Abstract

The variance of the Taylor factor due to variations in the microstructure and window size is explored using both a random sampling method and a previously developed statistical relationship. The results from the random sampling method correlated well with the statistical variance relationship when the magnitude of the variance was greater than that of the numerical errors observed in the statistical calculation. An empirical relation was developed to model the results and the constants for this relationship were determined for pseudo-three dimensional Fe-3%Si. Implementation of the statistical variance relationship in true 3D microstructures is not limited by material opacity, since it depends only upon the 2-point pair correlation functions. The connection between the variance of the R-value and variance of the Taylor factor is considered. Although only a weak connection was found, it was observed that relatively small variations in the Taylor factor yield large variances in the R-value.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Mechanical Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2005-11-02

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd1047

Keywords

plasticity, polycrystalline materials, property variance, two-point correlation functions, Taylor theory

Share

COinS