The spatial scales at which ecological phenomena are viewed constrain the results of interactions between species and their environments. In lake ecosystems, important dynamics have been identified at the landscape scale and the macrohabitat scale. To determine if landscape-scale effects and macrohabitat-scale effects are important in survival and growth of young June suckers, we compared variation among sites in Utah Lake. Large semi-permeable cages were used to house June suckers in situ at five sites representing landscape-scale variation and two sites representing macrohabitat-scale variation in Utah Lake. We compared survival and growth among sites and related it to resource availability (zooplankton abundances), temperature, and disturbance regime to determine if these were possible drivers of variation. Provo Bay had the highest mean survival and high survival in all four cages. Growth differed among sites: Provo Bay and the northwest site had the highest and lowest mean growth rates, respectively. Survival was higher in vegetated water than open water, whereas growth was significantly higher in open water. Zooplankton densities were highest in Provo Bay and the open water habitat, suggesting a positive relationship between food abundance and growth. Temperature patterns were not consistent with differences in growth among sites. Disturbance was greater in the open lake, which may partly explain the higher survival rates in Provo Bay.



College and Department

Life Sciences; Biology



Date Submitted


Document Type





June sucker, Chasmistes liorus, Utah Lake, landscape, macrohabitat, scale

Included in

Biology Commons