Abstract

Surface micromachining of micro-electro-mechanical systems (MEMS), like all other fabrication processes, has inherent variation that leads to uncertain material and dimensional parameters. To obtain accurate and reliable predictions of mechanism behavior, the effects of these variations need to be analyzed. This thesis expands already existing tolerance and uncertainty analysis methods to apply to micro compliant mechanisms. For simple compliant members, explicit equations can be used in uncertainty analysis. However, for a nonlinear implicit system of equations, the direct linearization method may be used to obtain sensitivities of output parameters to small changes in known variables. This is done by including static equilibrium equations and pseudo-rigid-body model relationships with the kinematic vector loop equations. Examples are used to show a comparison of this method to other deterministic and probabilistic methods and finite element analysis.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Mechanical Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2001-07-25

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd50

Keywords

MEMS, Microelectromechanical Systems, Uncertainty Analysis, Compliant Mechanisms, Micromachining, Tolerance Analysis

Share

COinS