Abstract

This study sought to improve the performance of Si-based anodes through the use of hierarchically structured electrodes to provide the nanoscale framework needed to accommodate large volume changes while controlling the interfacial area – which affects solid-electrolyte interphase (SEI) formation. To accomplish this, electrodes were fabricated from vertically aligned carbon nanotubes (VACNT) infiltrated with silicon. On the nanoscale, these electrodes allowed us to adjust the surface area, tube diameter, and silicon layer thickness. On the micro-scale, we have the ability to control the electrode thickness and the incorporation of micro-sized features. Treatment of the interfacial area between the electrolyte and the electrode by encapsulating the electrode controls the stabilization and reduction of unstable SEI. Si-VACNT composite electrodes were prepared by first synthesizing VACNTs on Si wafers using photolithography for catalyst patterning, followed by aligned CNT growth. Nano-layers of silicon were then deposited on the aligned carbon nanotubes via LPCVD at 200mTorr and 535°C. A thin copper film was used as the current collector. Electrochemical testing was performed on the electrodes assembled in a CR2025 coin cell with a metallic Li foil as the counter electrode. The impact of the electrode structure on the capacity at various current densities was investigated. Experimental results demonstrated the importance of control over the superficial area between the electrolyte and the electrode on the performance of silicon-based electrodes for next generation lithium ion batteries. In addition, the results show that Si-VACNT height does not limit Li transport for the range of the conditions tested.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Chemical Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2015-06-01

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd8669

Keywords

Juichin Fan, lithium-ion batteries, silicon anode, vertically aligned carbon nanotubes, solid-electrolyte interphase, encapsulation

Language

english

Share

COinS