Abstract

Construction practices are constantly evolving in order to adapt to physical locations and economic conditions. These adaptations may result in more cost-effective designs, but may also come at a cost of strength. In masonry shear walls, it is becoming more common to reduce the amount of grouting from every cell to only those with reinforcement, a practice known as partial-grouting. Partially-grouted masonry responds differently and in a more complex matter to lateral loads as compared to fully-grouted masonry. The response is made even more complex by wall discontinuities in the form of openings. The main objective of this study is to validate the strut-and-tie procedure for the in-plane lateral strength prediction of partially-grouted, multistory, reinforced concrete masonry walls with openings. The research included testing six three story, half-scale masonry shear walls. Half of the walls had door openings while the other half had window openings. The configurations were selected to represent typical walls in multi-story buildings. The measured lateral strength was compared to estimations from the equations in the US masonry code and to those from an equivalent truss model and a strut-and-tie model. The results show that the U.S. masonry code equations over predicts while the equivalent truss model under predicts the lateral strength of the walls. The results further show that the strut-and-tie model is the most accurate method for lateral strength prediction and is able to account for wall openings and partial-grouting.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Civil and Environmental Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2017-04-01

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd9179

Keywords

strut-and-tie, shear walls, partially grouted, masonry

Share

COinS