Mesoporous γ-alumina is the most extensively used catalysts support in a wide range of catalytic processes. The usefulness of γ-alumina relies on its favorable combination of physical, textural, thermal, and chemical properties. Pore structure properties are among the most important properties, since high surface area and large pore volume enable higher loading of active catalytic phases, while design of pore size and pore size distribution is critical to optimize pore diffusional transport and product selectivity. In addition, accurate determination of surface area (SA), pore volume (PV) and pore size distribution (PSD) of porous supports, catalysts, and nanomaterials is vital to successful design and optimization of these materials and to the development of robust models of pore diffusional resistance and catalyst deactivation.In this dissertation, we report a simple, one-pot, solvent-deficient process to synthesize mesoporous γ-alumina without using external templates or surfactants. XRD, TEM, TGA and N2 adsorption techniques are used to characterize the morphologies and structures of the prepared alumina nanomaterials. By varying the aluminum salts or the water to aluminum molar ratio in the hydrolysis of aluminum alkoxides, γ-alumina with different morphologies and pore structures are synthesized. The obtained alumina nanomaterials have surface areas ranging from 210 m2/g to 340 m2/g, pore volumes ranging from 0.4 cm3/g to 1.7 cm3/g, and average pore widths from 4 to 18 nm. By varying the alcohols used in the rinsing and gelation of boehmite/bayerite precursors derived from a controlled hydrolysis of aluminum alkoxides, the average pore width of the γ-aluminas can be tuned from 7 to 37 nm. We also report improved calculations of PSD based on the Kelvin equation and a proposed Slit Pore Geometry model for slit-shaped mesopores of relatively large pore size (>10 nm). Two structural factors, α and β, are introduced to correct for non-ideal pore geometries. The volume density function for a log normal distribution is used to calculate the geometric mean pore diameter and standard deviation of the PSD. The Comparative Adsorption (αs) Method is also employed to independently assess mesopore surface area and volume.



College and Department

Physical and Mathematical Sciences; Chemistry and Biochemistry



Date Submitted


Document Type





mesoporous material, synthesis, solvent deficient method, γ-Al2O3, N2 adsorption, surface area, pore volume, pore size distribution