Temperature is a very important process parameter in Friction Stir Welding (FSW), but until lately active control of temperature has not been practiced. Recently, temperature control via a PID controller has proven to be effective. Model Predictive Control (MPC) is a control method that holds promise, but has not been attempted in FSW before. Two different model forms are developed for MPC and are evaluated. The first is a simple first-order plus dead time (FOPDT) model. The second is the Hybrid Heat Source model and is more complex; it combines the heat source method and a 1D discretized thermal model of the FSW tool. Model parameters were determined by fitting model predictions to actual weld data. The models were evaluated for their performance in modeled and unmodeled disturbances once the process was already at a quasi steady state condition and also were evaluated for control immediately after plunge. The FOPDT based MPC controller has very good performance and was comparable in performance to previously proven and well-tuned PID controllers. For small modeled disturbances the FOPDT controller settled within 1°C of the setpoint in 10s with almost no oscillations and only 2°C of overshoot. For large unmodeled disturbances, the FOPDT controller settled within 1°C of the setpoint in 30s with no oscillations and 16°C of overshoot. For the same disturbances, the PID servo controller settled in 30s with no oscillations and 9°C of overshoot, and the PID regulator controller settled in 15s but had almost a full oscillation and 13°C of overshoot.The Hybrid Heat Source MPC controller and the PID regulator controller were also able to control temperature within 5°C of the setpoint immediately after the plunge during the highly transient portion of the weld, which previously had been assumed to be too difficult to control. The PID regulator controller had a high degree of variability between the two runs (a settling time of 10s and 30s, and .5 and 4.5 oscillations before settling), but settled quickly and once settled was able to hold the temperature within 2°C of the setpoint. The HHS MPC controller on the other hand had far fewer oscillations (0 and 1 oscillation) before settling, but could only hold the temperature within 5°C of the setpoint. Both of these controllers performed far better than the FOPDT MPC and PID servo controllers.



College and Department

Ira A. Fulton College of Engineering and Technology; Mechanical Engineering



Date Submitted


Document Type





MPC, model predictive control, FSW, friction stir welding, heat source method, temperature control, PID, process control