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Chapter 2

System Representations and the Extended Definition of the Dynamical

Structure Function

(To be published in the book “Principles of Cyber-Physical Systems” as a chapter

entitled “Meanings and Applications of Structure in Networks of Dynamic Systems”)

This chapter describes four di↵erent mathematical representations of systems and

discusses the definition and meaning of the corresponding structure for each: the generalized

state space model with its complete computational structure, the transfer function and

the input-output sparsity structure, structured linear fractional transformations and the

subsystem structure, and the dynamical structure function with its signal structure. Each of

these system representations completely characterize the dynamic behavior of a system, and

thus they are equivalent from a behavioral perspective. Nevertheless, they retain varying

degrees of structural information, and thus these system representations can be ordered based

on their structural informativity.

In this work, a “structure” is a directed graph. We will see that di↵erent system

representations specify di↵erent structural graphs, and each structural graph carries with

it a unique interpretation, or meaning. We will restrict our attention to finite-dimensional,

causal, deterministic linear time invariant (LTI) systems defined over continuous time, but

the concepts extend naturally to the nonlinear and stochastic settings with di↵erent types of

independent variables.
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2.1 State Space Models and the Complete Computational Structure

State space models are the most structurally informative system representation considered

here. The standard state space model for LTI systems is given by:

ẋ = Ax+Bu

y = Cx+Du,
(2.1)

where x(t) 2 Rn represents a vector of n system state variables, each defined over t 2 R;

ẋ(t) 2 Rn represents the time derivative of these state variables; u(t) 2 Rm are controlled

inputs into the system; and y(t) 2 Rp are measured outputs. Recall that states have a

particular meaning, being the information necessary to characterize the future evolution of

the system. That is to say, given the values of x at some time (which will be labeled t = 0

without loss of generality), only future values of the input, u(t) for t � 0, are needed to

completely specify the evolution of the system for all times t � 0. This representation is

su�ciently detailed to completely characterize both the transfer function and the dynamical

structure function of a system, with their corresponding structures.

Nevertheless, this standard state space model does not di↵erentiate between systems

with di↵erent subsystem structures. For example, consider two systems in feedback. One

can easily compute the closed-loop dynamics of such an interconnection and represent them

with a single standard state space model. Nevertheless, if presented with this closed-loop

model, one can not determine what the two subsystems are that generate it. This failure to

distinguish di↵erent subsystem structures comes from the standard state space model’s lack

of representation power to distinguish between the composition of functions (see Example 1).

To distinguish di↵erent subsystem structures, we need to di↵erentiate between

behaviorally equivalent computations such as 1) f(x) = x, 2) f(x) = 2(0.5x) and 3)

f(x) = 0.3x+ 0.7x. We accomplish this by introducing auxiliary variables, w, that represent

intermediate stages of computation. In this way we can di↵erentiate 1) f(x) = x from 2)

16



f(x) = 2w and w = 0.5x or 3) f(x) = w1 + w2 and w1 = 0.3x and w2 = 0.7x, since each

of these di↵erent ways of computing the same functional relationship involve zero, one, or

two auxiliary variables, respectively. The auxiliary variables that are specified, say, in a

system’s “blueprint” or manifest directly to observers, help us distinguish the system’s actual

computational structure from others we could imagine.

Introducing auxiliary variables into the standard state space model characterizes

a di↵erential-algebraic system of equations capable of uniquely specifying all three of the

other system representations discussed here. We call this modified system of equations the

generalized state space model of a system, and represent it as

ẋ = Ax+ Âw +Bu

w = Āx+ Ãw + B̄u

y = Cx+ C̄w +Du

(2.2)

where w 2 Rl, Â 2 Rn⇥l, Ā 2 Rl⇥n, Ã 2 Rl⇥l, B̄ 2 Rl⇥m, and C̄ 2 Rp⇥l. The number of

auxiliary variables, l, is called the intricacy of the generalized state space model. Choosing

Ã so that I � Ã is invertible yields a di↵erentiability index of zero. This ensures that the

auxiliary variables can always be algebraically eliminated from the system, producing a

dynamically equivalent standard state space model (2.1). We call this equivalent standard

state space model the zero-intricacy realization or representation of a given generalized state

space model (2.2).

Example 1. Consider the feedback interconnection of two systems, given by

ẋ1 = A1x1 +B1r1 ẋ2 = A2x2 +B2r2

y1 = C1x1 y2 = C2x2

with r1 = u1 + y2 and r2 = u2 + y1, where u1 and u2 are exogenous inputs to the closed-loop

system, and y1 and y2 are measured outputs from the closed-loop system. Defining w1 = y1 and
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w2 = y2, we obtain the following generalized state space model of the feedback interconnection:

264 ẋ1

ẋ2

375 =

264 A1 0

0 A2

375
264 x1

x2

375 +

264 0 B1

B2 0

375
264 w1

w2

375 +

264 B1 0

0 B2

375
264 u1

u2

375
264 w1

w2

375 =

264 C1 0

0 C2

375
264 x1

x2

375 +

264 0 0

0 0

375
264 w1

w2

375 +

264 0 0

0 0

375
264 u1

u2

375
264 y1

y2

375 =

264 0 0

0 0

375
264 x1

x2

375 +

264 1 0

0 1

375
264 w1

w2

375 +

264 0 0

0 0

375
264 u1

u2

375
(2.3)

Note that I � Ã is invertible, thus enabling us to easily eliminate w from the equations. Doing

so yields the zero-intricacy representation of the feedback interconnection:

264 ẋ1

ẋ2

375 =

264 A1 B1C2

B2C1 A2

375
264 x1

x2

375+

264 B1 0

0 B2

375
264 u1

u2

375
264 y1

y2

375 =

264 C1 0

0 C2

375
264 x1

x2

375
(2.4)

Although these representations are dynamically equivalent, meaning that (2.3) and (2.4)

generate identical state and output trajectories if they are given the same initial condition x
o

and input trajectory u(t), (2.3) encodes information to uniquely specify the original subsystems

and their feedback interconnection structure, while (2.4) does not.

