Keywords

integrated modelling, agricultural production, land use, water use, climate change

Start Date

1-7-2004 12:00 AM

Description

In the coming decades, world agricultural systems will face serious transitions. Population growth, income and lifestyle changes will lead to considerable increases in food demand. Moreover, a rising demand for renewable energy and biodiversity protection may restrict the area available for food production. On the other hand, global climate change will affect production conditions, for better or worse depending on re-gional conditions. In order to simulate these combined effects consistently and in a spatially explicit way, we have linked the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) with a "Management model of Agricultural Production and its Impact on the Environment" (MAgPIE). LPJ represents the global biosphere with a spatial resolution of 0.5 degree. MAgPIE covers the most important agricultural crop and livestock production types. A prototype has been developed for one sample region. In the next stage this will be ex-panded to several economically relevant regions on a global scale, including international trade. The two models are coupled through a layer of productivity zones. In the paper we present the modelling approach, develop first joint scenarios and discuss selected results from the coupled modelling system.

Share

COinS
 
Jul 1st, 12:00 AM

How tight are the limits to land and water use? – Com-bined impacts of food demand and climate change

In the coming decades, world agricultural systems will face serious transitions. Population growth, income and lifestyle changes will lead to considerable increases in food demand. Moreover, a rising demand for renewable energy and biodiversity protection may restrict the area available for food production. On the other hand, global climate change will affect production conditions, for better or worse depending on re-gional conditions. In order to simulate these combined effects consistently and in a spatially explicit way, we have linked the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) with a "Management model of Agricultural Production and its Impact on the Environment" (MAgPIE). LPJ represents the global biosphere with a spatial resolution of 0.5 degree. MAgPIE covers the most important agricultural crop and livestock production types. A prototype has been developed for one sample region. In the next stage this will be ex-panded to several economically relevant regions on a global scale, including international trade. The two models are coupled through a layer of productivity zones. In the paper we present the modelling approach, develop first joint scenarios and discuss selected results from the coupled modelling system.