Mule deer (Odocoileus hemionus) are an ecologically, economically, and socially important species across much of the western United States. As such, populations and habitat are intensely managed by state game agencies. However, populations have been declining in recent decades and several factors have been implicated (e.g., climate, predation, competition, and habitat availability). Population dynamics of mule deer are driven by a combination of survival of adults and juveniles and reproductive rates. While adult female mule deer typically have consistently high annual survival rates (85% annually), juveniles are more easily affected by stressors (biotic and abiotic conditions) and therefore their annual survival rates are generally low and highly variable. In an effort to better understand the effects of management on—and the habitat needs for—reproduction and recruitment, we examined the potential effects of male-biased harvest on recruitment in populations of mule deer and the selection of sites for parturition by mule deer females. Changes in buck:doe ratio due to male-biased harvest may alter rates of pregnancy, timing of parturition, and synchrony of parturition if inadequate numbers of males are present to fertilize females during their first estrous cycle. If rates of pregnancy or timing of parturition are influenced by decreased buck:doe ratios, recruitment may be reduced. This results from fewer births, later parturition (resulting in lower survival of fawns), and a less synchronous parturition period (increasing the proportion of neonates exposed to predation). Our objectives were to compare rates of pregnancy, timing of parturition, and synchrony of parturition between exploited populations of mule deer with relatively high (Piceance Basin) and relatively low (Monroe Mountain) buck:doe ratios. We determined rates of pregnancy via ultrasonography and timing of parturition via expulsion of vaginal implant transmitters. We found no differences in rates of pregnancy, timing of parturition, or synchrony of parturition between Monroe Mountain and Piceance Basin. This suggests that the relatively low buck:doe ratios typical of heavily harvested populations do not have unintended or indirect impacts on population dynamics because recruitment remains unaffected. Because neonate ungulates are most vulnerable to predation during parturition and shortly thereafter, selecting sites for parturition can have direct fitness consequences. We investigated the selection of sites for parturition by mule deer. We utilized vaginal implant transmitters to identify sites of parturition. We then obtained and compared macro- and micro-habitat features between sites of parturition and associated random sites. Parturitient females selected sites based on topography, habitat-type, and obscurity. Enhanced understanding of habitat variables that are selected for parturition provides insight into the life history or behavior of a species and allows managers to ensure that suitable habitat is available for this stage of life-cycles.



College and Department

Life Sciences; Plant and Wildlife Sciences



Date Submitted


Document Type





t selection, parturition, pregnancy, sex ratio, synchrony, ungulate management