Abstract

Bridges often use pile foundations behind MSE walls to help resist lateral loading from seismic and thermal expansion and contraction loads. Overdesign of pile spacing and sizes occur owing to a lack of design code guidance for piles behind an MSE wall. However, space constraints necessitate the installation of piles near the wall. Full scale lateral load tests were conducted on piles behind an MSE wall. This study involves the testing of four HP12X74 H-piles and four HSS12X12X5/16 square piles. The H-piles were tested with ribbed strip soil reinforcement at a wall height of 15 feet, and the square piles were tested with welded wire reinforcement at a wall height of 20 feet. The H-piles were spaced from the back face of the MSE wall at pile diameters 4.5, 3.2, 2.5, and 2.2. The square piles were spaced at pile diameters 5.7, 4.2, 3.1, and 2.1. Testing was based on a displacement control method where load increments were applied every 0.25 inches up to three inches of pile deflection. It was concluded that piles placed closer than 3.9 pile diameters have a reduction in their lateral resistance. P-multipliers were back-calculated in LPILE from the load-deflection curves obtained from the tests. The p-multipliers were found to be 1.0, 0.85, 0.60, and 0.73 for the H-piles spaced at 4.5, 3.2, 2.5, and 2.2 pile diameters, respectively. The p-multipliers for the square piles were found to be 1.0, 0.77, 0.63, and 0.57 for piles spaced at 5.7, 4.2, 3.1, and 2.1 pile diameters, respectively. An equation was developed to estimate p-multipliers versus pile distance behind the wall. These p-multipliers account for reduced soil resistance, and decrease linearly with distance for piles placed closer than 3.9 pile diameters. Measurements were also taken of the force induced in the soil reinforcement. A statistical analysis was performed to develop an equation that could predict the maximum induced reinforcement load. The main parameters that went into this equation were the lateral pile load, transverse distance from the reinforcement to the pile center normalized by the pile diameter, spacing from the pile center to the wall normalized by the pile diameter, vertical stress, and reinforcement length to height ratio where the height included the equivalent height of the surcharge. The multiple regression equations account for 76% of the variation in observed tensile force for the ribbed strip reinforcement, and 77% of the variation for the welded wire reinforcement. The tensile force was found to increase in the reinforcement as the pile spacing decreased, transverse spacing from the pile decreased, and as the lateral load increased.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Civil and Environmental Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2016-05-01

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd8525

Keywords

laterally loaded piles, MSE wall, p-multiplier, welded wire reinforcement, ribbed strip reinforcement, p-y curve, tensile force, reinforcement load

Share

COinS