Abstract

Irrigation of the municipal cemetery in Brigham City, Utah resulted in stained headstones in 2001 and 2002. The water used in the irrigation came from Mantua reservoir, a medium sized impoundment situated near the mouth of Box Elder Canyon. In order for Brigham City to establish a city wide secondary pressurized irrigation system using water from Mantua reservoir, the cause and the source of staining problem must be determined. Previous research (Wallace 2006) determined that the source of the staining was the reduction of iron found in Mantua Reservoir sediments that occurred when seasonal variations in the reservoir caused anaerobic conditions. The reduced iron then dissolved in the water and was used in the irrigation system, causing re-oxidation of the iron. The oxidized iron then precipitated out on the headstones causing the staining. The purpose of this investigation is to determine the iron oxidation kinetics after the re-aeration of the water which will help determine appropriate mitigation methods. A secondary purpose is to confirm the Mantua reservoir's capacity to become anaerobic, resulting in the conditions which cause staining. Using laboratory investigations and computer modeling, I determined that on re-aeration, fifty percent of the dissolved iron in the water precipitates in five hours. Using first-order kinetics to model this process, I found the rate constant of the kinetic reaction to be 0.0029 min-1. Fitting a geochemical computer model of the iron oxidation kinetics in Mantua reservoir, which uses a higher-order kinetics model to better model this process, to experimental kinetic data yielded a rate constant of 4x1013 /atm x min. I also recreated the staining process in the laboratory using concrete. This was successful and provided visual evidence that the iron precipitates out of the water and stained the concrete within a couple of hours of application. Field data collected from Mantua reservoir showed that the dissolved oxygen concentration in the reservoir drops regularly below levels consistent with equilibrium to the atmosphere. While my field measurements did not record anaerobic conditions, based on the patterns shown, this study shows that it would be possible for anaerobic conditions to occur during warmer weather.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Civil and Environmental Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2007-05-08

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd1838

Keywords

iron oxidation, geo-chemical modeling, oxidation kinetics, Mantua Reservoir, PHREEQC, staining, water chemistry, dissolved oxygen

Language

English

Share

COinS