








1 M at r i x * foo ( i n t r , i n t c ) {
2 M at r i x * r e s u l t = new Ma t r ix ( r , c ) ;
3 f o r ( i n t i = 0 ; i < r ; i ++) {
4 i f ( i % 2 == 0) {
5 f o r ( i n t j = 0 ; j < c ; j ++) {
6 r e s u l t −>d a t a ( i , j ) = (−1)* rand ( ) ;
7 }
8 }
9 e l s e {

10 f o r ( i n t j = 0 ; j < c ; j ++) {
11 r e s u l t −>d a t a ( i , j ) = r and ( ) ;
12 }
13 }
14 }
15 re turn r e s u l t ;
16 }

(a) Sample function

(b) CFG of function in (a) (c) Interval Tree of function in (a)

Figure 4.3: Sample program with its CFG and Interval Tree

4.2.1 Node Names

Nodes in EPV are named based on the interval type of the current node such as “block”,

“loop”, and “choice” (for more information see Section 2.2.3). We made this decision after trying

to use the entry basic block as the node’s name, which caused the graph to become very confusing
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Figure 4.4: Merger of CFG and interval tree in Figure 4.3

since LLVM IR’s naming convention is not easy to understand in a graph and often gives basic

blocks very long names.

4.3 Features

Below is a list of the features of EPV. This section will only describe each feature along

with its primary purpose or importance. A user reference manual is included in Appendix A with

screenshots and instructions on how to use every feature.

• Function Window: This is the first window shown to the user when the LLVM pass which

generates EPV is kicked off and is shown in Figure 4.5. It contains a scrollable list of all

functions of the sequential code being analyzed. A user can go back to this window at any

time to re-open a visualization for the same function or other functions as needed. More

information about why we decided to evaluate each function individually can be found in

Chapter 5.

• Main Window: The main window, shown in Figure 4.6 contains three elements: The graph

pane covering most of the window, a list pane on the left side, and a legend button below the

list pane. These are explained in more detail below.
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Figure 4.5: Function Window

Figure 4.6: Main Window

– Graph Pane: This is where the graph of the current function is shown. Initially, the

graph pane shows the top level graph, but users can “expand” loop nodes that contain
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nested loops inside. The new graph layer is opened in a new tab in the graph pane. The

features of the graph displayed in this pane are listed below:

* Color-Code: Loop nodes’ fill, border and font colors indicate the loop contents

and parallelism. Fill colors define whether a loop is parallel or not (based on their

loop-carried dependences content) and it also indicates whether the loop contains

other nested loops inside it or not. We call a loop with no inner loops a leaf loop.

There are 4 fill colors:

· Red indicates a leaf loop that is not parallelizable because it contains loop-

carried dependences.

· Green indicates a leaf loop that is parallelizable.

· Yellow indicates a non-leaf loop that is parallelizable.

· Orange indicates a non-leaf loop that is not parallelizable.

A red border and font color on a node indicates that the node contains a nested

non-parallel loop inside it. This feature was added for users that are interested

in finding all loop-carried dependences easily in order to make changes to the

source code or to study their properties. Color-coding is one of the most important

features in EPV because it conveys quick and easy information about parallelism

and allows the user to identify non-parallelizable loops from upper layers as well

as the current layer’s parallel and non-parallel loops. The color code is presented

to the user in the legend window, described later in this section.

* Expandable Loops: Loop nodes which are not leaf loops can be expanded by the

user with a double click. The new graph layer will be opened in a new tab in the

graph pane, allowing the user to switch back and forth between different graph

layers.

* Tabs indicate tree structure: The names of each tab opened by the user form a

”trace” of the layer’s parent, all the way to the top. This helps the user to remember

what loop is currently being looked at if it is multiple layers deep. See Figure 4.7.

* Zooming: Users can zoom-in or out. This facilitates emphasis on certain areas of

the graph vs. a visualization of the entire graph.
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Figure 4.7: Tab names indicate graph parents

* Dragging: Users can drag the entire graph. This is a basic feature required for

interacting with the graph dynamically.

