Abstract

While variation analysis methods for compliant assemblies are not new, little has been done to include the effects of multi-step, fixtured assembly processes. This thesis introduces a new method to statistically analyze compliant part assembly processes using fixtures. This method, consistent with the FASTA method developed at BYU, yields both a mean and a variant solution. The method, called Piecewise-Linear Elastic Analysis, or PLEA, is developed for predicting the residual stress, deformation and springback variation in compliant assemblies. A comprehensive, step-by-step analysis map is provided. PLEA is validated on a simple, laboratory assembly and a more complex, production assembly. Significant modeling findings are reported as well as the comparison of the analytical to physical results.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Mechanical Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2004-10-09

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd563

Keywords

tolerance (engineering), finite element method, statistical tolerance analysis, compliant assemblies, analysis of covariance, manufacturing processes, variation analysis, FASTA, PLEA

Share

COinS