This study examined the acute effects of whole-body corrective exercise on postural alignment in a sample of 50 male participants (18-30 y) displaying asymmetrical postural deviations. All participants were randomly assigned to either a non-exercise control (n = 25) or corrective exercise treatment (n = 25) group. A three-dimensional motion analysis Vicon system was employed to quantify standing postural alignment at the beginning and end of a 6 d study. Postural misalignments were determined in degrees of symmetry (tilt) and rotation using horizontal and vertical virtual plumb lines for the following locations: hip (ASIS), leg (greater trochanter), shoulder (acromion process), and head (ear). The treatment group completed five corrective exercise sessions on separate days which included 11 exercises (requiring about 60 min per session to complete). The control group performed no intervention and maintained a normal lifestyle. At the commencement of the study there were no significant differences in the degree of postural misalignment between the control and treatment groups at any of the postural measurements. At the conclusion of the treatment period (following the five sessions of corrective exercise), there were no significant differences in any of the postural alignments of any of the postural measurements between the treatment and control groups. For example, all of the following postural measurements were not significantly different (critical F ≥ 4.24;df = 1,25) between groups: hip (ASIS) tilt (F = 0.05), hip (ASIS) rotation (F = 0.15), greater trochanter tilt (F = 1.58), greater trochanter rotation (F = 0.33), shoulder tilt (F = 2.63), shoulder rotation (F = 0.07), head tilt (F = 2.39), and head rotation (F = 2.79). The results of this study suggest that five sessions of corrective exercise were insufficient to significantly improve standing postural alignment. In addition, this study appears to be the first to document whole-body postural alignment using 3D video analysis.



College and Department

Life Sciences; Exercise Sciences



Date Submitted


Document Type





functional exercise, postural misalignment, 3D motion analysis