* Node Information: Users can open a window with information about each node

by right-clicking on the node. This window contains a list of basic blocks con-

tained by the current node as well as the instructions (in LLVM’s IR) that cause

the loop-carried dependence if there is one. This allows the user to correlate the

graph to the IR much more easily. See Figure 4.8.

* Entry and Exit Nodes: Entry nodes at lower graph layers are marked by an in-

coming vertical arrow to let the user know that that is the entry node of the loop

expanded. Exit nodes (nodes that have edges connecting to an upper layer) are

also marked with a vertical outgoing arrow below the node that is not connected to

anything. These can be seen in Figure 4.6: block1 is an entry node, and loop1 and

block2 are exit nodes.
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Figure 4.8: Node information window.

– Node Pane: This is a scrollable list where nodes are listed by their names as displayed

in the graph pane. A useful feature of the node list is that it lists the node’s entry basic

block after its name in order to make it easier to relate the generic node names created

for the graph to the LLVM IR for the source code. Another important feature is that by

clicking on a node, the graph in the graph pane is dragged, leaving the selected node in

the center. The node pane can be seen on the left side of Figure 4.6.

– Legend Button: This button opens a window with the legend where the color-code is

explained. The legend button can be seen on the bottom-left corner of Figure 4.6, and

the legend window is shown in Figure 4.9.
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Figure 4.9: Legend window displaying information about color code and entry/exit nodes.
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CHAPTER 5. IMPLEMENTATION DETAILS

The implementation of EPV will be described in detail in this chapter. The data collection

will be discussed first, which is where most of the work is done: An LLVM pass, named Graph-

GenRels, calls other LLVM passes for data dependence analysis, interval analysis, construction of

all graph layers and then performs identification of loop-carried dependences. After this, we will

describe the implementation details for the user interface developed in the Qt framework for C++

as well as the transfer of data from GraphGenRels to the GUI.

5.1 Data Generation: GraphGenRels

GraphGenRels is an LLVM module pass implemented in order to generate all of the infor-

mation necessary for identification of loop-carried dependences as well as the creation of all graph

layers including nodes, edges, layout and marks on entry nodes, exit nodes, and parallel and non-

parallel loops at both leaf level as well as higher interval levels. One of the main characteristics

of this pass is that it runs separately on each function of the source code, ignoring standard library

functions that do not modify memory. The decision to evaluate a program on a per-function basis

was made because we are not concerned with the function call structure of the program but rather

we want to analyze loops in every function for parallelism. However, we leave it for future work

to study parallelism in the call structure of a program.

For each function, the first step in GraphGenRels is to run two other key LLVM passes de-

veloped in previous research: IntervalTreeAnalysis and GenRels. The former generates an interval

tree data structure for the program being evaluated. The latter performs data dependence analysis

and populates a list of relationships (see Section 2.3 for more detailed information). Then, we filter

out all relationships from the list that are not between instructions inside loop bodies because we

are only concerned with loop parallelism. The remaining relationships are analyzed and tested to

evaluate if they are loop-carried dependences. The process to identify loop-carried dependences
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is explained in detail below since it represents one of the key mechanisms required for EPV’s

purposes.

5.1.1 Identification of Loop-Carried Dependences

Recall that GenRels generates address functions and a set of indices that cause a rela-

tionship. Address functions map loop indices and non-loop variables to the memory addresses

accessed by a load or store instruction. These functions are

f1(< i1, ..., in,v1, ...,vp >)

f2(< j1, ..., jn,v1, ...,vp >),

where < i1, ..., in > and < j1, ..., jn > are the loop indices of each side of the relationship at each

loop nesting level and < v1, ...,vp > is an arbitrary number of non-loop variables. Now, the set

of indices on the left and right-side of a relationship generated by GenRels to identify aliasing

memory accesses is

S = {< i1, ..., in, j1, ..., jn,v1, ...,vp >| f1(< i1, ..., in,v1, ...,vp >) = f2( j1, ..., jn,v1, ...vp >)}.