Example 1 illustrates a generalized state space model and the corresponding zero-

intricacy realization of a system composed of the interconnection of multiple subsystems.

In fact, whenever I � Ã is invertible, every generalized state space model has a unique,
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well-defined zero-intricacy realization. Likewise, every zero-intricacy state space model is

dynamically equivalent to a rich variety of generalized state space models of any positive

intricacy; these generalized state space models di↵er only in how their computations are

performed, or in their underlying computational structure. We call this structure of the most

refined generalized state space description of a system, even zero-intricacy ones, the complete

computational structure, and all other notions of system structure discussed in this work can

be derived directly from it.

Definition 1 (Complete Computational Structure). Given a generalized state space model,

as in (2.2), its complete computational structure is a weighted directed graph C with vertex

set V (C ) and edge set E(C ) given by:

• V (C ) = {u1, ..., um

, x1, ..., xn

, w1, ..., wl

, y1, ..., yp}, and

• E(C ) is specified by the nonzero entries of the adjacency matrix A (C ), where

A (C ) =

266666664

0 0 0 0

B A Â 0

B̄ Ā Ã 0

D C C̄ 0

377777775

T

. (2.5)

That is to say, a potential edge from v
i

2 V (C ) to v
j

2 V (C ) has weight A (C )
ij

, but

we only recognize the existence of edges with non-zero weight.

The generalized state space model (2.2) encodes information about how the system

performs the computations necessary to realize its dynamic behavior. It is like an information

blueprint of how specific components are interconnected to access information from input

signals; how this information is represented (in a specific coordinate system) and combined

with other data retrieved from memory; how these new calculations are stored; and how all of

this data combines to produce measurable output signals. The meaning, then, of the complete

computational structure characterized by (2.5), is the information architecture of a very
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specific computation system: how information is represented, transformed, and flows through

the system. Note that there is a distinction between “physical structure” and state space

models; in some cases, the particular basis specified by a state space model is more detailed

than the physical structure may suggest. For example, consider an inertial mass. This mass

behaves like a second order system according to Newton’s Second Law of Motion, but it is

not clear whether states of the system are necessarily position and velocity, or whether they

are some linear combinations of position and velocity. Exactly how some systems represent

and store information may be unclear, but if it were known, state space models are capable

of representing this refined level of structural knowledge. These models (the generalized state

space model and its associated complete computational structure) then become the most

refined knowledge of our system, ground truth from which all other representations can be

compared.

Note that because intricacy variables can always be eliminated from a generalized state

description without changing its dynamics, the most refined generalized state space model,

with intricacy l > 0, immediately defines a particular sequence of state space models indexed

by their intricacies, l� 1, ..., 0. Each of these coarser models has a structure associated with it

that we call a computational structure, but we reserve the descriptor, complete computational

structure for the most refined structural specification of the system; once the complete

computational structure is specified, even if it has zero-intricacy, all other hypothetical

refinements are considered fictitious while any agglomerative structure derived from it is a

valid notion of structure for the system.
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Example 2. Making Example 1 concrete, consider the following two systems:
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ẋ2
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�1 1

375
264r1
r2

375
266664
ẋ3
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interconnected in feedback, so that

264r1
r2

375 =

264y3
y4

375+

264u1

u2

375 ,

264r3
r4

375 =

264y1
y2
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264u3

u4

375 ,

leading to the following generalized state space model:2666666666664
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+
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266666664
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. (2.6)

The complete computational structure of this system, given in (2.6), is shown in Figure 2.1.
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y3 
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Figure 2.1: Complete computational structure of the generalized state space model from
(2.6). Blue nodes are manifest variables, while purple nodes indicate hidden variables. Notice
that the original feedback structure of subsystems, reflected by gray boxes, is preserved, since
the only interaction between subsystems is through manifest variables.
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The zero-intricacy realization of this generalized state space model, (2.6), is then given

by:

266666666664

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5
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=

266666666664
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+
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0 0 1 0
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=
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1 1 0 0 0
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377777775
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x1
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3777777777777775
+
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0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
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u2
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377777775

(2.7)

The computational structure of the zero-intricacy realization, given in (2.7), is shown in

Figure 2.2. Notice the di↵erences with the complete computational structure shown in Figure

2.1. For example, the complete computational structure has nodes for auxiliary variables, w,

while the computational structure of the zero-intricacy realization does not. Also, original

subsystem structure is preserved in the complete computational structure, highlighted by the

background gray boxes, while it is lost in the computational structure of the zero-intricacy

realization, resulting in no distinguishable subsystems.

2.2 Functional System Descriptions and the Manifest Structure

While state space models are the most structurally informative system representations,

functional system descriptions, such as convolution models or transfer functions, are at the

other end of the spectrum. These “black box” representations of a system are capable of

describing the same dynamic behavior as their state space counterparts, yet they do not
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Figure 2.2: Computational structure of the zero-intricacy realization (2.7) of the generalized
state space model in (2.6). Like Figure 2.1, blue nodes indicate manifest variables while
purple nodes are hidden variables. Notice that the original subsystem structure is lost, and
only a single subsystem remains visible from manifest variables.

model the detailed interactions among system components the way state space representations

do1.

This inability to convey detailed structural information is not necessarily a weakness,

however. For example, functional representations need fewer parameters to characterize a

given dynamic behavior, making them easier to learn from data (called system identification

[31, 57]) than their state space counterparts. Moreover, their parsimonious description of a

system’s dynamics creates an important distinction between a system’s behavior and how

it realizes that behavior, enabling a concerted focus on the design of a system’s dynamics

without worrying about implementation.

Just as high-level programming languages abstract many of the details of the computer

they run on, functional system descriptions are high-level abstractions of state space models.

