Abstract

The purpose of this research was to investigate the influence of applying an intrinsic decompressive pre-load to a particular dynamic stabilization device on the biomechanical response of the lumbar spine. The FlexSPAR, which supports this ability, was used as a test case. A finite element model of a full lumbar spine was developed and validated against experimental data, and tested in the primary modes of spinal motion. The model was used to compare five lumbar spine test cases: healthy, degenerate, implanted with a pre-loaded device, implanted with a device without a pre-load, and implanted with rigid fixators. Results indicated that a pre-loaded FlexSPAR led to improved disc height restoration and segmental biomechanics. Results also showed that a pre-loaded FlexSPAR led to less change in bone remodeling stimulus in comparison to the device without a pre-load and rigid fixators. This work shows that there is a potential to improve the performance of posterior dynamic stabilization devices by incorporating a pre-load in the device.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Mechanical Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2012-07-25

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd5547

Keywords

Jeffrey Harris, lumbar spine, finite element analysis, dynamic stabilization, disc degeneration, motion restoration

Share

COinS