All of the set manipulations and operations required to compute S are done through a C

library called the integer set library (ISL) [31], which offers a set of functions that can be used

for performing operations on sets and relations of integer points under linear constraints. Because

ISL only works with linear constraints, not all sets can be represented. If a set has non-linear

constraints, S has vi variables which are non-affine functions of index variables. In practice, when

v variables exist in S, this relationship is automatically classified as a loop-carried dependence

because GenRels has no information about the actual value of these variables.

Now, a loop at nesting depth m is loop-carried if:

(
S∧{(

m−1∧
k=1

ik = jk)∧ im 6= jm}

)
6= /0. (5.1)
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We evaluated each relationship following Equation 5.1 to determine if a loop-carried de-

pendence exists. After this step, we are left with two data structures: the interval tree of the

function currently being evaluated, and a set of relationships where each relationship is within the

same loop and represents a loop-carried dependence. With these two data structures, the program

counts with everything it needs in order to create all of the graph layers for the function.

5.1.2 Generating Graph Layers

The algorithm for generating graph layers begins by creating the nodes for the current

layer. The node creation function is an interval refining process that begins with the root interval

node and only refines an interval node if it is the ancestor node of a loop node or it is a loop

itself. Pseudo-code for the node creation function can be found in Algorithm 1. After the nodes

have been created for the current graph layer, edges between nodes are created by accessing the

successors and predecessors of each interval tree node in the list of nodes previously created. An

edge is created and saved if one of two conditions are true:

• the predecessor or successor being evaluated is a node in the current graph layer.

• the predecessor or successor being evaluated is a child or descendant of a node in the current

graph layer.

If the predecessor or successor is at a higher level graph layer, the node is added to a list of

exit nodes. After all nodes and edges have been created for the current graph layer, our algorithm

proceeds to create all other layers.

Finally, once all layers have been created, our algorithm takes all of the information in each

graph layer and creates graphviz graph objects. Graphviz allows us to attach attributes to nodes

such as their color, position, size, etc. In this step, we give graph nodes generic labels based on

their interval type (e.g. block1, block2, loop1) since right-clicking on the node shows all of the

basic blocks contained. Parallel loops are also color-coded in this step by checking if the graphviz

node matches with with an entry in our list of loop-carried relationships. If a match exists, the

node is colored red if it is a leaf loop or orange if it is not. If it doesn’t match with any of the

relationships representing loop-carried dependences, the node is colored green if it is a leaf loop
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or yellow if it’s not. Finally, whenever a non-leaf loop contains a nested loop with a loop-carried

dependence, the edge of that loop is colored red. This was done for programmers who are looking

for non-parallel loops in order to modify the source code to get rid of the dependence. All of this

color coding is shown to the user through a legend implemented in the GUI. The graphviz nodes

get their positioning attributes through Graphviz’s layout algorithm, which takes in a graph and

lays it out in such a way that the nodes don’t collapse with each other and edges rarely cross over.

Algorithm 1 Create Nodes
Require: n is an interval tree node
Require: LC[n] is the set of loops contained in node n
Require: N is the set of nodes for the current graph layer
Require: toExpand is the set of root nodes from which a new layer will be created.
Require: n.contents is the set of interval nodes contained in node n

1: function CREATENODES(n)
2: if LC[n] 6= /0 then
3: if n ∈ LC[n] then
4: N.insert(n);
5: if LC[n].size > 1 then
6: toExpand.insert(n)
7: end if
8: return
9: else

10: for all child ∈ n.contents do
11: CREATENODES(child)
12: end for
13: end if
14: else
15: N.insert(n);
16: return
17: end if
18: end function

5.2 Graphical User Interface Generation

As mentioned in the previous section, the GUI for EPV was created through Qt’s GUI

library. One of the first challenges we encountered was passing the data structures from our LLVM

pass to the GUI. We did this through Graphviz since it provides functions for dumping graphs into
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textfiles with the dot format. Our LLVM pass creates a temporary directory that it fills up with dot

files and text files with all the information necessary to build the GUI. The very last step of the

pass is to fork a process which calls the executable for the GUI and waits for the GUI to be closed

by the user to resume execution.

