Cross modality matching is a magnitude matching procedure, developed to study the relationships between sensory modalities. Auditory and visual sensory integration can be examined through cross modality matching of brightness and loudness. Brightness and loudness are natural correlates of one another as they both represent the parameter of intensity for their respective sensory modalities. Past studies have demonstrated that typical individuals tend to match brighter lights with louder sounds and dimmer lights with softer sounds. The current study utilized a modified cross modality matching procedure, combined with electroencephalography (EEG) data, to examine the cortical response to sensory integration. It was hypothesized that the response latency and cortical distribution of the EEG data would show differences between matched and unmatched conditions of light and sound stimuli. Light and sound stimuli were presented to 10 participants (five males and five females between the ages of 18 and 28 years) in a forced choice paradigm. The behavioral responses, reaction times, and EEG data were recorded for each patient. Results demonstrated that there were significant differences in behavioral reaction time among the stimulus conditions. However, reaction times were only significantly faster for the loudest sound paired with the brightest light. No other pairs of matched stimuli resulted in faster reaction times. Event related potentials (ERPs) were identified for matched and unmatched stimulus conditions. No differences were identified in latency of the ERPs among conditions. Additionally, source localization revealed that dipole locations for each stimulus condition remained relatively constant in the prefrontal cortex. As the prefrontal cortex has been found to be associated with decision-making and sensory integration, it can be concluded that sensory integration did occur. However, the processing of sensory information did not change for matched or unmatched conditions of light and sound.



College and Department

David O. McKay School of Education; Communication Disorders



Date Submitted


Document Type