The vertebrate embryonic limb is a key model in elucidating the genetic basis underlying the three dimensional morphogenesis of structures. Despite the wealth of insights that have been generated from this model, many long-standing questions remain. For example, it has been known for over 70 years that the apical ectodermal ridge (AER) of the embryonic limb is essential for distal outgrowth and patterning of the adjacent limb mesenchyme. The mechanisms whereby the AER does accomplish outgrowth and patterning are still poorly understood. We propose that secreted FGFs from the AER activate Wnt5a expression in gradient fashion, which in turn provides an instructional cue to direct outgrowth in the direction of increasing Wnt5a expression (i.e. toward the distal tip of the limb). In vivo and in vitro models were used to test this hypothesis. We placed Wnt5a expressing L-cell implants into stage 23 chick limb buds and demonstrate that labeled mesenchyme cells grow toward the source of Wnt5a. Purified Wnt5a soaked heparin bead implants have only a marginal effect on directed growth of the adjacent mesenchyme, whereas a greater effect was seen with beads soaked in Wnt5a conditioned media. Using an in vitro model where cultured limb mesenchyme cells were subjected to a gradient of conditioned Wnt5a media or purified Wnt5a, we show no specific migratory direction. However, clusters of cells tended to move toward the source of Wnt5a indicating that it might be necessary for the cells to be in complete contact to respond to the Wnt5a signal. Taken together, our results suggest that Wnt5a is sufficient to direct limb mesenchyme. This finding has given support to a new model of limb development proposed by our lab and referred to as the Mesenchyme Recruitment Model.



College and Department

Life Sciences; Physiology and Developmental Biology



Date Submitted


Document Type





limb development, apical ectodermal ridge (AER), Wnt5a, cell migration, Dunn chamber, mesenchyme, chick embryo