The GUI’s implementation has two main windows: the function window, containing a list

of all functions and the main window, containing the tabbed graph pane, node list pane and legend

button. When the binary is executed by the LLVM pass, the function window is opened and loads

all of the program’s function names by reading a textfile in the temporary directory created by our

LLVM pass. When the user selects the function, the main window is created. Once control goes

back to GraphGenRels (our LLVM pass) after the user closes the GUI, the temporary directory is

deleted to avoid permanently taking disk space from the user of EPV.

From an implementation standpoint, these windows and their widgets are implemented

following Qt’s documentation. They follow the concept of signals and slots. A signal is emitted

by widgets through user input such as clicks, scrolling, dragging, selecting a node from a list, etc.

Slots are functions which are connected to signals for a response to user input.
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CHAPTER 6. CASE STUDY

This chapter will present a case study where we used EPV to analyze a popular heteroge-

neous computing benchmark from the Rodinia Benchmark Suite [32] named particlefilter. The

following sections will introduce the benchmark and describe the results of using EPV for the

discovery of parallelism in particlefilter.

6.1 Rodinia Benchmark Suite

The Rodinia Benchmark Suite is very popular in the field of heterogeneous systems. The

suite contains a set of computationally heavy programs that are rich in loops and parallel sections.

The benchmarks were designed to measure the efficiency of scheduling algorithms for heteroge-

neous systems. These are algorithms work by scheduling threads to different execution units for

parallel execution.

We chose a Rodinia benchmark for our case study because all of the suite’s benchmarks

have been manually parallelized through the addition of compiler directives. This proved helpful

as a comparison point between the loop parallelism that can be found through EPV and the manual

discovery of parallelism performed by the benchmark’s authors.

6.2 Particlefilter

We picked particlefilter from the Rodinia benchmarks because it is one of the richest bench-

marks in the suite in terms of loops that are both parallel and non-parallel. Particlefilter estimates

the location of a target object given noisy measurements of the object’s location and the object’s

path. We made a copy of the particlefilter source code and modified it by removing all compiler

directives to make the code fully sequential. Then we ran EPV to see the result of running our tool

on a program with over 30 loops. Pseudo-code containing only the loops, conditionals, functions

declarations and function calls for particlefilter is shown in Figure 6.1.
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1 void v ideoSequence ( params ) {
2 f o r ( . . . ) { . . . }
3 c a l l i m d i l a t e d i s k ( params ) ;
4 f o r ( . . . ) {
5 f o r ( . . . ) {
6 f o r ( . . . ) { . . . }
7 }
8 }
9 c a l l s e t I f ( params ) ;

10 c a l l s e t I f ( params ) ;
11 c a l l addNoise ( params ) ;
12 }
13 void i m d i l a t e d i s k ( params ) {
14 f o r ( . . . ) {
15 f o r ( . . . ) {
16 f o r ( . . . ) {
17 i f ( cond ) {
18 c a l l d i l a t e m a t r i x ( params ) ;
19 }
20 }
21 }
22 }
23 }
24 void s e t I f ( params ) {
25 f o r ( . . . ) {
26 f o r ( . . . ) {
27 f o r ( . . . ) {
28 i f ( cond ) { . . . }
29 }
30 }
31 }
32 }
33 void addNoise ( params ) {
34 f o r ( . . . ) {
35 f o r ( . . . ) {
36 f o r ( . . . ) { . . . }
37 }
38 }
39 }
40 void d i l a t e m a t r i x ( params ) {
41 f o r ( . . . ) {
42 f o r ( . . . ) {
43 i f ( cond ) { . . . }
44 }
45 }
46 }
47 void f i n d I n d e x ( params ) {
48 f o r ( . . . ) {
49 i f ( . . . ) { . . . }
50 }
51 }

