Bottom-up self-assembly can be used to create structures with sub-20 nm feature sizes or materials with advanced electrical properties. Here I demonstrate processes to enable such self-assembling systems including block copolymers and DNA origami, to be integrated into nanoelectronic devices. Additionally, I present a method which utilizes the high stability and electrical conductivity of graphene, which is a material formed using a bottom-up growth process, to create archival data storage devices. Specifically, I show a technique using block copolymer micelle lithography to fabricate arrays of 5 nm gold nanoparticles, which are chemically modified with a single-stranded DNA molecule and used to chemically attach DNA origami to a surface. Next, I demonstrate a method using electron beam lithography to control location of nanoparticles templated by block copolymer micelles, which can be used to enable precise position of DNA origami on a surface. To allow fabrication of conductive structures from a DNA origami template, I show a method using site-specific attachment of gold nanoparticles to and a subsequent metallization step to form continuous nanowires. Next, I demonstrate a long-term data storage method using nanoscale graphene fuses. Top-down electron beam lithography was used to pattern atomically thin sheets of graphene into nanofuses. To program the fuses, graphene is oxidized as the temperature of the fuse is raised via joule heating under a sufficiently high applied voltage. Finally, I investigate the effect of the fuse geometry and the electrical and thermal properties of the fuse material on the programming requirements of nanoscale fuses. Programming voltages and expected fuse temperatures obtained from finite element analysis simulations and a simple analytical model were compared with fuses fabricated from tellurium, a tellurium alloy, and tungsten.



College and Department

Physical and Mathematical Sciences; Physics and Astronomy



Date Submitted


Document Type





nanofabrication, block copolymer, DNA origami, graphene, lithography, nanoparticle, nanowire, data storage