Abstract

The Nanoinjector Lance Array has been developed to inject foreign material into thousands of cells at once using electrophoresis to attract and repel particles to and from the electrically-charged lances. A mathematical computer model simulating the motion of attracted or repelled proteins informs the design of the nanoinjection lance array system. The model is validated by accurately predicting protein velocity in electrophoresis experiments. A complete analysis of parameters is conducted via simulations and specific research questions regarding the counter electrode of the nanoinjector lance array system are explored using the model. A novel technique for fabricating lance arrays from collapsed carbon nanotube forests is explored and detailed. Experiments are conducted using the Nanoinjector Lance Array, attempting to inject three different kinds of protein molecules into a culture of HeLa cells. The experimental results are encouraging and suggest possibilities for future success. Other recommendations are made for future research regarding the model, carbon nanotube fabrication, and experimental testing.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Mechanical Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2012-07-31

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd5557

Keywords

nanoinjection, lance array, simulation, model, electrophoresis, carbon nanotubes

Share

COinS