52 void s t r e l D i s k ( params ) {
53 f o r ( . . . ) {
54 f o r ( . . . ) {
55 i f ( . . . ) { . . . }
56 }
57 }
58 }
59 void g e t n e i g h b o r s ( params ) {
60 f o r ( . . . ) {
61 f o r ( . . . ) {
62 i f ( . . . ) { . . . }
63 }
64 }
65 }
66 void p a r t i c l e F i l t e r ( params ) {
67 c a l l s t r e l D i s k ( params ) ;
68 f o r ( . . . ) {
69 f o r ( . . . ) {
70 i f ( cond ) { . . . }
71 }
72 }
73 c a l l g e t n e i g h b o r s ( params ) ;
74 f o r ( . . . ) { . . . }
75 f o r ( . . . ) { . . . }
76 f o r ( . . . ) {
77 f o r ( . . . ) { . . . }
78 f o r ( . . . ) {
79 f o r ( . . . ) {
80 i f ( cond ) { . . . }
81 }
82 f o r ( . . . ) { . . . }
83 }
84 f o r ( . . . ) { . . . }
85 f o r ( . . . ) { . . . }
86 f o r ( . . . ) { . . . }
87 f o r ( . . . ) { . . . }
88 f o r ( . . . ) { . . . }
89 f o r ( . . . ) { . . . }
90 f o r ( . . . ) {
91 c a l l f i n d I n d e x ( params ) ;
92 i f ( cond ) { . . . }
93 }
94 f o r ( . . . ) { . . . }
95 }
96 }
97 i n t main ( params ) {
98 f o r ( . . . ) { . . . }
99 c a l l v ideoSequence ( params ) ;

100 c a l l p a r t i c l e F i l t e r ( params ) ;
101 re turn 0 ;
102 }

Figure 6.1: Particlefilter: pseudo-code code containing only loops, conditionals and function calls.
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6.3 Results

Because of the large number of loops in particlefilter, we will only show two of the graph

layers generated by EPV in this chapter: the top-level in Figure 6.2, and a layer that represents a

large loop nest inside the function particleFilter(). The particleFilter() function starts on line 66

of Figure 6.1, but the sublayer that we include in Figure 6.3 represents the loop starting on line 76.

Additionally, a loop that EPV named loop11 is highlighted for the purposes of this case study (see

Figure 6.4). An explanation of this decision is in a later subsection where loop11 is discussed. One

observation derived from these figures as well as the IR generated is the fact that LLVM inlined all

functions into main. Compilers often do this to facilitate optimization efforts since function calls

usually complicate the analysis of IR.

6.3.1 Top Level Analysis

The first observation to make when looking at the top level layer of particlefilter on EPV

(see Figure 6.2) is the ease with which a complex program can be understood through the graph.

Since control flow is preserved, it is easy to see branches and identify the loops in the program

simply by scanning top-to-bottom or viceversa. For example, the first loop in the program is

the topmost colored node (colored green in this case). The user can come to this conclusion by

inspecting the graph for no more than a few seconds. Aditionally, it is easy to see that this loop

corresponds to the for loop on line 98 in Figure 6.1. To identify other loops, it suffices to keep

scanning loops top-down in the graph while comparing them to the pseudo code in Figure 6.1.

Similarly, it can be concluded that the bottommost loop (colored orange) is the last top-level loop

in the program, which can be found on line 76 by inspection. This technique can be used to identify

line numbers for every loop at this level and every other graph layer or loop depth. Thus, we see

the simplicity with which users of EPV can relate the tool’s visualization to the source code even

without having to scan the IR.

Another advantage of EPV observed in this example is the fact that our merger graph ab-

stracts away basic block nodes that are unimportant for parallelism discovery. The CFG of this

same example is much harder to read because it contains so many basic blocks that it looks like a
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Figure 6.2: Particlefilter analyzed: Top level view.

long vertical line of dots when zoomed out enough to fit the whole graph on the screen (this is also

the reason why a screenshot of the CFG is not included here, as it would be unreadable).
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Figure 6.3: Particlefilter analyzed: Loop 1, representing the longest top-level for loop in the func-
tion particleFilter() of Figure 6.1 (line 76).
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Figure 6.4: Particlefilter analyzed: Loop 11 shows the usefulness of red borders and font.

