2019).  

Furthermore, studies that include both neuroimaging and cognitive measures have shown that 

poor performance on cognitive outcome measures following sleep loss corresponds to 

insufficient recruitment of neural processes within brain regions involved in inhibitory control 

and executive function such as the prefrontal cortex (Krause et al., 2017; Lowe et al., 2017). 
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Outcomes from this scholarship suggest that in order to maintain cognitive control similar to 

when well-rested, adolescents who are sleep restricted may need to recruit additional neural 

resources to maintain optimal cognitive functioning (Beebe et al., 2009; Demos et al., 2017). 

These findings are particularly salient given the proportion of adolescents that regularly obtain 

insufficient sleep (Wheaton et al., 2016). However, the extent of deterioration in neurocognitive 

functions due to insufficient sleep varies considerably (Krause et al., 2017; Louca & Short, 

2014).  

Furthermore, we also found significant variability in inhibitory efficiency in beta 

activation in ROIs associated with inhibition across subjects, variation in the effect of sleep 

condition on inhibitory efficiency across subjects, and variation in the effect of sleep condition 

on inhibitory efficiency across ROIs. These findings extend beyond the existing literature to 

provide evidentiary support that the effect of sleep restriction on inhibitory activation in 

adolescents varies between and within individuals. Research in this area suggests that sensitivity 

to sleep restriction varies across individuals, such that individuals with greater vulnerability to 

sleep restriction have decreased activation in brain regions associated with inhibition (Chuah et 

al., 2006). These study findings are corroborated by adult studies, which demonstrated a trait-

like, phenotypic vulnerability to insufficient sleep on neurobehavioral outcomes and cognitive 

deficits highlighting evidence for interindividual differences (Dennis et al., 2017; Goel et al., 

2015; Goel & Dinges, 2011; Lowe et al., 2017; Van Dongen et al., 2004). Within the adolescent 

literature, there is considerable evidence illustrating how sleep negatively impacts cognitive 

functions, including inhibitory control, working memory, and sustained attention (Lo & Chee, 

2020; Short & Chee, 2019). However, to our knowledge very few studies have investigated 

interindividual differences in the impact that insufficient sleep has on inhibition-related neural 
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activation in adolescents. Findings from the limited existing literature investigating vulnerability 

to sleep restriction, demonstrate significant individual variability in neurobehavioral measures of 

sustained attention, processing speed, and reaction time following one night of total sleep 

deprivation. Specifically, these studies demonstrated that the consequences of inadequate sleep 

on cognitive performance in adolescents varies between individuals and the extent of impairment 

on specific cognitive domains varies within individuals (Goel et al., 2015; Louca & Short, 2014). 

The current study corroborates these findings by demonstrating that, while sleep restriction 

appears to impair inhibitory efficiency in adolescents, the degree to which sleep restriction 

impacted neural activation relative to neural activation when well-rested varied considerable 

between adolescents. 

In this study, individuals who exhibited greater inhibitory efficiency when sleep restricted 

exhibited less change in inhibitory efficiency relative to when they were well-rested. Consistent 

with previous research these findings suggest that individuals resistant to the effects of sleep 

restriction are better able to buffer the effects through sustained recruitment of attentional 

processes in the prefrontal cortex, or other neural mechanisms involved in maintaining attention 

(Chee & Chuah, 2008). This finding supports the theory that the effect of sleep restriction on 

inhibitory control may differ between individuals such that there is a subgroup of individuals 

who appear able to sustain inhibitory control when sleep restricted to a similar degree as when 

they achieve optimal levels of sleep. In contrast, there also appears to be evidence that a 

subgroup of individuals are unable to recruit inhibitory processes in the same manner, suggesting 

they may be more susceptible to the negative effects of sleep restriction on inhibitory control 

(Nofzinger et al., 2013; Nofzinger, 2006; Stern, 2002). This is one of the first studies conducted 

with adolescents to demonstrate that the effect of sleep restriction on neural activation associated 
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with inhibitory control varies substantially between and within individuals and that shifts in 

neural activation following inadequate sleep may be a useful indicator for identifying subgroups 

of adolescents most vulnerable to sleep restriction.  

Preliminary data from a neuroimaging study in adults suggests that individuals most 

vulnerable to the effects of insufficient sleep, exhibit less brain activation during a working 

memory task, both when well-rested and sleep deprived, compared to resilient individuals (Mu et 

al., 2005). Similarly, findings from Chua and colleagues, demonstrated that variability in 

behavioral and physiological measures including electrocardiogram, electroencephalogram when 

well-rested are associated with interindividual differences in sustained attention when sleep 

deprived (Chua et al., 2014).Therefore, changes in neural activation in response to sleep loss 

appear to align with neurocognitive outcomes which may provide insight into the 

neurobiological underpinnings associated with interindividual differences in response to sleep 

loss (Lowe et al., 2017; Whitney et al., 2019). Although less is understood in terms of potential 

predictors, there is some evidence that potential biomarkers, including differences in genetics, 

sleep homeostasis, and circadian rhythm may differentiate individuals most susceptible to the 

negative effects of sleep restriction; thus the inability to maintain inhibitory efficiency in 

response to sleep loss may be a useful indicator linking the biological mechanisms that 

correspond to impairments in neurobehavioral outcomes (Goel et al., 2015; Goel & Dinges, 

2011; Lowe et al., 2017; Satterfield et al., 2019; Sletten et al., 2015; Song et al., 2019; Van 

Dongen et al., 2012; Whitney et al., 2019).  

 Reward ROIs. Interestingly, we also observed significant variation in activation in ROIs 

associated with reward valuation (e.g., PCC, R – OFC, L – OFC, MDB, R – STM, L – STM, 

ACC) across subjects, and variation in the influence of condition on reward sensitivity across 
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ROIs associated with reward. These findings indicate that insufficient sleep does indeed exert an 

effect on neural activation in regions associated with reward in response to food images, which 

aligns with previous findings from neuroimaging studies in adults and adolescents (Demos et al., 

2017; Jensen et al., 2019; St-Onge et al., 2012). Specifically, previous studies have shown that 

brain regions associated with reward processing and valuation demonstrate increased reactivity 

when sleep deprived relative to well-rested (Krause et al., 2017). In addition results from 

experimental studies that included a similar sleep paradigm suggest that sleep restricted 

adolescents not only demonstrate greater sensitivity to food reward (Duraccio, Zaugg, et al., 

2019; Jensen et al., 2019), but also consume more calories from foods with a high glycemic 

index relative to when they are well-rested (Beebe et al., 2013). These findings imply that 

adolescents who fail to meet sleep recommendations may be at risk for increased consumption of 

high calorie foods due to increased reward sensitivity, suggesting that increased neural activation 

in regions associated with food reward may be an important factor responsible for the link 

between short sleep and obesity risk (Benedict et al., 2012; Demos et al., 2017; Duraccio, 

Krietsch, et al., 2019; Duraccio, Zaugg, et al., 2019; Lundahl & Nelson, 2015).  

Consistent with our primary aim, we also observed a higher residual variance for the 

sleep restricted condition relative to the well-rested condition. Similarly, we found that 

adolescents who exhibited greater reward sensitivity when sleep restricted exhibited less change 

relative to when they were well-rested. This finding supports the hypothesis that the effect of 

sleep restriction on reward salience may also differ between individuals, highlighting that there 

are adolescents who appear more sensitive to the effects that sleep restriction has on reward 

valuation in a manner that is inconsistent to when they achieve optimal levels of sleep. To our 

knowledge this is one of the first studies in adolescents to illustrate a trait-like response in reward 
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activation when sleep restricted. Within the limited existing literature, a recent study in adults 

found that individual differences in reward-related neural processing when well-rested was 

predictive of differences in eating behavior when sleep restricted, suggesting that variability in 

reward processes may be a critical component to understand the link between insufficient sleep 

and obesity risk (Satterfield et al., 2018). In addition, previous research in adolescents and adults 

suggests that hyper-responsivity of reward-related neural responding in response to a rewarding 

stimulus is associated with increased risk of subsequent weight gain (Stice et al., 2011; Winter et 

al., 2017). Specifically, Stice and colleagues, demonstrated that differences in reward activation 

in response to palatable foods differentiated adolescents at greatest risk for developing obesity 

(Stice et al., 2011). Although Stice and colleagues did not evaluate sleep restriction in their 

study, these findings suggest that variability in reward-related neural activation in response to a 

rewarding stimulus occurs in adolescent populations and may be a useful indicator for 

identifying sub-groups of individuals that are most vulnerable to maladaptive behaviors 

(Satterfield et al., 2018; Stice et al., 2011).  

