Abstract

Commonly used soil analysis and resin capsule procedures are used to assess nutrient status in fertile soils, but their validity in semi-arid ecosystems is unknown. Three studies were performed to assess resin capsule effectiveness in semi-arid ecosystems. An incubation study was completed in which loamy sand and sandy clay loam soils were treated with rates of N, P, Fe and Zn. Each soil treatment was implanted with a resin capsule and incubated for 60 or 120 days. Resin capsules reflected NH4-N and P fertilizer at low rates in the loamy sand. NO3-N reflected rates in both soils, but did not reflect Fe or Zn application. Resin capsule NH4-N was a better indicator than KCl-extractable NH4-N, but resin capsule NO3-N was not as effective as water extraction, and resin capsule P was poor compared to NaHCO3-P. A second study was performed in glasshouse conditions using the incubation study soils. Soils were treated with rates of N, P and resin capsules were placed in pots. Pots were seeded with squirreltail grass (Elymus elymoides) and placed in a glasshouse. Resin capsules were removed at 120 days, soil samples taken, grass harvested and yield measured. Yield and total nutrient removal was correlated to resin NH4-N, marginally related to resin or soil NO3-N, and unrelated to resin P. Yield and total nutrient removal was correlated with application rates and resin NH4-N and NaHCO3-extracted P. The third field study, compared two sites with rates of N and P application were established on clay loam and sandy loam soils. Resin capsule and conventional soil tests for NO3-N, NH4-N and P were measured and plant nutrient status examined. Resin capsules were removed and replaced and soil samples taken every 90 days. Resins P was not related to P application or to plant tissue P but NaHCO3-extracted P was, while resin NO3-N, KCl-extracted NO3-N and NH4-N were correlated to N application and plant N. Soil test P was more effective in predicting P status and bioavailability than resin capsules. Resin NH4-N and NO3-N predicted N status and bioavailability, but soil tests were just as effective in semi-arid conditions.

Degree

MS

College and Department

Life Sciences; Plant and Wildlife Sciences

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2011-07-06

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd4573

Keywords

adsorption, desert soil, nitrogen, phosphorus, plant available nutrients and resin capsule

Share

COinS