1Although transfer functions and convolution models of LTI systems assume zero initial conditions, the
impact of a non-zero initial condition is easily modeled with the addition of an appropriately designed external
disturbance.
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In particular, the specific processes a state realization uses to decide which information

is stored in which parts of the state vector correspond to memory management activities

that are completely invisible to a functional description of a system. This distinction is

further exemplified by noting that state space models are imperative descriptions of a system,

encoding computations in terms of the time evolution of the system state, while functional

descriptions are inherently declarative, specifying what the system does without prescribing

how it should do it.

The result of this high-level/low-level relationship between functional system descrip-

tions and state space models is a one-to-many relationship between the two model classes.

That is, every state space model has a zero-intricacy realization as in Equation (2.1) that

identifies a unique functional system description, whether it be the impulse response matrix

of a convolution model or a transfer function matrix, given by:

y(t) = h(t) ⇤ u(t) Y (s) = H(s)U(s)

h(t) = CeAtB +D�(t), H(s) = C(SI � A)�1B +D,
(2.8)

where ⇤ denotes convolution, �(t) is the Dirac delta function, h(t) is the system’s p ⇥ m

impulse response matrix, Y (s) and U(s) are the Laplace transforms of y(t) and u(t), and

H(s) is the system’s p⇥m transfer function matrix–which is also the Laplace transform of

h(t).

Note, however, that there are many state space models that specify the same impulse

response or transfer function; each of these state space models specifies a di↵erent implemen-

tation (or realization) of the same dynamic behavior. Among all these state realizations of a

given functional description of a system, some have fewer states than others. In fact, systems

with functional descriptions that can be described by finite-dimensional LTI state space

models2 have a unique integer, n, associated with them called the Smith-McMillan degree.

2Although all LTI state space models have transfer functions, not all transfer functions have state space
realizations. This is because the imperative nature of state space models demand that they are causal,
meaning that future values of manifest variables only depend on past and present values of manifest variables.
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This degree is the minimal number of states necessary for any state space realization of the

system. Nevertheless, even restricting attention to state space models with order equal to the

Smith-McMillan degree does not yield a unique state realization; given a minimal realization

(A,B,C,D) of a transfer function H(s), any n⇥n transformation, T , yields another minimal

realization (Â, B̂, Ĉ, D̂) given by:

Â = TAT�1, B̂ = TB, Ĉ = CT�1, D̂ = D (2.9)

such that C(sI � A)�1B + D = H(s) = Ĉ(sI � Â)�1B̂ + D̂. Thus, even among minimal

realizations, there are infinitely many implementations of a given dynamic behavior specified

by a functional description such as H(s), and these implementations di↵er only in their

structural properties.

The functional description of a system, however, retains only the structural properties

that are common among all of its state realizations, which is precisely the mathematical

structure of the functional description itself. This structure describes the internal closed-loop

relationships among manifest variables, and therefore is called the manifest structure.

Definition 2 (Manifest Structure). Given a generalized state space model, as in (2.2),

identified by a functional system description, as in (2.8), its manifest structure is a weighted

directed graph M with vertex set V (M ) and edge set E(M ) given by:

• V (M ) = {u1, ..., um

, y1, ..., yp}, each representing a manifest signal of the system, and

• E(M ) has an edge from u
i

to y
j

, labeled by either H
ji

or h
ji

, provided they are non-zero.

Note that when a system’s manifest variables partition naturally into inputs and outputs,

then its manifest structure is a bipartite graph, with directed edges from inputs to outputs.

An alternative definition of the manifest structure characterizes M directly from C

using only graphical properties (which is useful when extending these results to the nonlinear

Transfer functions that are proper rational functions of the Laplace variable correspond to causal finite
dimensional LTI systems; we do not concern ourselves with other kinds in this work.
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setting). In that case, we say M has an edge from u
i

to y
j

if the net impact of all paths in

C from u
i

to y
j

is non-zero, or, equivalently, if every equivalent realization of the system,

specified by a transformation T as in (2.9), with complete computational structure C
T

, has a

path from u
i

to y
j

.

Example 3. Consider the zero-intricacy state space model in (2.7) from Example 2. The

corresponding transfer function is given by:

H(s) = C(sI � A)�1B +D =

266666664

0 s

2+5s+6
s

3+6s2+11s+5
1

s

3+6s2+11s+5 0

s+1
s

2+3s+1
s

3+6s2+11s+8
s

5+9s4+30s3+44s2+26s+5
3s+3

s

5+9s4+30s3+44s2+26s+5
1

s

2+3s+1

1
s

2+3s+1
s

2+7s+10
s

5+9s4+30s3+44s2+26s+5
2s2+6s+5

s

5+9s4+30s3+44s2+26s+5
s+2

s

2+3s+1

0 1
s

3+6s2+11s+5
s+1

s

3+6s2+11s+5 0

377777775
(2.10)

The manifest structure corresponding to this transfer function, (2.10), that represents the

internal closed-loop pathways from inputs to outputs of the system in (2.2) is given in Figure

2.3.

Note that in some cases, although a pathway exists from an input to an output in

the system’s complete computational structure, it is possible that the corresponding transfer

function from the input to the output is zero. For example, notice that although paths exist

from every input to every output in the computational structure of the zero-intricacy realization

generating H (Figure 2.2), H11, H41, H14, and H44 are nevertheless all zero. Thus, we see

that the existence of paths from u
i

to y
j

is not su�cient for H
ij

to be nonzero; the closed-loop,

net e↵ect of all paths from u
i

to y
j

must be nonzero for H
ij

to be nonzero; exact cancellations,

which can be common in software and other engineered systems, can generate zeros in the

functional description.
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(a) Manifest structure of the system with
transfer function (2.10)

u2 

y1 

y2 

u3 y3 

y4 

u1 

u4 

(b) Missing edges in the manifest structure,
corresponding to zero elements in H.

