Abstract

Full-depth reclamation (FDR) in conjunction with cement stabilization is an established practice for rehabilitating deteriorating asphalt roads. Conventionally, FDR uses dry cement powder applied with a pneumatic spreader, creating undesirable fugitive cement dust. The cement dust poses a nuisance and, when inhaled, a health threat. Consequently, FDR in conjunction with conventional cement stabilization cannot generally be used in urban areas. To solve the problem of fugitive cement dust, the use of cement slurry, prepared by combining cement powder and water, has been proposed to allow cement stabilization to be utilized in urban areas. However, using cement slurry introduces several factors not associated with using dry cement that may affect road base strength, dry density (DD), and moisture content (MC). The objectives of this research were to 1) identify construction-related factors that influence the strength of road base treated with cement slurry in conjunction with FDR and quantify the effects of these factors and 2) compare the strength of road base treated with cement slurry with that of road base treated with dry cement. To achieve the research objectives, road base taken from an FDR project was subjected to extensive full-factorial laboratory testing. The 7-day unconfined compressive strength (UCS), DD, and MC were measured as dependent variables, while independent variables included cement content; slurry water batching temperature; cement slurry aging temperature; cement slurry aging time; presence of a set-retarding, water-reducing admixture; and aggregate-slurry mixing time. This research suggests that, when road base is stabilized with cement slurry in conjunction with FDR, the slurry water batching temperature; haul time; environmental temperature; and presence of a set-retarding, water-reducing admixture will not significantly affect the strength of CTB, provided that those factors fall within the limits explored in this research and are applied to a road base with similar properties. Cement content and cement-aggregate mixing time are positively correlated with the strength of CTB regardless of cement form. Additionally, using cement slurry will result in slightly lower strength values than using dry cement.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Civil and Environmental Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2011-04-19

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd4400

Keywords

cement slurry, cement stabilization, cement-stabilized aggregate base, cement-treated aggregate base, cement-treated base (CTB), deep in-situ recycling, full-depth reclamation (FDR), reclaimed asphalt pavement (RAP), recycled asphalt pavement (RAP), soil-cement

Share

COinS