 Given that much of the previous literature has focused on the effect that vulnerability to 

restricted sleep has on attention and inhibitory processes, the additional finding that reward-

related neural responding is also sensitive to insufficient sleep and exhibits significant variability 

between and within individuals is of importance. Nevertheless, current findings indicate that 

insufficient sleep does indeed exert an effect on neural activation in regions associated with 

reward. Specifically, findings suggest that brain regions associated with reward processing and 

valuation demonstrate increased reactivity when sleep deprived relative to well-rested (Krause et 

al., 2017) and, reward sensitivity has been shown to vary between individuals and predict 

activation in brain regions associated with reward when viewing food images (Beaver et al., 
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2006). Furthermore, evidence from adult studies suggests that individual biological factors 

including sex and trait genetics may influence the effect of insufficient sleep on reward 

processing (Ahrens & Ahmed, 2020; Greer et al., 2016; Krause et al., 2017; Tkachenko & 

Dinges, 2018).  

 Whole Brain ROIs. Regarding our final model, results that included the remaining ROIs 

included in the whole brain analysis (e.g., R – SMA, R – LG, R – TG, ILO, R – AG, L – IOG, L 

– PcG, L – MO, R – Hip, R – Cau, STG, R – TP) were consistent with regard to the random 

intercept, random slope, and the estimate of covariance between them. Consistent with findings 

from the inhibitory and reward models, our findings demonstrated that the residual variance for 

the sleep restricted condition was greater than that of the well-rested condition. Specifically, we 

observed significant variation in activation in the remaining ROIs across subjects, variation in 

the influence of condition on ROI sensitivity across ROIs, and the covariance between the 

random intercept and slope. The covariance estimate was again negative, suggesting that 

adolescents who exhibited greater efficiency when sleep restricted exhibited less change in 

reward activation relative to when they were well-rested. Thus, these adolescents were able to 

sustain neural activation in a manner that closely resembles neural activation when they obtain 

optimal sleep.  

Taken together these findings are consistent with previous work from fMRI studies that 

have shown individuals who exhibit greater activation across the brain when well-rested, are less 

susceptible to the negative effect that sleep deprivation has on cognitive outcome measures. 

Findings from this study support the cognitive reserve theory (Nofzinger, 2006), which surmises 

that individuals are resilient to the effects of insufficient sleep because they have greater neural 

resources at rested baseline. In other words resilient individuals may have more cognitive 
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resources readily available at any given time or have the ability to recruit additional resources to 

counter the impact sleep restriction has on neural processing (Nofzinger, 2006). Interestingly, 

outcomes and the interpretation of findings from fMRI research investigating vulnerability to 

sleep restriction vary in terms of how they operationalize neural activation changes that 

constitute efficiency versus vulnerability. Even so, consistent with previous research, we 

observed that the extent of deterioration in neurocognitive processes due to insufficient sleep 

varies considerably and help elucidate the neural underpinnings associated with vulnerability to 

sleep loss in adolescents.  

Aim 2: Vulnerability to Sleep Restriction and Eating Behavior 

 Relatedly, short sleep duration in adolescents is associated with increased food intake and 

an increased risk for developing overweight/obesity (Lundahl & Nelson, 2015; Wu et al., 2017). 

Previous research suggests that the connection between short sleep and obesity may be at least 

partially explained by the effects of insufficient sleep on dietary behavior (Chaput & Tremblay, 

2012; Miller et al., 2015). Therefore, another aim of this study is to determine whether the extent 

of decline in inhibitory efficiency predicts dietary behavior. 

Inhibitory ROIs. For the second hypothesis, we expected that adolescents with greater 

vulnerability in inhibitory efficiency in neural activation in response to sleep restriction would 

demonstrate increased dietary intake. Contrary to our hypothesis, we found that vulnerability 

group within inhibitory ROIs alone was not predictive of differences in dietary consumption. 

These findings suggest that despite subjects exhibiting differences in the degree of impairment 

sleep restriction produced in neural activation in regions associated with inhibitory control, there 

were no differences in caloric intake between conditions. This finding provides evidence for how 

neural activation in inhibitory regions aligns with eating behavior and suggests other factors 
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including motivation, sensitivity to hedonic food stimuli, and access to high calorie foods may be 

useful to better understand how sleep restriction and inhibition-related neural activation 

contribute to increased caloric intake and risk of subsequent weight gain. In addition, although 

we observed significant differences in inhibitory efficiency when sleep restricted, based on our 

sample size we may have not been adequately powered to detect between group differences in 

caloric intake.  

While inhibitory control is an important component to understand the relationship 

between insufficient sleep and increased obesity risk, it is important to recognize that these 

neural processes are multifaceted and likely interact with other neural, biological, and 

environmental factors to influence eating behavior. Given neural processes are not singularly 

responsible for any one behavioral outcome, it is possible that our analyses, which only 

considered activation within each region separately, did not capture the complex processes or co-

activation involved in dietary decision-making and eating behavior, which may be useful for 

understanding the relationship between short sleep and obesity risk. With regard to eating 

behavior, inhibition and reward-related neurocircuitry are tightly coupled and work in concert 

during dietary decision-making and are both affected by insufficient sleep. Specifically, previous 

research has shown a significant association between activation in brain regions associated with 

food reward when attending to palatable food images and increased caloric intake when sleep 

restricted, suggesting that increased responsivity to appetizing foods in brain regions associated 

with reward and inhibition in response to poor sleep may be a risk factor for future weight gain 

(Duraccio, Krietsch, et al., 2019; Lundahl & Nelson, 2015; St-Onge et al., 2012; Yokum et al., 

2011). Therefore, it is possible that vulnerability in inhibitory efficiency when sleep restricted 

may only exert a negative impact on dietary intake in the presence of co-occurring increased 
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reward salience. Our findings suggest that vulnerability to sleep restriction in inhibitory 

activation may be a potential mechanism that mediates the relationship between weight status 

and increased dietary intake that places an individual at increased risk for weight gain. 

Although our findings did not meet the threshold for significance, they are relevant and 

consistent with previous findings in adults and adolescents which demonstrate that sleep loss 

differentially impacts neurocognitive processes both within and between individuals which has 

implications on eating behavior. Specifically, previous research in this area suggests that 

individual variability in neurobehavioral outcomes is predictive of differences in snacking 

behavior (Powell et al., 2017). Furthermore, individuals demonstrate a stable phenotypic 

response in eating behavior when sleep deprived that varies substantially between individuals 

and is stable overtime (Spaeth et al., 2015). Given that restricted sleep has deleterious effects on 

inhibition and reward-related neural processes, which influence dietary decision-making and 

eating behavior, and the effect insufficient sleep has on neurobehavioral processes and eating 

behavior is trait-like and stable overtime, individual variability in neural activation when sleep 

restricted and well-rested may be a key factor in determining individuals most susceptible for 

increased caloric intake when sleep deprived.  

Aim 3: Vulnerability to Sleep Restriction and the Moderating Effect of Sex on Eating 

Behavior 

Inhibitory ROIs. When considering the moderating effect of sex on the relationship 

between vulnerability group in the R – IPL, R – ACC, R – MFG, and R – AI, and dietary intake, 

respectively, there is evidence that sex alone predicted differences in caloric intake across 

conditions, which is important to consider when drawing conclusions about subsequent 

interactions. In addition, it is also important to acknowledge limitations with regard to our 
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sample size prior to discussing the findings from the moderator analyses. Specifically, given the 

implications a small sample size has on reducing power and increasing the margin of error, the 

sample size contained within the exploratory analyses presents a considerable limitation in our 

ability to interpret the findings from the moderator analyses and draw a meaningful conclusion. 

