Abstract

Plants have two organelles outside the nucleus which carry their own DNA, mitochondria and chloroplasts. These organelles are descendants of bacteria that were engulfed by their host according to the endosymbiotic theory. Over time, DNA has been exchanged between these organelles and the nucleus. Two polymerases, DNA Polymerases Gamma I and II, are encoded in the nucleus and remain under nuclear control, but are transported into the mitochondria and chloroplasts. DNA polymerases gamma I and II are two organelle polymerases which have been studied through sequence analysis and shown to localize to both mitochondria and chloroplasts. Little has been done to characterize the activities of these polymerases. Work in tobacco showed the homology of these polymerases to each other and to DNA Polymerase I in bacteria. They have been characterized as being part of the DNA Polymerase A family of polymerases. In my research I have studied the effect of T-DNA insertions within the DNA Polymerase Gamma I and II genes. Since these DNA Polymerases are targeted to the mitochondria and chloroplasts, I studied the effect of knocking out these genes. A plant heterozygous for an insert in DNA Polymerase Gamma I grows slightly slower than wild type plants with an approximately 20% reduction in mitochondrial and chloroplast DNA copy number. A plant homozygous for an insert in this same gene has a drastic phenotype with stunted plants that grow to around 1 inch tall, with floral stems, and have an approximately 50-55% reduction in mitochondrial and chloroplast DNA copy number. Wild type plants can grow to a height of 12-18 inches with floral stems as a comparison. A plant heterozygous for an insert in the DNA Polymerase Gamma II gene grows slightly slower than wild type plants and has an approximately 15% reduction in mitochondrial DNA copy number and a 50% reduction in chloroplast DNA copy number. These plants also produce much less seed than do other mutants and wild type plants.

Degree

MS

College and Department

Life Sciences; Microbiology and Molecular Biology

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2010-06-17

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd3641

Keywords

DNA polymerase, Arabidopsis, Arabidopsis thaliana, gamma polymerase, mitochondrion, mitochondria, chloroplast, plastid, DNA replication

Included in

Microbiology Commons

Share

COinS