Figure 2.3: Manifest structure of the same system from Figures 2.1 and 2.2. Notice the lack
of edges from u1 to y1 and y4, and from u4 to y1 and y4, corresponding to associated zeros in
H(s). These missing links are highlighted in Figure 2.3b. Note that these links are missing
in the manifest structure even though paths exist in Figure 2.2 from every input to every
output.

2.3 Structured Linear Fractional Transformations and the Subsystem Structure

Having identified the complete computational structure as the most informative structural

representation, and the manifest structure as the least, we now explore the most common

intermediate structural representation: the interconnection of subsystems. Subsystem struc-

ture is less informative than the complete computational structure because it does not reveal

the internal structure of subsystems. On the other hand, subsystem structure can be more

informative than manifest structure because it reveals the interconnection pattern among

subsystems.

To isolate and represent the interconnection pattern of subsystems for a given system,

begin by considering a set of q subsystems, S = { S1 S2 ... S
q

}, interconnected into a

composite system, H. It is conceivable that each of these subsystems are themselves divisible

into constituent subsystems, or that not all of the q subsystems are discernible from H’s

manifest variables, so we specify the level of modeling abstraction by:
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1. Modeling each of the q constituent subsystems with a suitable functional description,

such as a proper or strictly proper transfer function S
i

(s), i = 1, 2, ..., q, or a single-

subsystem state space realization, characterized as a generalized state space model with

subsystem structure consisting of a single subsystem, so that no further division of the

subsystems is possible, and

2. Ensuring that each of the subsystem’s outputs, w
i

, is a measured output of the composite

system H, so y = [ wT

1 wT

2 ... wT

q

]T , where y is the output of H.

Note that each subsystem is distinct, meaning that state variables internal to one subsystem

are di↵erent from those of the other subsystems, yielding no mechanism for interaction except

through their respective manifest variables. Let u be a vector of external inputs; v
i

and w
i

be the vectors of inputs and outputs for system S
i

; and v and w be the stacked inputs and

outputs from all systems, v = [ vT1 vT2 ... vT
q

]T and w = [ wT

1 wT

2 ... wT

q

]T , so that

w = y. Interconnecting these systems then means defining binary matrices L and K such

that: 
L K

�264 u

w

375 = v. (2.11)

Our convention is that the process of interconnection only allows the selection of

particular signals and possibly adding them together, thus restricting the interconnection

matrices, L and K, to have elements with values of either zero or one; all other computations

are part of the systems in S. Further, we assume that the resulting interconnection is

well-posed, meaning that all signals within H are uniquely specified for any value of external

inputs and underlying state variables [75]. This assumption ensures that the proposed

interconnection is physically sensible and not merely a mathematical artifact.
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The composite system, H, is then clearly defined by the structured linear fractional

transformation (LFT) as in Figure 2.4, given by:

N

264 u

w

375 =

264 y

v

375 ,

w = Sv,

(2.12)

where

N =

264 0 I

L K

375 , S =

266666664

S1 0 ... 0

0 S2 0

...
. . .

...

0 ... S
q

377777775
(2.13)

and S
i

can be represented by either a suitable functional description, such as a proper

or strictly proper transfer function matrix or the associated impulse response matrix of a

convolution model, or by any single-subsystem generalized state realization. The symbol

S is overloaded, representing both the set of subsystems and the decoupled operator of

subsystem models in (2.13), but the appropriate meaning should always be clear from

context. Equations (2.12) and (2.13) characterize H as a structured LFT in terms of S.

Combining these equations yields, for example, Y (s) = [S(s)(I �KS(s))�1L]U(s), implying

that H(s) = S(s)(I �KS(s))�1L, where Y (s) and U(s) are the Laplace transforms of y(t)

and u(t), respectively; similarly, a well-specified expression can be obtained for h directly in

the time domain. The functional description of the composite system, H, in either the time

or frequency domain, is completely specified by the structured LFT description in (2.12) and

(2.13).

Although the structured LFT completely specifies the functional description of the

composite system, H, the structured LFT does not have enough structural information

to specify H’s complete computational structure or its associated generalized state space

description. To do so, it would need information about the “true” structure of each constituent

30



u y 

»
¼

º
«
¬

ª
KL
I0

»
»
»

¼

º

«
«
«

¬

ª

)(00
00
00)(1

sS

sS

q

�

w v 

Figure 2.4: A structured linear fractional transformation revealing the interconnection
structure among subsystems in binary matrices L and K.

subsystem. This point may be clear when S is specified by a functional description for each

subsystem, such as its transfer function, but it becomes more subtle when S is specified

by a generalized state space model for each subsystem. In this case, it is important to

understand that the state space model for each subsystem in S can be any single-subsystem

realization of the associated transfer function, S
i

(s), since the structured LFT does not

use any information about the internal structure of its subsystems. To realize the “true”

generalized state description of H an its associated complete computational structure, one

must have accurate descriptions of the complete computational structures for each constituent

subsystem to complement the “interconnection” information in the structured LFT.

The structured LFT reveals the interconnection structure among subsystems, encoded

in the binary interconnection matrix, N , in general, and in L and K in particular. Note

that the interconnection structure in N is una↵ected by whether the subsystems in S

are represented by state space models or transfer functions. The internal computational

structure of subsystems, revealed by state models of subsystems but not transfer function

representations of subsystems, is not used when representing the subsystem structure of
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a system–only the interconnection structure among subsystems, not within subsystems, is

relevant for this representation.

Aggregating L and K appropriately to account for the potentially multi-input multi-

output nature of the constituent subsystems yields adjacency matrices from which the

composite system’s subsystem structure can be built. To accomplish this, let e
v

i

denote the

vector of ones with length equal to the length of vector v
i

. We then define the aggregation

matrices

A
v

=

266666664

eT
v1

0 ... 0

0 eT
v2

0

...
. . .

...

0 0 ... eT
v

q

377777775
, A

w

=

266666664

eT
w1

0 ... 0

0 eT
w2

0

...
. . .

...