As such it is important to preface that results from the moderator analyses should be interpreted 

with caution and subsequent interpretation of results contained in this section are speculative at 

best. Nevertheless, we observed a significant three-way interaction between condition, 

vulnerability group in the R – IPL, and sex on overall eating behavior. In addition, we observed a 

significant interaction effect between sex, vulnerability group within the R – IPL, and condition 

on overall eating behavior as well as a significant three-way interaction between sex, 

vulnerability group within the R – MFG, and condition on individual eating behavior when sleep 

restricted relative to well-rested for sugar intake. Findings also included a significant interaction 

between sex and vulnerability group within the inhibitory network (i.e., R – IPL, R – MFG), 

suggesting that the interaction was predictive of individual eating behavior (i.e., total calories, 

added sugar, sugar, and total fat) across the two conditions. This indicates that the effect of 

vulnerability to sleep restriction on inhibitory efficiency in the R – IPL and R – MFG differs by 

sex and is predictive of differences in caloric intake when sleep restricted compared with caloric 

intake when well-rested. In addition, these finding imply that the effect that vulnerability to 

inhibitory efficiency has on caloric intake may differ for males and females irrespective of their 

sleep duration. 

In sum, we observed that adolescent males consumed more calories than females 

irrespective of sleep condition and vulnerability group. With regard to vulnerability, differences 

in dietary intake between sleep conditions were observed for males and females based on their 
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ability to maintain inhibitory efficiency. Although we were unable to identify a specific pattern 

in the effect that vulnerability group and sex had on dietary domains due to being under 

powered, based on the significant findings from this study it is reasonable to conclude that 

vulnerability to sleep restriction on inhibition-related neural responding may differentially affect 

dietary outcomes for males and females. As such an important next step to distill the implications 

of this interaction on dietary outcomes will be conducting a follow-up study in a larger sample of 

adolescents.  

Findings from this study demonstrate male and female adolescent’s dietary intake may 

differ as a result of their ability to maintain inhibitory efficiency when they obtain insufficient 

sleep. Several studies in adults have demonstrated that dietary intake when sleep deprived differs 

for men and women. Specifically, Spaeth and colleagues found that sex was a significant 

predictor of differences in weight gain when sleep restricted in two separate studies. Following a 

5-night laboratory stay where subjects were allowed to sleep 4 hours per night, they found that 

sleep restricted subjects relative to well-rested controls gained more weight, with sleep deprived 

males gaining more weight relative to sleep deprived females (Spaeth et al., 2013). In addition,  

they demonstrated that regardless of sleep condition men not only consumed more calories 

relative to women but also exhibited the greatest increase in caloric intake when sleep restricted 

especially during late night hours (Spaeth et al., 2014). Furthermore, a study conducted by this 

same group of researchers that required participants to complete two separate sleep restriction 

protocols in a laboratory setting approximately 60 – 2132 days apart demonstrated men who 

gained a substantial amount of weight during consecutive bouts of sleep restriction also 

consumed more calories during both sleep restricted conditions. Comparatively, men who either 

maintained or lost weight also consumed a relatively consistent number of calories during both 
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sleep restricted conditions. Collectively, these findings provide evidence that men may be more 

susceptible to the negative consequences that sleep restriction has on caloric intake and 

subsequent weight gain relative to women. Furthermore, men who exhibit significant changes in 

weight status and calorie consumption when sleep deprived appear to be most vulnerability to the 

effects of insufficient sleep (Spaeth et al., 2015). Moreover, the negative consequences of 

insufficient sleep on eating behavior are phenotypic and stable overtime and differ based on an 

individual’s biological sex.  

 In addition to potential differences in sex hormones, our study findings add to the 

existing literature and suggest that sex differences in caloric intake during sleep restriction may 

be partially driven by differences in the impact that insufficient sleep has on inhibitory processes 

that drive over consumption and subsequent weight gain. Findings from a recent meta-analysis 

aimed investigating the effect that sleep restriction has on cognitive functioning, highlights 

biological sex as an important attenuating factor (Lowe et al., 2017). In this review, they found 

that men appeared most vulnerable to the negative impact that sleep restriction has on overall 

cognitive functioning and sustained attention relative to women. Conceptually, the ability to 

maintain inhibitory efficiency when sleep restricted may be a potential mechanism that is 

moderated by sex and useful in identifying sub-groups of individuals that may be at risk for 

weight gain as a result of increased caloric intake when sleep restricted.  

Aim 4: Vulnerability to Sleep Restriction and the Moderating Effect of BMI on Eating 

Behavior 

Inhibitory ROIs. We also found the BMI by vulnerability group interaction within the R 

– ACC was predictive of differences in overall eating behavior (e.g., total calories, carbohydrate, 

sugar, and added sugar intake) across conditions. Specifically, findings suggested that adolescents 
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in the overweight/obese weight category who fell in the vulnerability group demonstrating the 

least amount of change in inhibitory efficiency consumed the most calories across dietary domains. 

These findings are consistent with previous research which demonstrates that inhibitory efficiency 

is an important component for differentiating subjects most susceptible to the negative impact that 

sleep has on food reward and may be integral to understanding how sleep restriction confers 

increased risk for developing obesity in adolescents. Specifically, our findings corroborate results 

reported by Jensen and colleagues which suggest that overweight/obese and normal weight 

subjects exhibit differential activation in inhibition-related brain regions. In this study they found 

that overweight/obese subjects also exhibited increased activity in reward regions when sleep 

restricted; however, unlike normal weight subjects they did not demonstrate a co-occurring 

increase in inhibitory processing (Jensen et al., 2019). Findings from this study and previous 

literature suggest that overweight/obese individuals who are unable to recruit inhibitory neural 

processing in response, to counterbalance increased hedonic salience of food when sleep restricted 

may be most susceptible to alterations in dietary consumption when they obtain insufficient sleep 

(Jensen et al., 2019).  

While research consistently demonstrates that poor sleep is associated with increased 

responsivity in brain regions associated with food reward and weight status, and may be a risk 

factor for future weight gain (Demos et al., 2017; Jensen et al., 2019; Stice et al., 2011; Winter et 

al., 2017; Yokum et al., 2011), the ability to maintain inhibitory control when sleep deprived may 

be especially important in determining subjects most vulnerable to the negative consequences 

insufficient sleep has on dietary intake and subsequent weight gain. Taken together, vulnerability 

to sleep restriction may be a potential mechanism that mediates the relationship between weight 

status and increased dietary intake that places an individual at increased risk for weight gain. 



 56 

Strengths of the Current Study 

This study has several notable strengths which provide support for the legitimacy of the 

results discussed. Namely, this study used a within subjects’ cross-over design which previous 

research has shown to be an advantageous approach for increasing the power to detect a true 

effect. Similarly, in terms of the study design, this study demonstrates the feasibility and 

acceptability of conducting a within subjects’ cross-over design sleep paradigm in adolescents 

within the home environment. Furthermore, although we did not include weight status as a 

covariate in our primary analyses, our study sample included subjects of both normal and 

overweight/obese weight status. While previous research demonstrates a relationship between 

inadequate sleep and obesity, considerably less research has focused on understanding the 

mechanisms that may influence this relationship. Similarly, this is one of the first studies in 

adolescents to investigate how the impact of sleep restriction may differ between and within 

individuals, which fills a gap in the existing literature much of which has focused on group level 

analyses. A recent review concluded that the majority of the existing research investigating the 

relationship between health behaviors and dietary intake are based on cross-section and group 

level analyses, which fail to account for how these two factors vary individually from day to day 

(Krietsch et al., 2019). Although previous research in adults has investigated individual 

vulnerability to sleep loss, there is a relative paucity of research examining variability in neural 

changes associated with sleep restriction in adolescents (Beebe, 2011). Among the few studies 

that have investigated this phenomenon in adolescents, the majority of studies utilize indirect 

measures of executive function, rather than more direct measures, such as functional magnetic 

resonance imaging (Garner et al., 2017; Louca & Short, 2014).To our knowledge, this study is 

one of the first to examine intra-individual variability in neural activation during a go/no-go task 
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using novel fMRI techniques in a sample of adolescents, and the extent to which intra-individual 

variation in neural activation effects dietary behavior, which provides evidence to help clarify the 

mechanisms that may confer an increased risk for developing overweight/obesity. Thus, findings 

from this study help elucidate the neural underpinnings associated with vulnerability to sleep loss 

in adolescents and how differences in vulnerability to sleep loss for male and female adolescents 

may be useful in predicting caloric intake. 

