Abstract

The research in this dissertation is divided between three different approaches for predicting the shear strength of reinforcement masonry shear walls. Each approach provides increasing accuracy and precision in predicting the shear strength of masonry walls. The three approaches were developed or validated using data from 353 wall tests that have been conducted over the past half century. The data were collected, scrutinized, and synthesized using principles of meta-analysis. Predictions made with current Masonry Standards Joint Committee (MSJC) shear strength equation are unconservative and show a higher degree of variation for partially-grouted walls. The first approach modifies the existing MSJC equation to account for the differences in nominal strength and uncertainty between fully- and partially-grouted walls. The second approach develops a new shear strength equation developed to perform equally well for both fully- and partially-grouted walls to replace and improve upon the current MSJC equation. The third approach develops a methodology for creating strut-and-tie models to analyze or design masonry shear walls. It was discovered that strut-and-tie modeling theory provides the best description of masonry shear wall strength and performance. The masonry strength itself provides the greatest contribution to the overall shear capacity of the wall and can be represented as diagonal compression struts traveling from the top of the wall to the compression toe. The shear strength of masonry wall is inversely related to the shear span ratio of the wall. Axial load contributes to shear strength, but to a lesser degree than what has been previously believed. The prevailing theory about the contribution of horizontal shear reinforcement was shown to not be correct and the contribution is much smaller than was originally assumed by researchers. Horizontal shear reinforcement principally acts by resisting diagonal tensile forces in the masonry and by helping to redistribute stresses in a cracked masonry panel. Vertical reinforcement was shown to have an effect on shear strength by precluding overturning of the masonry panel and by providing vertical anchorages to the diagonal struts.

Degree

PhD

College and Department

Ira A. Fulton College of Engineering and Technology; Civil and Environmental Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2015-03-01

Document Type

Dissertation

Handle

http://hdl.lib.byu.edu/1877/etd7550

Keywords

masonry, full grouting, partial grouting, shear, strength prediction, linear regression

Share

COinS