Abstract

Methyl Viologen (MV) is an electron mediator that has great possibilities to be used with an electrode system in which the electrode system provides electrons towards reducing MV species. MV has three redox states and they can be converted to each other via redox reactions on the surface of the electrode. The concentration of the three species of MV was related to the voltage potential applied to the system through a thermodynamic model. With the thermodynamic model the concentration of the three species can be predicted with different applied voltage potentials towards providing guidance for controlling the redox state of MV in a system. The kinetic rates of MV reduction were also assessed using a preliminary kinetic model. The kinetic model predicted all three species concentration changes with time although only the MV+ concentration was measured with time. Analysis revealed that the rate of MV reduction was three orders of magnitude slower than the rate of electrons required for bioethanol production. However, increasing the affinity of MV+ on the surface and blocking the H+ on the surface potentially can increase the reduction rate of MV by up to three orders of magnitude and can potentially enable MV to be used in commercial applications. As for the efficiency study, the coloumbic efficiency was less than 22% which was much lower than the efficiency of more than 85% observed in other studies for the direct electron transfer between electrode and bio organism. The efficiency was lowered mainly by the reduction of H+ and minimizing H+ on the electrode can largely increase the efficiency. Medium used for cell growth can also affect the efficiency through medium species consuming electrons provided by the electrode. Electron mediators, such as MV, have potential promise in applications such as microbial fuel cells, biofuel formation, and waste water treatment. However, engineering analysis of electron mediators is critical to provide better engineering control, design, and economic analysis for future applications.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Chemical Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2012-10-19

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd5659

Keywords

methyl viologen, engineering analysis, thermodynamic, kinetic, efficiency

Language

English

Share

COinS