Limitations of the Current Study  

 Several limitations to this study should be noted. First, although our sample size is 

reasonably large relative to other fMRI studies, our sample size is modest for conducting mixture 

modeling. In addition, subjects for this study were drawn from a larger study that recruited 

subjects from a community located near a university. Thus, the results of this study may not be 

generalizable to adolescents from diverse socioeconomic or racial/ethnic backgrounds. There are 

also limitations associated with the measurement of the variables of interest. First, neural 

activation in the specified ROIs is only a proxy for inhibition, and these brain regions are 

responsible for other cognitive and behavioral processes, limiting our ability to conclude that 

activation in these regions are solely inhibition-related. In addition, limitations associated with 

the study design were present. Data for this study were collected during two measurement 

occasions both of which occurred in the morning, which limits our interpretation of whether our 

findings directly capture intra-individual variability related to time of day. Further, given the 

impact that circadian rhythms have on alertness timing and the delayed shift in adolescence, it is 

possible that the timing of our measurement occasions may have impacted alertness and 

subsequent inhibitory and neural activation (Crowley et al., 2018). While subjects were 

randomly assigned to condition and the images presented during the food-related go/no-go task 
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were randomly selected from a pool of images, we did not assess whether subjects were able to 

recognize each food image or whether randomization order of the sleep conditions affected the 

results of this study. Lastly, prior to coming into the lab for each study visit and fMRI scan, 

subjects were instructed to fast except for drinking water. However, we did not assess subjects’ 

subjective hunger prior to being scanned and completing the food-related go/no-go task, which 

may have influenced their perception and co-occurring neural activation when viewing food 

images. 

Future Directions 

The primary focus of this study was on investigating variability in neural activation in 

response to sleep restriction and its usefulness in predicting caloric intake. Considerable attention 

in recent research investigating the link between short sleep and obesity points to a need for 

additional studies to include variability in sleep quality, timing, and circadian rhythm to better 

understand this relationship as well as data above and beyond caloric intake including meal 

timing and frequency (Krietsch et al., 2019). In addition, future studies that assess variability in 

the neural consequences of insufficient sleep using fMRI would benefit from the inclusion of 

multiple measurement occasions including a baseline evaluation, multiple measurement 

occasions when sleep restricted and well-rested, and overtime to more thoroughly determine the 

extent of impact that achieving the recommend number of hours of sleep relative to inadequate 

sleep has on intra- and inter- individual variability in neural activation. Similarly, much of the 

research in this area has focused on the adverse effects of acute sleep loss; therefore, an 

important direction for future direction will be investigating how chronic sleep restriction affects 

individuals most vulnerable to sleep restriction (Goel & Dinges, 2011). In this same vein, the 

inclusion of collecting multiple 24-hour dietary recall could provide utility for understanding the 
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impact that sleep restriction has on diet overtime and has promise to further elucidate the 

relationship between sleep and obesity risk (Krietsch et al., 2019). fMRI studies in this area may 

also benefit by including additional objective and self-reported measurements to corroborate 

underlying neurocognitive processes and advance our understanding of the functions that 

underlie neural activation; thus, verifying the construct validity of fMRI measurements. The 

inclusion of such measures may also help identify a clinically useful screening tool to identify 

individuals at the greatest risk for experiencing negative consequences associated with 

insufficient sleep. Given the lack of convergence when analyzing ROIs according to their 

associated functions it may be important to analyze all ROIs within subject in a single model, 

which may further our understanding of how ROI activation across the brain fluctuates during 

specific tasks. Lastly, previous research suggests that over activation in inhibitory regions 

relative to reward regions of the brain may be an important component necessary to counter the 

impact insufficient sleep has in enhancing the hedonic properties of palatable, nutrient dense 

foods. As such, future studies that include both inhibitory and reward regions in one model may 

provide evidence to further elucidate the impact that sleep has on eating behavior and obesity 

risk.  

Study Implications 

 Study findings suggest that sensitivity to sleep restriction in adolescents varies 

substantially across individuals such that individuals resistant to the effects of sleep restriction 

appear better able to maintain sufficient neural activation necessary to support cognitive 

function. Given the pervasiveness of insufficient sleep in adolescents, and the impact that 

insufficient sleep has in maintaining neural processes these findings elucidate one potential 

mechanism that may be useful in identifying a sub-group of adolescents that are particularly 
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susceptible to the detrimental effect that inadequate sleep has on cognition. Identifying 

adolescents who are unable to maintain efficient cognitive function when they achieve 

suboptimal sleep may inform clinical intervention recommendations aimed at improving sleep 

hygiene. Research in the adult literature suggests that while some individuals are able to sustain 

cognitive function when sleep restricted similar to when they are well-rested this may only be 

feasible when sleep restricted for short periods of time (Lowe et al., 2017; Van Dongen et al., 

2004). As most adolescents consistently fail to meet the recommended guidelines for sleep 

duration (Whitney et al., 2019), all adolescents would benefit from receiving sleep hygiene 

education to promote healthy sleep habits and optimal neural function, particularly in the 

presence of increased academic pressure and workload.   

In addition, the impact that vulnerability to sleep restriction has on caloric intake when 

sleep restricted versus well-rested varied for males and females. Specifically, male adolescents 

who appeared unable to maintain inhibitory efficiency appeared most susceptible to overeating 

and subsequent weight gain when they were sleep restricted. Thus, vulnerability to sleep 

restriction on inhibition-related neural responding may help to identify adolescents particularly 

susceptible to dietary overconsumption and subsequent weight gain when sleep restricted. The 

current findings extend previous research by identifying vulnerability to inhibitory efficiency in 

neural activation as a mechanism that underlies sex differences in caloric intake and subsequent 

weight gain. Therefore, individuals sensitive to inhibition-related neural changes resulting from 

sleep restriction may benefit from interventions to improve sleep as part of weight control 

interventions.   
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Table 1 ICV by Sleep Condition and Vulnerability Group Descriptives for Inhibitory ROIs 

 
Table 2 ICV by Sleep Condition and Vulnerability Group Descriptive Statistics for Reward ROIs  
  ICVRW ICVSR Vulnerability Score 
ROI  N M (SD) Range M (SD) Range M (SD) Range 
ACC        
Group 1 18 115.83(237.46) 4.93 – 952.21 4.91(10.83) .03 – 44.99 -66243.51(212142.78) -906684.79 - -21.64 
Group 2 17 1.75(1.73) .01 – 6.46 .71(1.34) .00 – 4.61 -2.84(4.67) -17.62 – .00 
Group 3 18 .73(.98) .01 – 3.53 635.05(1614.90) .07 – 6646.00 438.30(973.65) .00 – 3152.23 
PCC        
Group 1 17 733.04(2615.72) 1.57 – 10853.50 1.04(3.22) .00 – 13.45 -6976414.4(28121844.1) -1.18E + 8 - -2.46  
Group 2 18 .64(.68) .00 – 1.92 .25(.30) .00 – 1.10 -.59(.83) -2.43 – .03  
Group 3 18 .56(.62) .07 – 2.40 39.33(113.77) .51 – 470.75 74.21(260.97) .04 – 1124.96 

