Abstract

Engineers frequently use computerized numeric models to calculate and predict water levels and current patterns for rivers, bays, and other bodies of water. This computation often involves an iterative process known as incremental loading that can cause frustration and consume a lot of time. Although the steering module in the Surface-water Modeling System (SMS) automates incremental loading to minimize user interaction, it can still be very time consuming. This thesis examines the steering module and the incremental loading process to improve its efficiency. Specifically, the RMA2 and FESWMS models are utilized. Two methods of improving efficiency are examined. The first includes creating predicted solution files for each step of the incremental loading process. These predictions allow the steering module to take larger steps and decrease the computation time. The second method changes the algorithm used to determine the size of each step. Finally, the interface to the process was examined and simplified to require minimal input and to make the input more intuitive.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Civil and Environmental Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2006-03-22

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd1248

Keywords

automated spinning, boundary condition, Capitol Reef model, coldstart, FESWMS, finite element, FLO2DH, FST2DH, hotstart file, hydraulic modeling, hydraulic trend, incremental loading, initial condition, linear prediction, numeric model, predicted solution, quadratic prediction, revisions, RMA2, simple flume model, SMS, spindown process, spinning, steering, steering module, wave effect prediction

Share

COinS