0 0 ... eT
w

q

377777775
, (2.14)

and use them to create the adjacency matrices:

A (L) = sgn(A
v

L)T , A (K) = sgn(A
v

KAT

w

)T , (2.15)

where sgn(·) denotes the sign function, yielding a value of one for positive entries, zero for

zero, and negative one for negative entries (which can never occur in this case). With these

definitions, we are now prepared to characterize a system’s subsystem structure:

Definition 3 (Subsystem Structure). Given a generalized state space model, as in (2.2),

identified by a structured LFT, (N,S), as in (2.12) and (2.13) and with associated aggregation

matrices as in (2.14) and adjacency matrices as in (2.15) , its subsystem structure is a

weighted directed graph S with vertex set V (S ) and edge set E(S ) given by:

• V (S ) = {u1, ..., um

, S1, ..., Sq

, y1, ..., yp}, representing input signals, subsystems, and

output signals, respectively.

• E(S ) has an edge from

– u
i

to S
j

if A (L)
ij

= 1, labeled u
i

;
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– S
i

to S
j

if A (K)
ij

= 1, labeled w
i

;

– S
i

to y
j

if (A
w

)
ij

= 1, labeled y
j

.

Note that the subsystem structure is qualitatively di↵erent from either the complete

computational structure or the manifest structure in a few ways. First, while all the nodes of

either the complete computational structure or the manifest structure represent signals, the

nodes of the subsystem structure represent systems, namely the subsystems and exosystems

associated with the generation of each input or measurement of each output signal. As a

result, we often denote the nodes in the subsystem structure with a di↵erent shape, e.g.

rectangles instead of circles, to highlight this distinction (see Figure 2.5e). Also, the edges in

both the complete computational structure and the manifest structure are labeled to represent

systems, while the edges in the subsystem structure are labeled with the names of signals.

These distinctions make it clear that the subsystem structure carries the interpretation of a

block diagram, while the other structures are signal flow graphs.

The definition of subsystem structure given above characterizes the graph in terms N

and S. Nevertheless, the subsystem structure can be obtained directly from the complete

computational structure, which not only lends a graphical interpretation to the concept of

a subsystem, but naturally facilitates the extension of the definitions to the nonlinear and

stochastic setting. We achieve this by first extending the definition of a manifest node or

manifest signal of C to include any node representing a signal identically equal to a manifest

signal, u
i

or y
j

. We then consider the subgraph of C obtained by 1) removing all input nodes

and any outgoing edges leaving them, 2) removing all output nodes and any incoming edges

entering them, and 3) removing all outgoing edges leaving any remaining manifest nodes.

This subgraph, H is the hidden structure of C , and it immediately reveals its subsystems

and their interconnection, as follows:

Theorem 1. Consider a system H characterized by a structured LFT, (N,S). Construct

a complete computational structure for H, as in (2.2), by realizing each subsystem in S
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(a) Step 1: Identify the manifest variables
(shaded blue).
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(b) Step 2: Remove all input and output
nodes, along with any edges adjacent to these
nodes.
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(c) Step 3: Remove any outgoing edges from
any remaining manifest variables.

(d) Step 4: Remaining connected components
correspond to subsystems.

u1 

u2 

y1 

y2 

u3 

u4 

S2 

S1 

y3 

y4 

(e) Step 5: Reintroduce the input and output vari-
ables as exosystem nodes, and replace all removed
edges, compressing any duplicate edges into a sin-
gle edge.

Figure 2.5: Subsystem structure, built from a system’s complete computational structure.
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Now, compare the resulting subsystem structure with the results we obtain if we work

directly from the equations defining the original subsystems in Example 2 leading up to

Equation (2.6). If we find the transfer function of each subsystem individually, build the

associated subsystem matrix S, and then interconnect appropriately, we recover the following

structured LFT:

N =

266666666666666666666666666666666664

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

377777777777777777777777777777777775

(2.16)

S =
1

s2 + 3s+ 2

266666664

0 s+ 2 0 s+ 2 0 0 0 0

s+ 1 1 s+ 1 1 0 0 0 0

0 0 0 0 2
s+3 s+ 2 2

s+3 s+ 2

0 0 0 0 s+1
s+3 0 s+1

s+3 0

377777775
Compare the results of the structured LFT with the signal structure in Figure 2.5e.

Notice that building the subsystem structure according to Definition 3 leads to the same result;

both processes construct the same graph. Nevertheless, building subsystem structure directly

from C sheds insight into the meaning of subsystems, as the connected components of the

hidden structure of C .
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These procedures uniquely specify (N,S) and S from a generalized state space model

and its complete computational structure, C . This implies that the system models and their

associated structural representations considered so far produce a totally ordered set with

respect to the relation, “uniquely specified by.” These are, in order of increasing structural

informativity:

1. Functional system descriptions and the manifest structure, (uniquely specified by)

2. Structured LFTs and the subsystem structure, (uniquely specified by)

3. Generalized state space models and the complete computational structure.

The next section considers an alternative approach for representing systems, focusing on the

interaction among manifest signals as opposed to the interconnection among subsystems.

2.4 Dynamical Structure Functions and the Signal Structure

One of the di�culties in learning a system’s subsystem structure from data is that it necessarily

partitions the system states into subsystem groups, so one must be able to identify the correct

subsystem for each state variable–even those that are “hidden,” or not directly manifest.

This section considers a system representation that precisely characterizes the interaction

between manifest signals without drawing any conclusions about “hidden” variables. This

ability to remain agnostic about the structural role of hidden variables not only makes this

representation easier to learn from data, but it also makes it extremely useful for describing

systems with a “fluidic” component that makes the very idea of subsystems di�cult to

conceptualize, such as chemical reaction processes or market behavior.

This representation, called the dynamical structure function (DSF), like the structured

LFT and the subsystem structure, is part of a totally ordered set with respect to the relation,

“uniquely specified by.” This is, in order of increasing structural informativity:

1. Functional system descriptions and the manifest structure, (uniquely specified by)

2. Dynamical structure functions and the signal structure, (uniquely specified by)
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3. Generalized state space models and the complete computational structure.