6.3.2 Loop 1 Analysis

Particlefilter was manually analyzed and parallelized by its authors. In total, it contains

10 loops with compiler directives for parallel execution. Loop 1 in Figure 6.3 contains 8 out of

those 10 loops. These are all of the loops in the figure except for loops 14 and 17. This is an

important observation because out of those 8 loops, EPV marked 7 as parallel. Loops 14 and 17

were not manually parallelized by the benchmark authors. This could be due to two reasons: one,

the benchmark authors’ analysis erroneously led them to believe these loops are not parallel; two,

perhaps the authors chose not to execute these loops in parallel since they do not represent an
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1 f o r ( x = 0 ; i < N p a r t i c l e s ; x ++) {
2 f o r ( y = 0 ; y < countOnes ; y ++) {
3 i f ( a r r a y [ x* countOnes + y ] >= maxSize ) {
4 a r r a y [ x* countOnes + y ] = 0 ;
5 }
6 }
7 }

Figure 6.5: Pseudocode for loop22 in Figure 6.3

important portion of the execution time of the program. The last 2 manually-parallelized loops

can be found in the top level and these are loops 2 and 3. EPV also marked these two loops as

parallel, resulting in 9 out of the 10 manually-parallelized loops being marked as parallel by the

visualization tool.

This is an example of the time savings that EPV could provide to programmers or re-

searchers looking to quickly optimize their programs without performing an in-depth analysis of

the source code. It is also a great example of a situation where a loop that is actually parallelizable

contains what the compiler conservatively (and erroneously) considers a loop-carried dependence.

This is the case of loop22. Pseudo-code for loop22 is shown in Figure 6.5. The data dependence

analysis cannot determine the value of the array index in lines 3 and 4 of the pseudocode. Since

the array index is dependent on both for loop counters, the data dependence analysis cannot deter-

ministically know if there are two permutations of values of x and y that will access the same array

element (causing a memory alias). Because of this, it marks this loop as non-parallel even though

it can still be parallelized. This is an example of a situation where EPV reports a loop-carried

dependence incorrectly, which is also a valuable contribution to researchers looking for patterns of

instructions that “trick” compilers into thinking that such instructions may alias. By using EPV,

researchers can quickly inspect all non-parallel loops because they’re marked with a color code.

Then they can quickly determine if the loop-carried dependences really exist by inspecting the IR

since it’s easy to connect the visualization to the IR through EPV’s node information window and

also to the source code through inspection of loop structure, as discussed in Section 6.3.1.
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6.3.3 Loop 11 Analysis

Loop11 is shown in Figure 6.4. This is a loop displayed at the top level graph of EPV’s

visualization of particlefilter. Analysis of this loop in our case study revealed another one of the

contributions of EPV: the ability to identify loop-carried dependences existing at deep layers by

glancing at the top-level layer. In this particular case, loop11 is a loop nest that is 5 layers deep,

with the loop-carried dependence happening at the deepest level. The dependence occurs because

an array is accessed with an index that depends on all 5 loop counters. Because of this loop-

carried dependence, all of the nested loops become non-parallel as they all share a loop-carried

dependence. EPV quickly shows the loop-carried dependence at the highest level of loop nesting.

Even if the first 4 levels were parallel loops and only the last loop had a loop-carried dependence,

the red borders and font would indicate this to the user.

6.4 Summary of Results and Lessons Learned

We saw through the analysis of particlefilter that EPV effectively represents a program’s

loops in a visually appealing way. We were able to easily discover all parallel loops and loop-

carried dependences. Additionally, this case study took a total execution time (including all de-

pendent passes) of 10 seconds on a commodity machine from 2012. Below is a list of lessons

learned:

• It is easy to correlate the graph to the IR through the node information window, which shows

the basic blocks contained in each node.

• Correlation between the graph and the source code is also possible with little effort by fol-

lowing the loop structure of the top level graph (as well as other layers) and comparing it to

the loops found in the source code.

• Unimportant basic block nodes are filtered out by the properties of the graph used in EPV,

only leaving the branches that lead to loops for easier understanding.

