Abstract

Finite element models were created in Abaqus 6.14 to characterize the rotational stiffness of shallowly embedded column-foundation connections. Scripts were programmed to automate the model generation process and allow study of multiple independent variables, including embedment length, column size, baseplate geometry, concrete modulus, column orientation, cantilever height, and applied axial load. Three different connection types were investigated: a tied or one part model; a contact-based model; and a cohesive-zone based model. Cohesive-zone modeling was found to give the most accurate results. Agreement with previous experimental data was obtained to within 27%. Baseplate geometry was found to affect connection stiffness significantly, especially at lower embedment depths. The connection rotational stiffness was found to vary only slightly with cantilever height for typical column heights. Results from varying other parameters are also discussed.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Civil and Environmental Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2016-05-01

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd8528

Keywords

finite element modeling, finite element analysis, lateral stiffness, rotational stiffness, shallowly embedded connections, embedment, column connections, stiffness

Share

COinS