Note that representations of the signal structure similar to the dynamical structure

function are found across the literature, especially in the area of network reconstruction,

[18, 36, 42]. Here we define a system’s dynamical structure function by considering the

zero-intricacy realization of each subsystem in a generalized state space model, as in (2.1).

The overall dynamical structure function of a system is determined by finding the dynamical

structure function of each subsystem and then interconnecting them using block diagram

algebra.

Without loss of generality, the dynamical structure function of a subsystem charac-

terized by the zero-intricacy realization (A,B,C,D) is determined if we let p1  p be the

rank of C and assume without loss of generality that the outputs y = [y01 y02]
0, y1 2 Rp and

y2 2 R(l�p), are ordered so the first p rows of C are linearly independent, i.e.

C =

264 C1

C2

375 (2.17)

with C1 2 Rp⇥n being full row rank. The dynamical structure function of the system with

respect to y1 is then given by a pair of (l ⇥ p) and (l ⇥m) real rational matrix functions,

(Q̂(s), P̂ (s)), defined over the Laplace variable, s 2 C.

In order to determine the a view of the system from the perspective of the manifest

variables, first create the (n⇥ n) state transformation:

T =


C 0

1 E1

�0
, (2.18)

where E1 2 Rn⇥(n�p) is any basis of the null space of C1, with

T�1 =


R1 E1

�
, (2.19)
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V (s) = B̂1 + Â12(sI � Â22)
�1B̂2 (2.24)

and let D
W

(s) = diag(W (s)) be a diagonal matrix function composed of the diagonal entries

of W (s).

Define Q(s) = (sI �D
W

)�1(W �D
W

) and P (s) = (sI �D
W

)�1V yielding

Z1 = Q(s)Z1 + P (s)U (2.25)

264 Y1

Y2

375 =

264 I 0

Ĉ21 0

375
264 Z1

Z2

375+

264 D̂1

D̂2

375U (2.26)

Noting from (2.25) that Z1 = Y1 � D1U , the dynamical structure function of a

zero-intricacy state space realization of the form (2.1) with respect to y1 is then given by:

Q̂(s) =

264 Q(s)

C21

375 , P̂ (s) =

264 P (s) + (I �Q(s))D1

D2 � C21D1

375 (2.27)

which satisfies 264 Y1

Y2

375 = Q̂(s)Y1 + P̂ (s)U (2.28)

Definition 4. The signal structure of a system is denoted W , with a vertex set V (W ) and

edge set E(W ), [70]. The elements of a system’s signal structure is defined to be:

• V (W ) = {u1, ..., um

, y11, ..., y1p1 , y21, ..., y2p2}, each representing a manifest variable of

the system with p2 = p� p1, and

• E(W ) contains an edge from v
i

2 V (W ) to v
j

2 V (W ) if the associated entry of Q and

P is nonzero.
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Theorem 2. (Invariance to Basis of the Null Space) Given a system (A,B,C,D) as

in (2.1), consider two distinct bases of the null space of C, E 6= E, with corresponding state

transformations:

T =

264 C1

E 0

375 , T =

264 C1

E
0

375 ,

as in (2.18), and each leading to its corresponding dynamical structure function, (Q̂, P̂ ) and

(Q,P ) as in (2.27). Then (Q̂, P̂ ) = (Q,P ).

Proof. Let z = Tx and z = Tx. Then z = TT�1z:

TT�1 =

264 C1

E
0

375
R1 E

�
=

264 I 0

0 E
0
E

375 (2.32)

where R1 = C 0
1(C1C 0

1)
�1. The block diagonal structure of TT�1 then ensures, by Lemma

1, that the dynamical structure function produced for z is the same as that for z, i.e.

(Q̂, P̂ ) = (Q,P ).

The last property explored here is the invariance of the dynamical structure function

to state permutations, this means that permuting the states of the dynamical structure

function reveals the same dynamical structure function with a renumbering of the measured

states. This concept is formalized in Theorem 3.

Theorem 3. (Invariance to State Permutations) Consider a system as in (2.1) with

state matrices (A,B,C,D) and dynamical structure function (Q̂, P̂ ). Then (Q̂, P̂ ) is invariant

to state permutations; that is, the set of systems characterized by state permutations,

S = {(MAM�1,MB,CM�1, D) | M is a permutation matrix},

all share the same dynamical structure function, (Q̂, P̂ ), up to a permutation.
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5.2.2 Step 2: Structured Linear Fractional Transformation as a Graphical Dual

Consider a state space model of the form:

266664
ẋ1

...

ẋ
n

377775 =

266666664

A1 k12B1C2 ... k1nB1Cn

k21B2C1
. . . . . .

...

...
. . . . . . k(n�1)nBn�1Cn

k
n1Bn

C1 ... k
n(n�1)Bn

C
n�1 A

n

377777775

266664
x1

...

x
n

377775 (5.10)

+

266666664

l11B1 0 ... 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 l
nn

B
n

377777775

266664
u1

...

u
n

377775

266664
y1
...

y
n

377775 =

266666664

C1 0 ... 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 C
n

377777775

266664
x1

...

x
n

377775
where k

ij

2 {0, 1} is non-zero if there is a connection from the jth to ith subsystem, l
ii

2 {0, 1}

is non-zero if the ith subsystem is a↵ected by an external input, and for each i = 1, ..., q,

we have A
i

2 Rn

i

⇥n

i , B
i

2 Rn

i

⇥1, and C
i

2 R1⇥n

i . We assume that all transfer functions

G
i

(s) = C
i

(sI � A
i

)�1B
i

are single-input single-output (SISO) which is reasonable for a

comparison to the dynamical structure function as a graphical dual, also the state space

representation in (5.10) makes two other assumptions to make it comparable to the dynamical

structure function:

1. K is hollow, meaning that outputs of subsystems don’t directly a↵ect themselves and

2. L is diagonal, meaning each input targets a single subsystem.
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These assumptions are a reasonable starting point for the development of the semantics of

the structured linear fractional transformation and extending the results to structured linear

fractional transformations with less restrictions will be the product of future work.