  ICVRW ICVSR Vulnerability Score  
ROI  N M (SD) Range M (SD) Range M (SD) Range 
R-ACC         
Group 1 16 88.01(139.27) 1.42 – 461.69 14.39(51.15) .003 – 205.82 -21170.55(53052.59) -213010.39 - -2.02  
Group 2 18 .54(.64) .00 – 1.81 .17(.30) .002 – 1.15 -.47(.64) -1.88 – .00  
Group 3 17 .78(1.79) .03 – 7.16 35.08(118.85) .18 – 493.74 39.48 (107.22) .01 – 331.98  
R-IPL        
Group 1 17 28.89(85.40) .90 – 358.07 1.25(3.16) .01 – 13.27 -7670.27(30544.59) -128028.98 - -.59 
Group 2 18 .31(.36) .00 – 1.29 1.44(3.44) .00 – 14.36 -.08(.21) -.52 – .25  
Group 3 18 4.51(10.90) .15 – 46.60 2256.34(7507.79) 2.96 – 31378.60 2248.28(6611.25) 1.17 – 28611.10 
R-MFG        
Group 1 18 494.66(1300.22) 2.54 – 5198.56 3.37(10.17) .00 – 43.84 -1836737.20(6269748.93) -27011469 - -6.20 
Group 2 17 .45(.75) .00 – 2.64 .27(.52) .00 – 2.00 -.38(.98)  -3.88 – .01 
Group 3 18 1.77(4.98) .01 – 21.58 505.24(1391.61) 1.09 – 4527.92 1662.63(5031.94) .07 – 20693.81 
R-AI        
Group 1 18 51.26(98.13) 1.06 – 336.36 .82(1.98) .00 – 8.48  -11697.72(29085.99) -112937.07 - -1.08 
Group 2 17 .40(.36) .12(.13) .00 – 1.02 .18(.13) .00 – .50  -.22(.29) -1.01 – .00 
Group 3 18 .82(1.49) .01 – 5.89 596.24(2460.43)  .40 – 10453.96 216.53(795.85) .01 – 3436.95 
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R – OFC         
Group 1 16 28.49(75.83) .94 – 302.72 .97(1.64) .00 – 5.60 -6155.31(22354.80) -91222.53 - -.89 
Group 2 18 .49(.47) .00 – 1.65 .59(1.49) .00 – 6.34 -.18(.20) -.56 - .02 
Group 3 17 .91(1.32) .01 – 4.86 1993.67(8176.91) .28 – 33724.67 9655.83(39156.18) .02 – 163960.01 
L – OFC         
Group 1 17 415.93(782.35) 8.56 – 2924.65 3.35(6.26) .00 – 19.58 -748149.32(2064434.37) -8551415.3 - -73.26 
Group 2 18 2.10(2.70) .00 – 9.34 1.13(2.03) .00 – 8.02 -8.32(16.73) -57.57 – .01  
Group 3 18 4.07(9.37) .00 – 35.64 6479.06(26061.47) .26 – 110833.14 220874.95(917077.02) .01 – 3949138.40 
R – STM         
Group 1 17 1347.41(4633.13) .97 – 18989.09 .51(1.01) .00 – 3.93  -22017582(85975666.2) -3.61E+8 - -.93  
Group 2 18 .35(.48) .00 – 2.06 .38(.81) .00 – 3.30 -.11(.24) -.86 – .02  
Group 3 18 5.93(21.31) .00 – 91.26 9444.65(38522.61) .58 – 163702.86 829937.01(3468377.91) .05 – 14930406.7 
L – STM         
Group 1 17 40.43(118.97) 1.96 – 498.28 20.65(85.24) .00 – 3.92 -14928.17(59180.25) -248112.52 - -2.98 
Group 2 18 .46(.46) .00 – 1.36 .533(1.34) .00 – 7.03 -.31(.54) -1.86 – .00  
Group 3 18 .55(.75) .01 – 3.10 25.25(62.40) .21 – 248.73 11.84(34.28) .00 – 149.35 
MDB        
Group 1 17 127.50(469.42) .57 – 1945.88 1.02(1.45) .00 – 4.27 -223605.60(904071.57) -3786295.2 - -.31 
Group 2 18 .28(.28) .00 – 1.06 .17(.22) .00 – .77 -.07(.10) -.30 – .00 
Group 3 18 3.4(8.97) .04 – 38.16 1227.44(4970.65) .14 – 21135.39 3573.92(10579.57) .00 – 40697.43 
 
Table 3 ICV by Sleep Condition and Vulnerability Group Descriptives for Whole Brain ROIs 
  ICVRW ICVSR Vulnerability Score 
ROI N M (SD) Range M (SD) Range M (SD) Range 
ILO        
Group 1 17 123.32(333.27) 1.11 – 1370.82 2.51(3.81) .03 – 13.50 -118679.96(444266.22) -1866272.1 - -.53  
Group 2 18 .28(.25) .00 – .72  1.68(2.32) .00 – 7.72 .06(.19) -.28 – .36 
Group 3 17 6.45(19.59) .06 – 82.19 435.34(1177.31) 1.23 – 4629.29 2652.77(10243.67) .37 – 42999.93 
R – SMA          
Group 1 23 124.35(573.03) .01 – 2752.26 1033.82(3473.65) .00 – 13935.26 -328608.81(1561280.40) -7571605.6 – 17789.34 
Group 2 21 .18(.30) .00 – 1.30 2.15(4.24) .00 – 17.77 .07(.18) -.15 – .69 
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Group 3 9 1.07(1.84) .02 – 5.92 304.50(941.50) 1.20 – 2545.86 225.90(617.12) .27 – 1920.95 
R – TG        
Group 1 21 255.49(1118.78) .26 – 5136.46 2.79(6.54) .00 – 29.15 -1256770.6(5684797.92) -26375475 – 9.24 
Group 2 19 .22(.23) .00 – .78 .53(.49) .00 – 1.66 .05(.10) -.06 – .31 
Group 3 13 .60(.48) .00 – 1.88 723.93(1638.42) .00 – 4568.52 285.02(824.51) .70 – 3036.61 
R – AG         
Group 1 17 161.65(560.83) 1.43 – 2332.59 23.58(94.62) .00 – 390.74 -268532.37(1081283.16) -4529539.5 - -1.54 
Group 2 18 .54(.64) .00 – 1.94 .36(.51) .00 – 1.65 -.24(.40) -1.45 – .01 
Group 3 17 .23(.35) .01 – 1.40 5.91(10.09) .14 – 41.08 1.64(3.59) .01 – 13.95 
L – IOG         
Group 1 18 7.79(24.86) .05 – 106.39 .09(.22) .00 – .96 -643.24(2622.46) -11303.34 - -.00 
Group 2 17 .01(.01) .00 – .04 .19(.39) .00 – 1.34 .00(.00) -.00 – .00 
Group 3 18 .41(.94) .01 – 3.90 97.60(402.98) .20 – 1712.24 10.77(43.29) .00 – 186.74 
L – PcG         
Group 1 19 2274.52(8499.57) .87 – 37158.80 1.95(5.04) .03 – 22.11 -73605904(312233422) -1.3807E+9 – .18 
Group 2 17 .31(.31) .00 – .82  3.42(12.55) .00 – 52.06 -.13(.21) -.64 – .11  
Group 3 15 .70(.92) .02 – 3.19 207.06(758.79) 1.74 – 2949.47 631.98(2384.78) .40 – 9404.94 
L – MO         
Group 1 17 1186.38(4498.31) 1.19 – 18610.19 .85(1.57) .00 – 6.04 -20451113(82694372.4) -3.4633E+8 - -1.20 
Group 2 19 .60(.81) .00 – 2.99 .59(.93) .01(3.07) -.25(.37) -1.10 – .09 
Group 3 17 2.01(2.53) .01 – 7.91 1460.66(5851.72) 1.29 – 24167.22 1487.27(5348.42) .12 – 22506.01 
R – Hip        
Group 1 18 18.07(70.70) .10 – 301.28 .07(.10) .00 – .43  -5047.49(21085.33) -90768.56 - -.01 
Group 2 17 .03(.03) .00 – .11 .25(.30) .01 – .98 .00(.01) -.00 – .03 
Group 3 17 1.81(3.81) .00 – 15.31 571.06(1856.18) .90 – 7594.36 2009.28(8031.58) .122 – 33658.64 
R – Cau         
Group 1 18 2374.32(9998.19) 1.54 – 42436.14 .31(.44) .00 – 1.36 -1.0005E+8(418350457) -1.8008E+9 - -1.51 
Group 2 17 .37(.50) .00 – 1.84 1.29(2.63) .01 – 11.10 -.12(.28) -1.09 – .07 
Group 3 18 1.83(2.41) .08 – 8.69 147.34(428.91) .08 – 1820.17 925.09(3647.21) .13 – 15738.75 
STG        
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Group 1 17 14.89(26.62) .87 – 113.01 1.12(2.06) .04 – 8.22 -878.44(3030.09) -12761.75 - -.72 
Group 2 18 .49(.68) .00 – 2.38 1.07(1.43) .02 – 5.95 .05(.33) -.62 – .74 
Group 3 18 1.91(2.66) .01 – 10.02 5852.37(20116.31) 2.76 – 84998.67 1121.60(3430.01) .75 – 14821.67 
R – TP         
Group 1 18 1687.50(4017.48) .00 – 23621.96 2.68(5.49) .00 – 20.80 -32810439(129397149) -5.5799E+8 - -.80 
Group 2 17 .25(.45) .00 – 1.77 6.32(24.76) .01 – 102.40 -.07(.17) -.62 – .02 
Group 3 18 5.13(14.16) .01 – 58.69 195.01(675.50) .90 – 2890.76 294.06(736.35) .04 – 3002.01 
R – LG        
Group 1 18 35.30(111.09) .29 – 455.15 1.11(3.12) .00 – 12.88 -12676.64(47645.52) -205162.67 - -.07 
Group 2 17 .04(.05) .00 – .18 .10(.19) .00 – .66 -.00(.01) -.03 – .00 
Group 3 17 .39(.84) .00 – 3.51 2954.52(12126.23) .15 – 50011.11 1170.53(4681.18) .00 – 19616.09 

