Abstract

Hydrophobic coatings find application in various sectors of the economy including to electronics, textiles, optical devices, and in scientific and commercial equipment. These different applications demand that different hydrophobic coatings posses a range of properties that may include smoothness or roughness, thicknesses on the order of a monolayer or a micron, robustness or the ability to dissolve quickly, transparency or opacity, water resistance or water permeability, electrical conductivity, oleophobicity, etc. However, whatever the final/desired properties, deposition via dry-deposition processes offers significant advantages, including greater reproducibility, increased environmental friendliness, and cost effectiveness on an industrial scale. Herein I explore the chemical vapor deposition of silanes and the characterization of a commercial, hydrophobic coating to better prepare and understand hydrophobic coatings on different materials. One of the characterization techniques I used frequently in these studies is X-ray photoelectron spectroscopy (XPS). Accordingly, in Chapter 2 of this thesis I discuss this technique vis-à-vis the chemical shifts it detects, which reflect the oxidation states of materials being probed. In particular, I discuss a recommendation made over a decade ago by Gion Calzaferri for 'fixing' the problem of oxidation numbers as applied to organic materials and show how XPS confirms his suggestion. In Chapter 3 I introduce hydrogen as an etch/cleaning gas for silicon wafers. I first show that, like argon and oxygen plasmas, hydrogen plasmas will effectively clean silicon wafers. However, I then show that hydrogen plasma treatment leads to a silicon surface that is chemically different than those prepared with the other plasmas and that undergoes silanization to a greater extent -- the resulting surfaces have higher water contact angles and thicknesses. In Chapter 4 I study the deposition of a potential barrier layer for water, which was prepared from an aza silane: N-n-butyl-aza-2,2-dimethoxysilacyclopentane (1) in a molecular layer deposition (MLD)-like process using either water or ammonium hydroxide as the second half reactant. This molecule has the interesting property of undergoing self-limiting growth, where the termination of this growth is accelerated by use of an ammonium hydroxide catalyst. Interestingly, films of 1 are considerably thicker on nylon than on silicon, which is explained by nylon acting as a water reservoir in the reaction. In Chapter 5 I show the careful characterization of the hydrophobic coating on an Apple iPod nano, which was probed by ToF-SIMS, wetting, and XPS. I could identify that the coating is only applied to the touchscreen of the device. SIMS suggested that the fluorinated coating contains oxygen, which should add to its biodegradability. Finally, in Chapter 6 I make recommendation for future work in these areas.

Degree

MS

College and Department

Physical and Mathematical Sciences; Chemistry and Biochemistry

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2012-11-22

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd5695

Keywords

Chemical Vapor Deposition, hydrophobic coatings, water resistive barrier layer, oxidation states, silanes, XPS, glow discharge cleaning, YES 1224 P, MLD, Calzaferri approach

Share

COinS