Given (Q(s), P (s)) of a system, the graphical dual can be created mathematically

taking each non-zero entry of Q(s) and P (s) and setting it as a SISO subsystem G
k

(s) in

S(s). Utilizing the equations

N =

2640 I

L K

375 , S(s) =

266666664

G1(s) 0 ... 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 G
n

(s)

377777775
(5.11)

where G
i

(s) = C
i

(sI � A
i

)�1B
i

,

L =

266666664

l11 0 .. 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 l
nn

377777775
, K =

266666664

0 k12 ... k1n

k21
. . . . . .

...

...
. . . . . . k(n�1)n

k
n1 ... k

n(n�1) 0

377777775
(5.12)

given the values of l
ii

and k
ij

from (5.10). Then the structure of


L K

�
is determined by

setting L
ij

= 1 if, given (2.28), the input U
j

(s) a↵ects the measured state Y
i

(s), i.e. P
ij

(s) 6= 0,

and K
ij

= 1 if Y
j

(s) a↵ects Y
i

(s), i.e. Q
ij

(s) 6= 0.

5.2.3 Step 3: Determine the Set of Realizations Associated with Each System

Representation

First, we describe the set of realizations associated with the transfer function, a well known

result in the systems theory literature [30]. This, in turn, will then inform the network
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semantics of both the structured linear fractional transformation and the dynamical structure

function.

Network Semantics of a Transfer Function

The semantics of the transfer function, i.e. the set of all realizations associated with the

transfer function, is characterized by any invertible matrix T 2 Rn⇥n, where n is the minimal

order of the transfer function and T represents any change of basis of the state variables x(t).

Given a state space model that is a realization of the transfer function G of the form:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) +Du(t)
(5.13)

The associated transfer function is

G(s) = C(sI � A)�1B +D

Applying the transformation T to the state space system in (5.13) we get:

ż(t) = TAT�1z(t) + TBu(t)

y(t) = CT�1z(t) +Du(t)
(5.14)

The associated transfer function is given by:

Ĝ(s) = CT�1(sI � TAT�1)�1TB +D

= CT�1(sTT�1 � TAT�1)�1TB +D

= CT�1(T (sI � A)T�1)�1TB +D

= CT�1T (sI � A)�1T�1TB +D

= C(sI � A)�1B +D

= G(s)
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Then the set of all realizations specifying the semantics of G(s) is given by (5.14) for any

invertible matrix T .

Network Semantics of a Structured Linear Fractional Transformation

In this section, we detail the set of transformations that maintain the class of structured

linear fractional transformations defined in (5.11).

Lemma 11. Given a state space model of the form (5.10), an invertible transformation T

maintains the structured linear fractional transformation ()

T =

266664
T11 ... T1n

...
. . .

...

T
n1 ... T

nn

377775 , T�1 =

266664
T̂11 ... T̂1n

...
. . .

...

T̂
n1 ... T̂

nn

377775 (5.15)

where

1. (Property A) T
ii

is any invertible matrix for all i and T̂
ii

= T�1
ii

,

2. (Property B) T
ij

B
j

= 0 and C
i

T̂
ij

= 0 for all i, j when i 6= j,

3. (Property C) For each i, j, h where i 6= j or i 6= h or j 6= h, we have
P

n

j=1 Tij

A
j

T̂
jh

= 0

Proof. First, we show necessity by taking a transformation T of the form (5.15) and showing

that each of the Properties A, B, and C must be met to ensure the structured linear fractional

transformation is maintained. Consider a transformation T , where T is any invertible matrix,
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(5.10) yields the state space model:

2

66666666664

ż1

.

.

.

żn

3

77777777775

=
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.
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.
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3

77777777775

+

2

66666666666666664
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0
. . .

. . .
.
.
.

.

.

.
. . .

. . . 0

0 ... 0 lnnTnnBn

3

77777777777777775

2
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.

.

.
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3

77777777775

2

66666666664

y1

.

.

.

yn

3

77777777775

=

2

66666666666666664

C1T
�1
11 0 ... 0

0
. . .

. . .
.
.
.

.

.

.
. . .

. . . 0

0 ... 0 CnT

�1
nn

3

77777777777777775

2

66666666664
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.

.

.
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77777777775

(5.21)

The associated structured linear fractional transformation of (5.21) is given by:

Ŝ(s) =

266666664

Ĝ1(s) 0 ... 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 Ĝ
q

(s)

377777775
(5.22)

where

Ĝ
i

(s) = C
i

T�1
ii

(sI � T
ii

A
i

T�1
ii

)�1T
ii

B
i

= C
i

(sI � A
i

)�1B
i

= G
i

(s)

(5.23)

which means Ŝ(s) = S(s) and

N̂ =

2640 I

L̂ K̂

375 (5.24)
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Definition of the Structured Linear Fractional Transformation

The definition of the structured linear fractional transformation should be extended to

N =

264J H

L K

375 and S(s) =

266666664

S1(s) 0 ... 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 S
q

(s)

377777775
(9.1)

in order to model the class of all interconnected proper transfer functions. Moreover, removing

some of the restrictions imposed in Section 5.2.3, including cases where L are not diagonal,

such as the system given in Figure 9.1 will be an important step.

G1(s)

G2(s)

Figure 9.1: A subsystem structure with a single input a↵ecting multiple subsystems, the
associated structured linear fractional transformation will have L be a non-diagonal matrix.