 
Table 4 Subject Demographic Information 
N 53 (29 Males) 
Mean Age (SD) 16.51 (1.65) 
Grade (% of Total) 28.3 (15 College Freshman) 
BMI percentile (SD) 53.16 (29.11) 
Race (% of Total)   
 Caucasian 42 (79.2%) 
 Hispanic 3 (5.7%) 
 Native American 1 (1.9%) 
 Asian or Asian American 4 (7.5%) 
 Other 3 (5.7%) 
Gross Annual Income (SD)  4.65 (3.21) 
Note. Monthly Gross Income was measured in the following <$10,000 increments: 1 = <$9,999, 2 = $10,000 – 19,999, 3 = $20,000 
– 29,999, 4 = $30,000 – 39,999, 5 = $40,000 – 49,999, 6 = $50,000 – 59,999, 7 = $60,000 – 69,999, 8 = $70,000 – 79,999, 9 = 
>$80,000. 

 
Table 5 Summary of Model 1 - 3 
 Model 1 Model 2 Model 3 
Estimation Method RE/ML RE/ML RE/ML 
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Fixed-Effect Parameter Estimate (SE) Estimate (SE) Estimate (SE) 
β0 (Intercept) 767.19 (180.19) 767.19 (267.73) 767.19 (300.19) 
β1 (R-ACC vs. R-IPL) -664.69 (212.64) -523.79 (174.00) -519.63 (239.58) 
β2 (R-MFG vs. R-IPL) -585.40 (211.52) -585.79 (147.00) -585.40 (238.58) 
β3 (R-AI vs. R-IPL) -564.38 (211.52) -564.38 (172.94) -564.38 (238.10) 
β4 (Condition) -756.29 (211.52) -756.29 (290.13) -756.29 (304.06) 
β5 (R-ACC × Condition) 681.88 (300.73) 548.27 (246.09) 540.90 (244.81) 
β6 (R-MFG × Condition) 743.24 (299.13) 743.26 (244.57) 743.24 (243.31) 
β7 (R-AI × Condition) 571.29 (299.13) 571.29 (244.57) 571.29 (243.31) 
Covariance Parameter Estimate (SE) Estimate (SE) Estimate (SE) 

σ2 (Residual variance) 2371236.07 (119996.25) 
15851 
28.53 (84284.30)  

σ2int 535296.11 (138362.00 3006541.34 (647796.29) 3273553.10 (741271.13) 
σ2int, condition  2876054.48 (661934.24) -3291209.1 (746524.97) 
σ2condition   3331054.93 (755491.03) 
σ2sleep restricted   3004774.23 (223190.23) 
σ2well-rested   132925.81 (9837.44) 
Model Information Criteria    
-2RE/ML log-likelihood 14760.60 14634.46 13737.70 
AIC 14764.60 14640.46 13747.70 
BIC 14774.05 14654.65 13771.34 
Tests for Fixed Effects Type III F-Tests Type III F-Tests Type III F-Tests 
Intercept F(1, 72.76) = 6.25, p < .01 F(1, 49.10) = 2.01, p =.16 F(1, 48.69) = 1.78, p =.19 
Region F(3, 781.25) = 4.16, p < .01 F(3, 707.77) = 5.24, p < .01 F(3, 362.65) = 2.75, p < .05 
Condition F(1, 781.26) = 5.88, p < .05 F(1, 49.19) = 1.37, p =.25 F(1, 48.79) = 1.22, p =.27 
Region × Condition F(3, 781.25) = 2.58, p < .05 F(3, 707.69= 3.47, p < .05 F(3, 394.66) = 3.50, p < .05 
Note. ROI abbreviations and labels contained in this table include: right anterior cingulate cortex (R – ACC), right inferior parietal 
lobule (R – IPL), right middle frontal gyrus (R – MFG), right anterior insula (R – AI). 

 
Table 6 Summary of Hypothesis Test Results 
Hypothesis 
Label Test 

Estimation 
Method 

Models Compared (Nested vs. 
Reference) 

Test Statistic Values 
(Calculations) p-Value 
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1 LRTa REML 1 vs. 2 
𝜒𝜒2(1:2) = 126.13  
(14760.60 – 14634.46) .00 

2 LRT REML 2 vs. 3 
𝜒𝜒2(2:3) =  677.1 
(14634.46 – 13957.35) .00 

3 
Type-III F-
test REML 3b F(3, 394.66) = 3.43 .02 

Note. aLiklihood ratio test; the test statistic by subtracting the -2 REML log-liklihood for the reference model from that of the nested 
model. bThe use of an F-test does not require fitting a nested model. 

 
Table 7 Model 2.1 - 2.4 
 Model 2.1 Model 2.2 Model 2.3 Model 2.4 
Estimation Method RE/ML RE/ML RE/ML RE/ML 
Fixed-Effect Parameter Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) 
β0 (Intercept) 217.57 (1015.33) 217.57 (1015.33) 217.57 (1427.02) 861.10 (657.84) 
β1 (PCC vs. ACC) -203.80 (1414.03) -203.80 (1414.03) -203.80 (1947.32) 190.21 (223.13) 
β2 (L-OFC vs. ACC) 1984.32 (1414.03) 1984.32 (1414.03) 1984.32 (1947.65) 119.84 (223.13) 
β3 (L-STM vs. ACC) -208.53 (1414.03) -208.53 (1414.03) -208.53 (1947.65) -29.20 (223.13) 
β4 (MDB vs. ACC) 199.68 (1414.03) 199.68 (1414.03) 199.68 (1947.65) 4.56 (223.13) 
β5 (R-OFC vs. ACC) 432.89 (1420.97) 432.89 (1420.97) 432.68 (1957.47) -23.29 (224.21) 
β6 (R-STM vs. ACC) 2990.35 (1414.03) 2990.35 (1414.03) 2990.35 (1947.65) 427.82 (223.13) 
β7 (Condition) -177.42 (1414.03) -177.42 (1414.03) -177.42 (1437.32) -829.40 (647.560 
β8 (PCC × Condition) 399.18 (1999.75) 399.18 (1999.75) 399.18 (1960.56)  
β9 (L-OFC × 
Condition) -1888.97 (1999.75) -1888.97 (1999.75) -1888.97 (1960.56)  
β10 (L-STM × 
Condition) 181.69 (1999.75) 181.69 (1999.75) 181.69 (1960.56)  
β11 (MDB × Condition) -197.68 (1999.75) -197.68 (1999.75) -197.68 (1960.56)  
β12 (R-OFC × 
Condition) -458.50 (2596.55) -458.50 (2009.55) -457.89 (1970.43)  
β13 (R-STM × 
Condition) 2596.18 (1999.75) 2596.18 (1999.75) -2596.18 (1960.56)  
Covariance Parameter Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) 
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σ2 (Residual variance) 
52986603.97 
(2858551.72) 

52986603.97 
(2858551.72)   

σ2int 

1650819.62 
(1075613.09) 

1650819.62 
(1075613.09) 7404372.41 (4379056.53)  

σ2int, condition  .000000 (.000000) 
-7515136.00 
(4409048.15)  

σ2condition   7632495.44 (4457888.99)  

