Abstract

The SeaWinds Calibration Ground Station (CGS) is a passive ground station used to receive and sample transmissions from the SeaWinds scatterometer. During post processing, the received transmissions are characterized in order to verify proper instrument operation and to eliminate error in satellite telemetry and in data products generated from processing SeaWinds data. Sources of instrument error include uncertainties in transmitted power, pulse timing, and carrier frequency drift. Identifying these errors prevents their propagation to data products. A key aspect of this analysis involves accurately estimating the parameters of the SeaWinds transmissions. As better parameter estimates are researched and developed, the scatterometer can be more finely calibrated and better characterized, allowing improved accuracy of environmental measurements. This work explores several methods to estimate SeaWinds frequency parameters by parametrically modeling the signal as a series of linear FM pulses. Improved frequency estimates are obtained by transforming the signal into appropriate signal spaces. These methods are compared and their tradeoffs revealed. SNR regions are assigned to each method to mark appropriate performance bounds, and improvements over previous SeaWinds data analysis methods are shown. Finally, recent estimates of SeaWinds parameters are disclosed. This analysis helps to advance the level to which future scatterometer instruments may be calibrated, providing the potential for more accurate scatterometer data products.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Electrical and Computer Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2004-08-17

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd543

Keywords

SeaWinds, scatterometer, linear FM, LFM, calibration, ground station, frequency, estimate

Share

COinS