Abstract

Two compliant bistable micro-mechanisms have been developed which can be switched in either direction using on-chip thermal actuation. The energy storage and bistable behavior of the mechanisms are achieved through the elastic deflection of compliant segments. The pseudo-rigid-body model was used for the compliant mechanism design, and for analysis of the large-deflection flexible segments. To achieve on-chip actuation, the mechanism designs were optimized to reduce their required rotation, allow them to be switched using linear-motion thermal actuators. The modeling theory and analysis are presented for several design iterations. Each iteration was successfully fabricated and tested using either the MUMPs or SUMMiT surface micromachining technology.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Mechanical Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2003-03-11

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd169

Keywords

compliant mechanism, bistable, micro, MEMS, thermal actuator

Share

COinS