• This case study also identified 9 out of 10 of the loops that were parallelized by hand by

researchers who performed an in-depth analysis of the code in order to discover this loop

parallelism, and it did this in under 10 seconds of compile-time and analysis.
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• We were able to easily discover a “false” loop-carried dependence identified by the compiler

at a deep loop nesting from the top level through the node’s color code. This will help future

researchers to study loop-carried dependences much faster should they decide to visualize

their benchmarks with EPV.

• EPV marked a total of 19 loops at different nesting levels as parallel. Out of the 19, 9

were actually manually parallelized by the developers of the benchmark. The other loops

were not parallelized because they are only executed once and/or they have a low number

of iterations, so the execution time of these loops is minimal. Thus, by using EPV, users

can quickly identify all parallel loops and then determine which ones are worth parallelizing

through a quick analysis of the loop bounds and location in the source code.
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CHAPTER 7. CONCLUSIONS

This work introduced Exposed Parallelism Visualization, a tool for researchers and pro-

grammers that helps in the discovery of loop parallelism in sequential programs at compile-time

through an interactive graphical user interface. EPV has several unique properties:

• It is the first parallelism visualization tool generated at compile-time. To the best of our

knowledge, all other parallelism visualization tools require multiple executions of the pro-

gram (they are profilers).

• EPV is the first visualization tool to focus on loop-carried dependence information entirely,

given that large programs spend most of their execution time in loops.

• Since EPV creates a visualization of LLVM’s Intermediate Representation rather than source

code, it extends to every language that can be compiled with LLVM.

• Finally, EPV represents programs in a completely new type of graph which is a merger

between an interval tree and a control flow graph.

EPV’s graph representation allows it to keep the most important properties of interval trees

and control flow graphs: the structural information derived from the interval analysis, and the

popular control-flow information that keeps that graph simple and easy to connect back to the pro-

gram’s IR. These properties will provide researchers and programmers with insights about program

patterns that can both cause and prevent loop-carried dependences.

We hope that extensions to EPV are created in future work because we believe in the power

of software visualization tools for the discovery of parallelism in sequential programs. Vision is,

after all, the most powerful human sense for understanding large amounts of complex information,

so we must take advantage of that to better understand properties of parallel software. This is

especially true in a world where society relies on programs to do more for us every year. Below

we present some potential future work related to the purposes of this thesis.
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7.1 Future Work

• Callgraph Analysis: Another source of parallelism lies in the call structure of a program.

Figuring out the relationships between functions and function calls as well as each function’s

parallel properties can help to further optimize programs. We propose an extension to EPV

where a program can also be analyzed as a whole and shown as a function call graph that

exposes the potential parallelism to the user.

• Connecting the graph nodes to the source code: It would be possible to connect the graph

shown in EPV directly back to the source code with debug information. However, this

information is not currently implemented in our data dependence pass and other LLVM

passes. If it were to be implemented, we could connect a specific loop-carried dependence

to a line of source code, adding some more utility value to EPV since not every programmer

understands LLVM IR (but most researchers in the field of parallel optimization do).

• In-depth analysis of loop-carried dependences: In some cases, the data structure analysis

that EPV relies on identifies false loop-carried dependences which result in non-parallel loop

nodes in EPV. A more in-depth analysis of the instructions causing loop-carried dependences

could improve the accuracy of EPV by reducing the number of false non-parallel loops

displayed. An idea is to modify EPV to color-code loops that seem not to be parallel but

that are more likely to benefit from parallelism. These loops could be identified by searching

for patterns in the loop contents that lead to false dependences.

• Adding profiling features: Adding a profiling option for the less conservative detection of

parallelism could be added. Although that was not the purpose of this research, some users

could have the time to execute the program a number of times if that will provide them with

more accurate parallelism discovery. Another feature that could be added by profiling the

program is an estimation of the average percentage of execution time spent in each loop. By

displaying such information to the user, the most important loops in the program (i.e. the

loops that take the longest percentage of the execution time) could be easily identified.