Definitions of Nonlinear System Representations

This thesis detailed relationships of representations of linear systems, so a natural extension

would be to determine the definitions and relationships between the corresponding nonlinear

system representations associated with each of the four graphical structures outlined in this

work.
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9.2.2 Network Semantics

In preparation for further developments in the area of network semantics and since the state

space model does not uniquely define a structured linear fractional transformation we need a

representation of higher structural informativity than a state space model. One potential

representation is the generalized state space equations [70] which take the form

ẋ = Ax+ Âw +Bu

w = Āx+ Ãw + B̄u

y = Cx+ C̄w +Du

(9.2)

where w 2 Rl is known as the auxiliary variables and l is known as the intricacy. In order to

determine the semantics of system representations in terms of the generalized state space

equations, a framework will be needed for describing the semantics of the representation, a

nontrivial task.

Semantics of the Dynamical Structure Function

Two areas of the current network semantics results that demand more reflection are:

1. The necessary conditions on a transformation that maintains the intermediate W and V

representation of a dynamical structure function. Even though the conditions are based

on the state space representation rather than the generalized state space equations, the

results are likely to inform the new semantics of the generalized equations.

2. Given the necessary conditions for maintaining W and V , in order to show necessary

conditions for maintaining the dynamical structure function, we need to determine

conditions for the case when (W (s), V (s)) 6= (Ŵ (s), V̂ (s)). If

(Q(s), P (s)) = (Q̂(s), P̂ (s)) (9.3)
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((sI �D
W

(s))�1(W (s)�D
W

(s)), (sI �D
W

(s))�1V (s)) = (9.4)

((sI � D̂
Ŵ

(s))�1(Ŵ (s)� D̂
Ŵ

(s)), (sI � D̂
Ŵ

(s))�1V̂ (s))

Equation 9.4 can be rewritten as the set of equations:

Ŵ (s) = (sI � D̂
Ŵ

(s))(sI �D
W

(s))�1(W (s)�D
W

(s)) + D̂
Ŵ

(s)

V̂ (s) = (sI � D̂
Ŵ

(s))(sI �D
W

(s))�1V (s)
(9.5)

This means that the dynamical structure function is maintained by any transformation

that meets the criteria in (9.5), but has (W (s), V (s)) 6= (Ŵ (s), V̂ (s)). One of the issues

for determining the conditions on the transformation is that it is possible to maintain

Q(s) and P (s) with W (s) 6= Ŵ (s) when no transformation exists due to the orders of

the associated realizations being di↵erent; This idea is demonstrated in Example 19.

Example 19. Consider a state space model with:

A11 =

264�1 2

2 �1

375 , A12 =

2641
2

375

A21 =


2 2

�
, A22 = [�1]

(9.6)

which means that

A =

266664
�1 2 1

2 �1 2

2 2 �1

377775 and C =

2641 0 0
0 1 0

375 (9.7)
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which means the system is 3rd order. One of the corresponding intermediate matrices is given

by

W (s) =

264�s+1
s+1

2s+4
s+1

2s+6
s+1

�s+3
s+1

375 (9.8)

which means the associated Q(s) matrix of the dynamical structure function is then

Q(s) =

264 0 2s2+6s+4
s

3+3s2+s�1

2s2+8s+6
s

3+3s2�s�3 0

375 (9.9)

Now, we want to find a state space model with the same dynamical structure function,

i.e. Q(s) = Q̂(s), but a di↵erent intermediate matrix Ŵ (s) 6= W (s). So we define:

D̂
Ŵ

(s) =

264 1
s+1 0

0 1
s+2

375 . (9.10)

Now, given (9.5) and (9.10) we can get

Ŵ (s) =

264 1
s+1

2s4+8s3+8s2�2s�4
s

4+4s3+4s2�1

2s4+12s3+20s2+4s�6
s

4+5s3+5s2�5s�6
1

s+2

375 (9.11)
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whose associated dynamical structure function is Q̂(s) = Q(s). Since Ŵ (s) = Â11 + Â12(sI �

Â22)�1Â21 we can determine the associated realization:

Â11 =

2640 2
2 0

375 Â12 =

264�1.2982 0.2316 0 0.1486 0.0074

0 0 2.2857 �0.05 1

375

Â21 =

266666666664

�0.1213 0.2662

3.638 3.6509

0.5833 0

�0.0333 �3.4053

0.665 0.8297

377777777775
Â22 =

266666666664

0.4126 0.0471 0 0 0

0.0471 �0.9984 0 0 0

0 0 1 0 0

0 0 0 �2.4132 �0.0207

0 0 0 �0.0207 �2.001

377777777775

(9.12)

which means that

Â =

2666666666666666664

0 2 �1.2982 0.2316 0 0.1486 0.0074

2 0 0 0 2.2857 �0.05 1

�0.1213 0.2662 0.4126 0.0471 0 0 0

3.638 3.6509 0.0471 �0.9984 0 0 0

0.5833 0 0 0 1 0 0

�0.0333 �3.4053 0 0 0 �2.4132 �0.0207

0.665 0.8297 0 0 0 �0.0207 �2.001

3777777777777777775

(9.13)

which is 7th order.

Therefore:

1. In some cases, no transformation exists that can maintain the dynamical structure

function when W (s) 6= W̄ (s) because the order of the original system is not preserved,

and
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2. One possible way of finding a necessary condition for the set of transformations that

maintains the dynamical structure function is to determine the properties of the set

of D̂
Ŵ

(s) matrices from (9.5) that do not change the order of the associated state

space model. Then, given two di↵erent state space models of the same order, we can

determine the properties of T that relate the two and gain insight into a general set

of properties for necessary conditions on transformations that maintain the dynamical

structure function.

9.2.3 Applications

Finally, there is plenty of room for expansion of the structural applications discussed in this

thesis. The passive reconstruction algorithm requires an extension for robust reconstruction

in the presence of noise. While the polynomial-time robust reconstruction algorithm may

contain some ideas that can be applied, the curve fitting algorithm struggles with noisy

data and will require more careful thought. In terms of the vulnerability application, the

problem of feedback vulnerability is still an open problem. Feedback vulnerability refers to a

methodology for reducing the overall vulnerability of a dynamical structure function in cases

when feedback is inherent in the system.
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