The Cedar Mountain Formation contains the most diverse record of Early Cretaceous dinosaurs in the western hemisphere. However, analyses of its faunas have been hindered because 1) most taxa are based on incomplete/fragmentary materials or incomplete descriptions, 2) most sites and some horizons preserve few taxa, and 3) the stratigraphy and geochronology are poorly understood. To help resolve these stratigraphic and correlation problems U-Pb LA-ICP-MS detrital zircon ages were obtained at significant sites and horizons. These dates indicate all sites at or near the base of the formation are no older than 122 to 124 Ma, thus all basal stratigraphic packages are time equivalent. Detrital zircons coarsely bracket the temporal span of the Ruby Ranch Member between about 115 Ma to 111 Ma while the base of the Mussentuchit Member is dated between 108 to 104 Ma and the top of the member is Cenomanian in age. Multivariate analyses utilizing Simpson and Raup-Crick similarity index and pair-group moving algorithms reveal that formationfs faunas fall into two groups. These groups are compared statistically with European, Asian, and Morrison faunas. Results indicate (1) that there is no close relationship between the Yellow Cat fauna and the Morrison Formation fauna and (2) corroborate long-standing hypotheses that the Yellow Cat fauna has European ties and the Mussentuchit fauna has Asian ties. Detrital zircon LA-ICP-MS U-Pb ages were used in this study to approximate the time of deposition of strata because volcanic ashes are rarely preserved in the formation. The ability to select the youngest crystals in a sample prior to applying analytical methods could substantially reduce the number of crystals and cost required to obtain these dates. To this end, the hypothesis that the most pristine, unabraded crystals should be younger than abraded crystals was tested by imaging detrital zircons via SEM, ranking the crystals by the degree of abrasion, and determining their ages. Results of this study partly corroborate the hypothesis in that there is a correlation between the degree of abrasion and ages – obviously abraded crystals are most likely the oldest while pristine to slightly abraded crystals are usually the youngest in a given sample.



College and Department

Physical and Mathematical Sciences; Geological Sciences



Date Submitted


Document Type





Cedar Mountain Formation, dinosaur, fauna, detrital zircon, LA-ICP-MS

Included in

Geology Commons