Abstract

The purpose of this thesis is to provide an in-depth understanding of tooth engagement in splined couplings based on variations in clearances between mating teeth. It is standard practice to assume that 25-50% of the total spline teeth in a coupling are engaged due to variations from manufacture. Based on the assumed number of teeth engaged, the load capability of a splined coupling is determined. However, due to the variations in tooth geometry from manufacuture, the number of teeth actually engaged is dependent on the applied load and the tooth errors. The variations result in sequential tooth engagement with increasing load. To date, little work has been done to model tooth engagement and the stresses resulting from unequal load sharing among engaged teeth. A Statistical Tooth Engagement Model (STEM) has been developed which allows designers to estimate tooth engagement and resulting stress based on a statistical representation of the tooth errors. STEM is validated with finite element models as well as some preliminary experimental tests. Parametric studies are performed to determine the effect and sensitivities of variations in tooth parameters and tooth errors.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Mechanical Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2006-02-22

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd1176

Keywords

involute, splines, contact, tooth engagement, sequential engagement, statistical engagement

Share

COinS