σ2sleep restricted   
100523868.65 
(7982339.23)  

s2well-rested   1336457.01 (108446.83)  
Model Information 
Criteria     
-2RE/ML log-
likelihood 15280.48 15280.48 14160.29 14164.32 
AIC 15312.48 15314.48 14198.29 14190.32 
BIC 15386.18 15392.79 14285.82 14250.20 
Tests for Fixed Effects Type III F-Tests Type III F-Tests Type III F-Tests Type III F-Tests 

Intercept 
F(1, 147.48) = 5.28, p < 
.01 

F(1, 147.48) = 5.28, p < 
.01 F(1, 53.16) = 2.24, p =.14 

F(1, 53.16) = 2.24, p 
=.14 

Region 
F(6, 687.37) = 1.56, p = 
.16 

F(6, 687.37) = 1.56, p = 
.16 

F(6, 317.36) = .82, p = 
.56 

F(6, 311.88) = 1.12, p 
= .35 

Condition 
F(1, 687.38) = 2.40, p = 
.12 

F(1, 687.38) = 2.40, p = 
.12 F(1, 53.16) = 1.64, p =.21 

F(1, 53.16) = 1.64, p 
=.21 

Region × Condition 
F(6, 687.38) = .65, p = 
.69 

F(6, 687.38) = .65, p = 
.69 

F(6, 325.79) = .68, p = 
.67  

Note. ROI abbreviations and labels contained in this table: posterior cingulate cortex (PCC), anterior cingulate cortex (ACC), left 
orbitofrontal cortex (L – OFC), left striatum (L – OFC), midbrain (MDB), right striatum (R – STM), right orbitofrontal cortex (R – 
OFC). 

 
Table 8 Summary of Hypothesis Test Results for Model 2.1 – 2.4 
Hypothesis 
Label Test 

Estimation 
Method 

Models Compared (Nested vs. 
Reference) 

Test Statistic Values 
(Calculations) p-Value 

1 LRTa RE/ML 2.1 vs. 2.2 𝜒𝜒2(1:2) = 0  
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(15280.48 – 15280.48) 

2 LRT RE/ML 2.2 vs. 2.3 
𝜒𝜒2(2:3) =  1120.18 
(15280.48 – 14160.29) .00 

3 
Type-III F-
test RE/ML 2.3b F(6, 325.79) = .68 .56 

4 LRT RE/ML 2.3 vs. 2.4  
𝜒𝜒2(3:4) =  4.02 
(14164.32 – 14160.29) .67 

Note. aLiklihood ratio test; the test statistic by subtracting the -2 REML log-liklihood for the reference model from that of the nested 
model. bThe use of an F-test does not require fitting a nested model. 

 
Table 9 Model 3.1 – 3.4 
 Model 3.1 Model 3.2 Model 3.3 Model 3.4 
Estimation Method RE/ML RE/ML RE/ML RE/ML 
Fixed-Effect 
Parameter Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) 
β0 (Intercept) 998.62 (479.26) 1186.97 (523.50) 1137.75 (586.90) 501.05 (392.78) 
β1 (R-SMA vs. R-
LG) -497.42 (667.60) -685.77 (685.22) -636.55 (763.52) -157.33 (417.48) 
β2 (R- TG vs. R-LG) -819.76 (667.60) -1008.11 (636.59) -958.89 (763.52) -220.87 (417.48) 
β3 (ILO vs.-LG) -822.59 (670.72) -822.59 (639.31) -822.59 (766.86) -222.37 (418.03) 
β4  (R-AG vs. R-LG) -956.55 (670.72) -956.55 (639.31) -956.55 (766.86) -254.72 (418.03) 
β5 (L-IOG vs. R-
LG) -965.38 (667.60) -1153.73 (636.59) -1104.52 (763.52) -333.61 (417.48) 
β6 (L-PcG vs. R-LG) -903.96 (674.05) -901.77 (642.66) -901.85 (770.83)  302.65 (418.66) 
β7 (L-MO vs. R-LG) -529.62 (667.60) -717.98 (636.59) -668.76 (763.52) 62.13 (417.48) 
β8 (R-Hip vs. R-LG) -779.52 (670.72) -779.52 (639.31) -779.52 (766.86) -234.32 (418.03) 
β9 (R-Cau vs. R-LG) -948.06 (667.60) -1136.41 (636.59) -1087.19 (763.52) 234.84 (417.48) 
β10 (STG vs. R-LG) 989.70 (667.60) 801.35 (636.59) 850.57 (763.52) 254.33  (417.48) 
β11 (R-TP vs. R-LG) -929.45 (667.60) -1117.80 (636.59) -1068.59 (763.52) 77.83 (417.48) 
β12 (Condition) -986.49 (667.60) -1174.84 (685.22) -1125.63 (685.30) -222.10 (292.73) 
β13 (R-SMA × 
Condition) 539.51 (941.84) 727.86 (897.92) 678.64 (911.36)  
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β14 (R-TG × 
Condition) 909.09 (941.84) 1097.44 (897.92) 1048.22 (911.36)  
β15 (ILO × 
Condition) 852.26 (944.06) 852.26 (899.85) 852.26 (914.16)  
β16 (R-AG × 
Condition) 996.54 (944.06) 996.54 (899.85) 996.54 (914.16)  
β17 (L-IOG × 
Condition) 956.04 (941.84) 1144.39 (897.92) 1095.17 (911.36)  
β18 (L-PcG × 
Condition) 1707.54 (946.43) 1705.35 (902.23) 1705.43 (917.49)  
β19 (L-MO) × 
Condition) 898.89 (941.84) 1807.25 (897.92) 1038.03 (911.36)  
β20 (R-Hip × 
Condition) 774.13 (944.06) 774.13 (899.85) 774.13 (914.16)  
b21 (R-Cau × 
Condition) 1743.04 (941.84) 1931.40 (897.92) 1882.18 (911.36)  
β22 (STG × 
Condition) -996.24 (941.84) -807.88 (897.92) -857.10 (911.36)  
β23 (R-TP × 
Condition) 1492.26 (941.84) 1680.61 (897.92) 1631.39 (911.36)  
Covariance 
Parameter Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) 
σ2 (Residual 
variance) 

11696585.024 
(481997.99) 10626683.07 (437307.27)   

σ2int 248550.82 (163262.24) 3673072.02 (1059734.00) 
2649277.24 
(972717.22) 

2625169.47 
(967887.90) 

σ2int, condition  -3537170.65 (1036986.32) 
-2685411.02 
(1000344.16) 

-2660932.24 
(995438.44) 

σ2condition  
3406297.56 
(1153640.63)23854.47 

2722037.64 
(1076856.62) 

2697182.21 
(1072079.20) 

σ2sleep restricted   
15289804.92 
(921665.20) 

15363071.67 
(922426.25) 
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σ2well-rested   
6561798.46 
(387190.85) 

6575277.72 
(388222.46) 

Model Information 
Criteria     
-2RE/ML log-
likelihood 23854.47 23804.89 23698.57 23878.52 
AIC 23858.47 23812.89 23708.57 23888.52 
BIC 23868.72 23833.38 23734.19 23914.18 
Tests for Fixed 
Effects Type III F-Tests Type III F-Tests Type III F-Tests Type III F-Tests 

Intercept 
F(1, 116.24) = 6.94, p < 
.01 F(1, 37.36) = 2.68, p < .11 

F(1,33.62) = 2.85, p 
=.10 

F(1,33.65) = 2.86, p 
=.10 

Region 
F(11, 1178.36) = 1.48, 
p = .13 F(11, 1181.64) = 1.60, p = .09 

F(11, 550.92) = 1.11, 
p = .35 

F(1,33.62) = 2.85, p 
=.10 

Condition 
F(1, 1179.68) = .73, p 
= .40 F(1, 56.14) = .60, p = .44 

F(1, 42.59) = .57, p 
=.45 

F(11, 986.00) = .58, p 
= .85 

Region × Condition 
F(11, 1178.06) = 1.27, 
p = .23 F(11, 1181.33) = 1.41, p = .16 

F(11, 953.43) = 1.36, 
p = .19  

Note. ROI abbreviation and labels contained in this table: right supplementary motor area (R – SMA), right lingual gyrus (R – LG), 
right triangularis (R – TG), inferior lateral operculum (ILO), right angular gyrus (R – AG), left inferior occipital gyrus (L – IOG), 
left precentral gyrus (L – PcG), left medial operculum (L – MO), right hippocampus (R-Hip), right caudate (R – Cau), superior 
temporal gyrus (STG), right temporal pole (R – TP). 

