Abstract

CHAPTER 1

Aggregation of receptors for IgE (Fc RI) causes mast cells and basophils to release preformed contents of granules, including histamine and a variety of enzymes. This process, called degranulation plays a central role in allergic reactions. Methods to study this process are to create multivalent ligands which can interact with the receptors and, in turn, lead to aggregation of the receptors. We prepared a series of fluorophore-labeled divalent and trivalent antigens to study the degranulation of mast cells. Trivalent antigens proved to be much better stimulators for degranulation of mast cells than divalent antigens. These results indicate that aggregates formed by trivalent antigens are more complicated than those of divalent antigens.

CHAPTER 2

Membrane-active antibiotics include antimicrobial peptides (AMPs) and a class of amphiphilic steroids termed ceragenins. Recent studies of membrane-active antibiotics show that cationic, facially amphiphilic molecules could disrupt bacterial membranes. It was found recently that some antibiotics, including AMPs and ceragenins, may share both antibacterial and antiviral activity. We prepared a series of ceragenins to optimize the antiviral activity of ceragenins against vaccinia virus (VV). The results show that ceragenins exhibit potent activity against VV, protect keratinocytes against VV-mediated cell death, and preferentially target the virus. It also shows that antibacterial and antiviral activities do not correlate with each other. Although ceragenins show good antiviral activity against VV, the mechanism for this activity still remains unclear.

Degree

MS

College and Department

Physical and Mathematical Sciences; Chemistry and Biochemistry

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2007-12-20

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd2257

Keywords

Degranulation, Atigens, Mast Cells, Vaccinia Virus, Ceragenins, Antiviral Activity

Share

COinS