• Itegration of support for directive-based framework: Already-parallelized programs that

use frameworks such as OpenMP, CUDA, OpenCL, etc. could benefit from EPV if support
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was added for these libraries. As an example, a program containing directives could be

analyzed to identify potential parallelism that is not being exploited by the framework’s

directives.

• Output parallel loops found: It could be useful to generate a textfile or some data structures

containing a list of parallel loops for other tools in a toolchain to potentially parallelize the

code automatically. This is a more tangential idea since the purposes of this research are

only the visualization for easy parallelism discovery, not automatic parallelization of code.

We hope that Exposed Parallelism Visualization becomes a widely used tool in the devel-

opment of efficient automatic parallelization algorithms at both compile time and runtime. Fur-

thermore, programmers that choose to use EPV will benefit from easy and fast discovery of loop

parallelism. Manual discovery of such parallelism requires expertise in data dependence analysis

and is a tedious and time-consuming task. This is why we believe that EPV will represent an im-

portant contribution to programmers across the world tasked with parallelizing their own programs

or even other people’s programs after quickly discovering parallel loops and using this information

to make decisions about what loops to execute in parallel.
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APPENDIX A. REFERENCE MANUAL

This appendix serves as a reference manual for users of EPV. Instructions on how to install

LLVM or execute passes are outside of the scope of this appendix. Furthermore, the LLVM pass

that generates EPV (GraphGenRels) depends on two other passes that are not part of the LLVM

package (GenRels and IntervalTreeAnalysis). Our primary focus here will be handling the GUI

and its features once it’s been generated.

A.1 Function Selection Window

The function selection window is the first window that the user will see when the LLVM

pass GraphGenRels is run. A screenshot of this window is shown in Figure A.1. In order to open

any given function, left-click on the function name in the list. This will open the main window,

described below. As long as the function selection window is open, the user can keep opening

main windows for different functions (or the same function).

Figure A.1: Function Selection Window.
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Figure A.2: Main Window.

A.2 Main Window

A screenshot of the main window for one of our benchmarks is shown in Figure A.2. The

main window contains three main panes: the tabbed graph pane, marked by the red rectangle and

the number ”1” in the figure, the node selection pane, marked by the blue rectangle and number 2,

and finally the legend button, marked by the blue rectangle and the number 3. There are a number

of user features in each pane of the main window that allow the user to interact with the window.

The subsections below explain each of these features along with instructions on how to use them.

A.2.1 Dragging the Graph

This is done by left-clicking anywhere in the graph pane and moving the mouse while

holding the left click. This will move the graph following the mouse movement. When the left

click is lifted, the dragging action stops.
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A.2.2 Zoom

Zooming is done by using the mouse scrollbar while the mouse cursor is on the graph pane.

Scrolling up zooms in, while scrolling down zooms out. The graph will zoom around the location

of the cursor.

A.2.3 Expanding Loop Nodes

Loop nodes that are not leaf loops (i.e. they have other nested loops inside them) can be

expanded by double left-clicking on them. This will open a new graph on a different tab in the

graph pane. The node selection list will be updated according to the currently selected tab. Users

can switch back and forth between different tabs freely.

A.2.4 Opening the Node Information Window

Users can learn more about nodes in any given graph by right-clicking on any node. This

will pop up a node information window where two pieces of information will be shown: On the top

half, the basic blocks contained in that interval node will be listed by name. On the bottom half,

instructions that cause a loop-carried dependence will be shown if the node clicked is a non-parallel

loop. See Figure A.3 for an example.

A.2.5 Selecting a Node in the Node Selection Pane

To center the graph around a specific node, find the node in the node selection pane (labeled

2 in A.2) and left-click it. This will automatically position the node in the center of the graph pane

(i.e. the entire graph will be repositioned).

A.2.6 Legend Button and Window

By clicking on the legend button (with a left click), a legend window will be shown. This

legend has information about color-coding of loops as well as entry and exit nodes marked in lower

graph layers. See Figure A.4.
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Figure A.3: Node Information Window.

Figure A.4: Legend Window.
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