 
Table 10 Summary of Hypothesis Test Results for Model 3.1 – 3.4 
Hypothesis 
Label Test 

Estimation 
Method 

Models Compared (Nested vs. 
Reference) 

Test Statistic Values 
(Calculations) p-Value 

1 LRTa RE/ML 3.1 vs. 3.2 
𝜒𝜒2(1:2) = 49.58 
(23854.47– 23804.89) .00 

2 LRT RE/ML 3.2 vs. 3.3 
𝜒𝜒2(2:3) =  106.31 
(23804.89 – 23698.57) .00 

3 
Type-III F-
test RE/ML 3.3b F(11, 953.43) = 1.36 .19 

4 LRT RE/ML 3.3 vs. 3.4  𝜒𝜒2(3:4) =  179.95 .00 
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(23878.52 – 23698.57) 
Note. aLiklihood ratio test; the test statistic by subtracting the -2 REML log-liklihood for the reference model from that of the nested 
model. bThe use of an F-test does not require fitting a nested model. 

 
Table 11 Repeated Measures MANOVA Vulnerability Group within Inhibitory ROIs Predicting Caloric Intake 
 Condition Condition x Vulnerability Group 
Within Subject Effects F p ηp2 F p ηp2 
R – IPL  .84 .55 .11 .80 .65 .10 
R – ACC .76 .67 .10 .15 .99 .02 
R – MFG .81 .57 .10 .79 .66 .10 
R – AI .78 .59 .10 1.57 .12 .18 
  Condition x Sex Condition x Sex x Vulnerability Group 
Within Subject Effects F p ηp2 F p ηp2 
R – IPL  1.84 .12 .22 2.14 .02 .25 
R – ACC 1.65 .16 .20 .64 .80 .09 
R – MFG 1.57 .18 .20 1.70 .08 .21 
R – AI 2.82 .02 .30 .84 .61 .12 
  Condition x BMI Condition x BMI x Vulnerability Group 
Within Subject Effects F p ηp2 F p ηp2 
R – IPL  .39 .88 .06 .76 .69 .10 
R – ACC .51 .80 .07 .81 .64 .11 
R – MFG .61 .72 .09 1.25 .27 .16 
R – AI .54 .77 .08 1.21 .29 .16 

 
Table 12 Repeated Measures MANOVA Vulnerability Group within Reward ROIs Predicting Caloric Intake 
 Condition Condition x Vulnerability Group 
Within Subject Effects F p ηp2 F p ηp2 
R – OFC  .76 .61 .10 .78 .67 .10 
L – OFC  .79 .59 .10 .75 .70 .10 
MDB .86 .53 .11 .84 .61 .11 
R – STM  .84 .55 .11 .90 .55 .11 
L – STM  .82 .56 .10 1.35 .21 .16 
PCC .80 .57 .10 2.18 .02 .24 
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ACC .76 .60 .10 1.75 .07 .20 
  Condition x Sex Condition x Sex x Vulnerability Group 
Within Subject Effects F p ηp2 F p ηp2 
R – OFC  1.51 .20 .19 .63 .81 .09 
L – OFC  1.54 .19 .19 .86 .59 .12 
MDB 1.75 .14 .21 1.27 .26 .16 
R – STM  1.69 .15 .21 .62 .82 .09 
L – STM  1.62 .17 .20 .91 .54 .12 
PCC 1.74 .14 .21 .70 .74 .10 
ACC 2.32 .05 .26 .97 .49 .13 
  Condition x BMI Condition x BMI x Vulnerability Group 
Within Subject Effects F p ηp2 F p ηp2 
R – OFC  .64 .69 .09 .72 .73 .10 
L – OFC  .68 .67 .10 .67 .78 .09 
MDB .68 .67 .09 1.03 .43 .14 
R – STM  .59 .74 .08 .32 .98 .05 
L – STM  .59 .74 .08 .91 .54 .12 
PCC .54 .78 .08 .49 .91 .07 
ACC .62 .71 .09 .78 .67 .11 

 
Table 13 Repeated Measures MANOVA Vulnerability Group within Exploratory ROIs Predicting Caloric Intake 
  Condition Condition x Vulnerability Group 
Within Subject Effects F p ηp2 F p ηp2 
ILO  .76 .61 .10 .93 .52 .12 
R – SMA  .63 .71 .08 1.44 .16 .17 
R – TG .89 .51 .11 1.60 .11 .19 
R – AG  .79 .58 .10 .55 .88 .07 
L – IOG  .77 .60 .10 1.04 .42 .13 
L – PcG  .81 .57 .10 1.29 .24 .16 
L – MO  .78 .59 .10 .23 .99 .03 
R – Hip .77 .60 .10 .48 .92 .06 
R – Cau  .76 .60 .10 .68 .76 .09 
STG .76 .61 .10 .81 .64 .10 
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R – TP  .75 .61 .10 1.08 .39 .13 
R - LG .79 .58 .10 .43 .95 .06 
  Condition x Sex Condition x Sex x Vulnerability Group 
Within Subject Effects F p ηp2 F p ηp2 
ILO  1.58 .18 .20 .77 .68 .11 
R - SMA  .90 .50 .12 .29 .99 .04 
R – TG 1.91 .10 .23 1.07 .39 .14 
R – AG  1.62 .17 .20 .81 .64 .11 
L – IOG  2.12 .07 .25 .48 .92 .07 
L – PcG  1.90 .11 .23 .64 .80 .09 
L – MO  1.53 .19 .19 .51 .91 .07 
R – Hip  1.46 .22 .18 1.48 .15 .19 
R – Cau 1.58 .18 .20 .62 .82 .09 
STG 1.61 .17 .20 1.24 .27 .16 
R – TP  2.85 .02 .31 1.33 .22 .17 
R – LG  1.54 .19 .19 .56 .87 .08 
  Condition x BMI Condition x BMI x Vulnerability Group 
Within Subject Effects F p ηp2 F p ηp2 
ILO  .38 .87 .06 .74 .71 .10 
R - SMA 1.18 .34 .15 1.44 .17 .18 
R – TG  .25 .96 .04 1.65 .09 .20 
R – AG  .54 .78 .08 .83 .62 .11 
L – IOG  .57 .75 .08 1.07 .39 .14 
L – PcG  .78 .59 .11 1.44 .17 .18 
L – MO  .52 .79 .07 .80 .65 .11 
R – Hip  .66 .69 .09 .69 .76 .10 
R – Cau  .68 .67 .10 .72 .73 .10 
STG .57 .76 .08 1.28 .25 .16 
R – TP  .78 .59 .11 1.48 .15 .19 
R – LG  .53 .78 .08 .45 .94 .06 
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Figure 1 A Priori Regions of Interest as Defined by Automated Meta-Analyses 

Figure 2 Clustered Bar Mean of Total Fat Intake by Vulnerability Group in R – IPL by Sex 
Across Conditions 

 

 

 

R - MFG R - AI R - ACC R - IPL
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Figure 3 Clustered Bar Mean of Sugar Intake by Vulnerability Group in R – IPL by Sex Across 
Sleep Conditions 

 

 

Figure 4 Clustered Bar Mean of Sugar Intake by Vulnerability Group in R – MFG by Sex and 
Sleep Condition 
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Figure 5 Clustered Bar Mean of Added Sugar Intake by Vulnerability Group in R – MFG by Sex 
Across Sleep Conditions

 
 

Figure 6 Clustered Bar Mean of Total Calorie Intake by Vulnerability Group in R – ACC by 
BMI Weight Category Across Sleep Condition 
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Figure 7 Clustered Bar Mean of Carbohydrate Intake by Vulnerability Group in R – ACC by 
BMI Weight Group Across Sleep Conditions 

 

Figure 8 Clustered Bar Mean of Sugar Intake by Vulnerability Group in R – ACC by BMI 
Weight Category Across Conditions 
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Figure 9 Clustered Bar Mean of Added Sugar Intake by Vulnerability Group in R – ACC by 
BMI Weight Group Across Sleep Conditions 
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