Abstract

This thesis reports an in-fiber magnetic field sensor that is able to detect magnetic fields as low as 2 A/m at a spatial resolution of 1 mm. The small sensor consists of a magneto-optic slab waveguide, bismuth-doped rare earth iron garnet (Bi-RIG) that is coupled to an optical fiber. By coupling light from the fiber to the slab waveguide, it becomes an in-fiber magnetic field sensor. This is due to the Magneto-Optic Kerr effect; a change in refractive index is proportional to the applied magnetic field. When an AC field is applied, an AC component in the output power can be detected by a spectrum analyzer. The novelties of Magneto-Optic Slab Coupled Optical Sensor (MO-SCOS) devices include their small compact nature and a dielectric structure allowing low electromagnetic interference. Due to their compact size they are capable of placement within devices to measure interior electromagnetic fields immeasurable by other sensors that are either too large for internal placement or disruptive of the internal fields due to metallic structure. This work also reports progress on EO SCOS development. The EO sensor has found application in new environments including the electromagnetic rail gun, and a dual-axis sensor.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Electrical and Computer Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2011-06-28

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd4528

Keywords

Bryson Shreeve, magnetic field sensor, electric field sensor, optics, fiber optics, optical fiber sensor, d-fiber

Language

English

Share

COinS